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REGULARITY FOR A CLASS OF SUBELLIPTIC OPERATORS

M. K. VENKATESHA MURTHY

Abstract. We are concerned with the regularity of solutions of subelliptic equa-
tions of the form

LXu =

m∑

j=1

X∗
j Xju + X0u + a(x)u = f(x) G

where X = {X1, · · · , Xm} and X0 are real C∞ vector fields defined in an open
neighbourhood Ω of a bounded domain G with smooth boundary ∂G in RN

and a(x), f(x) ∈ C∞(Ω). Suppose that the system of vector fields X satisfies the
finite type brackets condition of Hörmander except on a union of smooth surfaces
Σ which are non characteristic for the system X and that an a priori estimate
of Sobolev type with a logarithmic weight holds. Then any weak solution of the
subelliptic equation LXu = f(x) in G belongs to C∞(G \ Σ).

The class of operators considered includes certain infinitely degenerate elliptic
type operators LX. Since the components of Σ are in general, hypersurfaces (one-
codimensional submanifolds) suitable microlocal conditions have to be assumedon
the symbols of the vector fields of the system X and their commutators in order
that the logarithmic a priori estimate holds.

If further the boundary is C∞ and is not characteristic with respect to the
system of vector fields X then any weak solution of the Dirichlet problem for
LX with C∞ data is C∞ upto the boundary except on Σ; that is, the solution
belongs to C∞(G \ Σ) ∩ C0(G \ Σ).

1. Introduction

We are concerned with C∞-regularity of solutions to a class of second order
subelliptic equations of degenerate type with C∞-coefficients. Such a study goes
back to the work of Kolmogorov in 1934, who proved the hypoellipticity for the
equation

∂2u

∂x2
+ x

∂u

∂y
− ∂u

∂z
= f

by explicitely constructing a fundamental solution. Hörmander in his famous paper
of Acta Mathematica of 1969 studied the problem of hypoellipticity of general second
order equations in detail. For operators of arbitrary orders of degenerate elliptic
type the problem of C∞ and Gevrey hypoellipticity was considered in a paper of
Baouendi and Goulaouic in 1971.

It is known from Hörmander’s paper that for a second order equation P (x,D)u =
f with real principal symbol to be hypoelliptic the principal symbol p2(x, ξ) should
necessarily be a semidefinite quadratic form in ξ. Since the work of Hörmander
several authors have obtained important results on hypoellipticity of second order
operators with C∞-coefficients, to mention only a few authors, we have J.-M. Bony,
Y. Morimoto and T. Morioka, S. Wakabayashi, R. Wheeden, C.-J. Xu, C. Zuily.
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For a second order operator, in any open set where the rank of the matrix of the
second order coefficients is constant, in a suitable coordinate system the operator
can be written in the form

m∑
j=1

X2
j + X0 + a(x)

where X0, X1, · · · , Xm are real C∞-vector fields and a(x) is a C∞-real valued func-
tion (see Hörmander, Acta Mathematica, 119 (1969)).

The results described here are motivated by examining the following standard
examples in two and three dimensions.

Some model examples of operators of degenerate elliptic type. With the
standard notations x = (x1, · · · , xN ) as a coordinate system in RN , N = 2, 3, some
examples are given by the following degenerate elliptic operators:

∂2

∂x2
1

+ xk
1

∂2

∂x2
2

, with k a positive integer;

∂2

∂x2
1

+ exp[−2|x1|
−2
s ]

∂2

∂x2
2

, with a real number s > 0;

∂2

∂x2
1

+ exp[−2(x2
1 sin2(

π

x1
)
−1
s ]

∂2

∂x2
2

, with a real number s > 0;

∂2

∂x2
1

+
∂2

∂x2
2

+ exp[−2|x1|
−2
s ]

∂2

∂x2
3

, with a real number s > 0;

∂2

∂x2
1

+ x2m
1

∂2

∂x2
2

+ exp[−|x1|−s]
∂2

∂x2
3

,

with an integer m > 0 and a real number 0 < s < m + 1;

∂2

∂x2
1

+ exp[
−2
|x1|

]
∂2

∂x2
2

+ exp[−|x1|−sexp(
1
|x1|

)]
∂2

∂x2
3

,

with a real number 0 < s < 2.
Here, while the first example is a degenerate elliptic type operator of finite order

degeneracy at x1 = 0 the others are all degenerate elliptic type operators of infinite
order degeneracy at x1 = 0.

We shall review here some recent progress on the C∞-regularity theory for subel-
liptic operators of this type wherein the vector fields may degenerate to infinite
orders along smooth surfaces which are non characteristic with respect to the fam-
ily of vector fields (see section 2 for definitions). The results of this survey were
presented at the International Conference on Recent Advances in Partial Differential
Equations in memory of Filippo Chiarenza held at Messina in December 2005.

2. Notation and function spaces

Suppose G is a bounded domain in RN with C∞-boundary ∂G and suppose X =
{X1, · · · , Xm} and X0 are real C∞-vector fields defined in an open neighbourhood
Ω of G. Let X∗

j denote the formal adjoint of Xj , j = 1, · · · ,m. Consider the
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subelliptic second order equation associated to the system of vector fields X and
X0:

LXu =
m∑

j=1

X∗
j Xju + X0u + a(x)u = f(x) in G

where a, f ∈ C∞(Ω). We also denote the principal part by

L0
X =

m∑
j=1

X∗
j Xj

Function spaces. We introduce the following natural spaces of distributions as-
sociated to the system of vector fields X, similar to the classical Sobolev spaces:

M1(Ω; X) = {u ∈ L2(Ω); Xju ∈ L2(Ω), for j = 1, · · · ,m}
which is a Hilbert space with the natural scalar product and norm, namely,

(u, v)M1(Ω;X) = (u, v)L2(Ω) +
m∑

j=1

(Xju, Xjv)L2(Ω)

||u;M1(Ω; X)||2 = (u, u)M1(Ω;X) = ||u;L2(Ω)||2 +
m∑

j=1

||Xju;L2(Ω)||2

The corresponding local space M1
loc(Ω; X) is the space of all distributions u ∈

D′(Ω) such that ϕu ∈ M1(Ω; X) for all test functions ϕ ∈ D(Ω).
We denote as usual by M1

0 (Ω; X) the closure of D(Ω) in M1(Ω; X) and its dual
space by M1′(Ω; X).

The elements of the dual space M1′(Ω; X) can be represented (in a non unique
way) as the space of distributions of the form

F = f0 +
m∑

j=1

X∗
j fj , where f0, f1, · · · , fm ∈ L2(Ω)

with the natural duality pairing

〈F, u〉 =
∫

Ω
(f0u +

m∑
j=1

fjXju)dx

Definition 1. A C∞-submanifold of co-dimension one (a hypersurface) Σ in Ω is
said to be non characteristic with respect to the system of vector fields X if
for any point x0 ∈ Σ there exists atleast one vector field Xj of the system X which
is transversal to Σat x0; i.e. Xj(x0) 6∈ Tx0Σ.

Trace of M1(Ω; X) on Σ. If Σ is a hypersurface in Ω which is not characteristic with
respect to the system of vector fields X then we can define, for any u ∈ M1(Ω; X),
the trace u|Σ in the following standard manner:

Suppose x0 ∈ Σ and that the vector field Xj of X is transversal to Σ at x0. Then
we use the classical method of localizing using a C∞-cut off function and a local
C∞-diffeomorphism on a small open neighbourhood U of x0 in Ω to flatten the
portion U ∩ Σ to a subset of the hyperplane {y = (y′, yN ) ∈ RN ; yN = 0} so that
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the vector field Xj is transformed to the normal vector field
∂

∂yN
and the remaining

vector fields are transformed to vector fields Y1, · · · , Ym−1. The system of vector
fields X is transformed to the system Y = {Y1, · · · , Ym−1,

∂
∂yN

}. Then the classical
method is adapted to define the trace operator u → u|Σ on M1(Ω; X).

We shall assume from now onwards that
the boundary ∂G of the domain G is a C∞-hypersurface which is non character-

istic with respect to the system of vector fields X.
When the boundary ∂G is a C∞-hypersurface which is non characteristic with

respect to the system of vector fields X, the trace u|∂G = γ0u is well defined. Then
we have

M1
0 (G;X) = {u ∈ M1(Ω; X); γ0u = 0 on ∂G}

which is a Hilbert space with the induced scalar product and obviously D(G) is
dense in M1

0 (G;X) thus defined.

Weak solution of LXu = F .

Definition 2. A weak solution of the equation LXu = F in G for F ∈ M1′(G;X)
is defined as

u ∈ M1
loc(G;X),

∫
G
{

m∑
j=1

(Xju)(Xjv) + (X0u)v + a(x)uv}dx = F (v)

for all v ∈ M1
0 (G;X)

We shall denote by G(X) the Lie algebra generated by the system of vector fields
X0 and X with the standard bracket operation [X, Y ] = XY − Y X; i.e. G(X)
is the smallest C∞(Ω)-submodule containing X which is closed under the bracket
operation.

Definition 3. The rank of the Lie algebra G(X) at a point x ∈ Ω is the dimension
of the vector space generated by all the vectors Z(x); Z ∈ G(X).

We have the following classical result of Hörmander:

Theorem 1 (Hörmander). If the rank of the Lie algebra G(X) at every point x ∈ G
is equal to the dimension of G = N then the differential operator LX is hypoelliptic
in G.

i.e. For any point x ∈ G among the commutators

X1, X2, · · · , Xm, [Xj1 , Xj2 ], · · · , [Xj1 , [Xj2 , · · · , [Xjk−1
, Xjk

]]], · · · ,

where J = {j1, j2, · · · , jk} ⊂ {1, · · · ,m} there exist N commutators which generate
the tangent space Tx(G) then LX is hypoelliptic in G.

Definition 4 (Condition of Hörmander). The system of vector fields X is said to
satisfy the condition of Hörmander in a subset ω of Ω if the rank of the Lie algebra
G(X) at every point of the subset ω is equal to N , the dimension of Ω.

Remark. If the rank of the Lie algebra G(X) is a constant < N then the operator
LX is not hypoelliptic.
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We shall make use of the standard notation: if J = {j1, · · · , jk} with j1, · · · , jk ∈
{1, · · · ,m} we denote by |J | = k the length of the commutator

XJ = [Xj1 , [Xj2 , · · · [Xjk−1
, Xjk

]]]

We also need the following definition:

Definition 5. Suppose Σ = ∪j∈JΣj is a union of C∞ one- codimensional hypersur-
faces in Ω. Σ is said to be non characteristic for the system of vector fields X if for
any point x0 ∈ Σ there exist at least one vector field Xi ∈ X such that the vector
Xi(x0) is transversal to all the hypersurfaces Σj passing through the point x0; i.e.
Xi(x0) is transversal to every Σj , j ∈ J(x0) = {j ∈ J ;x0 ∈ Σj}.

This definition is motivated by the following example in R2:
Suppose

LX = − ∂2

∂x2
1

− exp[−{x2
1 sin(

π

x1
)}

−1
s ]

∂2

∂x2
2

where X = {X1, X2} with X1 = ∂
∂x1

and X2 = exp[−{x2
1 sin( π

x1
)}

−1
2s ] ∂

∂x2

Here Σ0 = {x1 = 0}, Σj = {x1 = 1
j } for all j ∈ Z \ 0 and Σ = ∪j∈ZΣj .

The vector field X1 = ∂
∂x1

is transversal to every Σj , j ∈ Z while X2 vanishes on
Σ = ∪j∈ZΣj to infinite order.

3. The main result

We shall use the notation: 〈ξ〉2 = e2 + |ξ|2 and, for s > 0,

(log〈D〉)sv = (Op(log〈ξ〉)s)v = (2π)−N

∫
(log〈ξ〉)sv̂(ξ)exp(i〈x, ξ〉)dξ

Hence using the Parseval formula, we have

||(log〈D〉)sv;L2(RN )||2 =
∫

(log〈ξ〉)2s|v̂(ξ)|2dξ

Then the main result is the following interior regularity theorem

Theorem 2. Suppose the system of vector fields X = {X1, · · · , Xm} satisfy the
following hypothesis:

(i) there exists a union of C∞ hypersurfaces Σ = ∪j∈JΣj which is non charac-
teristic with respect to the system of vector fields X, where X satisfies the condition
of Hörmander in Ω except on Σ, i.e the rank of the Lie algebra G(X) at every point
x ∈ Ω \ Σ is equal to the dimension of Ω = N

(ii) there exists an s > 3
2 such that the following logarithmic estimate holds: there

exists a constant C > 0 such that

||(log〈D〉)sv;L2(Ω)|| ≤ C||v;M1(Ω; X)||, for all v ∈ D(Ω)

Then, for f ∈ C∞(G), any locally bounded weak solution

u ∈ M1
loc(G;X) ∩ L∞

loc(G) of LXu = f ∈ C∞(G)

belongs to C∞(G \ Σ).

i.e. LX is hypoelliptic in G except on the union of hypersurfaces Σ = ∪j∈JΣj .
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Remark. The logarithmic estimate with s = 1, namely

||(log〈D〉)v;L2(Ω)||2 ≤ C{
m∑

j=1

||Xjv;L2(Ω)||2 + ||v;L2(Ω)||2}, ∀v ∈ D(Ω)

is not enough to prove the hypoellipticity of LX.
However, an estimate of the form: if ∀ε > 0 there exists a constant Cε > 0 such

that

||(log〈D〉)v;L2(Ω)||2 ≤ ε

m∑
j=1

||Xjv;L2(Ω)||2 + Cε||v;L2(Ω)||2

would be enough to prove the hypoellipticity. But this can not be derived as a
consequence of the s = 1 logarithmic estimate.

When s > 1, using the fact that the vector fields are homogeneous differential
operators of order one, by a standard interpolation argument it is possible to prove
that the logarithmic estimate with s > 1 implies that ∀ε > 0 there exists a constant
Cε,s > 0 such that

||(log〈D〉)sv;L2(Ω)||2

≤ ε2s
m∑

j=1

||Xjv;L2(Ω)||2 + Cε,s||v;L2(Ω)||2, for all v ∈ D(Ω).

The result of theorem 1 can be extended to a C∞-regularity result upto the
boundary for solutions of the Dirichlet problem as follows:

Theorem 3. Suppose the system of vector fields X satisfies the hypothesis (i) and
(ii) of the theorem 2. Further assume that

(iii) the boundary ∂G of the bounded domain G is a C∞-smooth one codimen-
sional manifold which is non characteristic with respect to the system X. Then,
given functions f ∈ C∞(G) and g ∈ C∞(∂G) any bounded weak solution u ∈
M1(G;X) ∩ L∞(G) of the Dirichlet problem

LXu = f in G, γ0u = u|∂G = g on ∂G

belongs to C∞(G \ Σ) ∩ C0(G \ Σ).

Remark. Under suitable sufficient conditions on the system X and the commutators
XJ the logarithmic Sobolev type estimate holds and since the Σj are general hyper-
surfaces (one-codimensional submanifolds of Ω these involve conditions of microlocal
nature on the symbols of the commutators XJ (see the Appendix).

4. Logarithmic Sobolev type spaces

In view of the assumption (i) in the above theorems it is necessary to study the
properties of the corresponding spaces of distributions. This is done as is customary
in Harmonic Analysis by means of an appropriate decomposition of Littlewood -
Paley type for functions on the Phase space or the Fourier transform space.

We shall denote, for s > 0, by

Elog
s = Elog

s (RN ) = {u ∈ L2(RN ); (log〈D〉)su ∈ L2(RN )}
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with its natural scalar product and the corresponding norm

(u, v)
Elog

s
= (u, v)L2(RN ) + ((log〈D〉)su, (log〈D〉)sv)L2(RN ).

||u, Elog
s ||2 = ||u;L2(RN )||2 + ||(log〈D〉)su;L2(RN )||2.

In view of Plancheral’s theorem we have, by the Fourier transform, the space of
functions

F log
s = F log

s (RN ) = {v ∈ L2(RN ); (log〈ξ〉)sv ∈ L2(RN )}

which is provided with the scalar product and the corresponding norm

(v, w)
F log

s
= (v, w)L2(RN ) + ((log〈ξ〉)su, (log〈ξ〉)sv)L2(RN ).

||v, F log
s ||2 = ||v;L2(RN )||2 + ||(log〈ξ〉)sv;L2(RN )||2.

The logarithmic Sobolev type regularity hypothesis (ii) in the above theorems (see
sec. 3) can be reformulated as follows: For the system of vector fields X there is a
continuous linear mapping from M1(G;X) to Elog

s (RN ).

5. Littlewood-Paley decomposition of functions on the phase space

For the study the properties of the function spaces Elog
s and F log

s and the estimates
needed for the proof of the main result we make use of a technique from Harmonic
Analysis which consists of decomposition of functions in the phase space.

We write R+ = (0,+∞) as a union ∪+∞
k=−1 Ik where

I−1 = (0, e2), I0 = (e, e3), I1 = (e2, e4), · · · , Ik = (ek+1, ek+3) = ekI0, · · ·

and in correspondence with this we obtain a decomposition of the phase space

RN
ξ = ∪+∞

k=−1Γk

where
Γk = {ξ ∈ RN ; 〈ξ〉 ∈ Ik}, for all k = −1, 0, 1, · · · .

We introduce a C∞-partition of unity: let ϕ−1 ∈ D(I−1) = D((0, e2)) and ϕ0 = ϕ ∈
D(I0) = D((e, e3)) be two test functions such that

ϕ−1(〈ξ〉) +
+∞∑
k=0

ϕ(e−k〈ξ〉) = 1

in the sense that any f ∈ L2(RN
ξ ) can be decomposed as (a convergent series in

L2(RN ))

f = ϕ−1(〈D〉)(f) +
+∞∑
k=0

ϕ(e−k〈D〉)(f) =
∞∑

k=−1

Φk(f)

where

Φ−1(f) = ϕ−1(〈D〉)(f) = (2π)−N

∫
ϕ−1(〈ξ〉f̂(ξ)exp(i〈x, ξ〉)dξ

Φk(f) = ϕ(e−k〈D〉)(f) = (2π)−N

∫
ϕ(e−k〈ξ〉)f̂(ξ)exp(i〈x, ξ〉)dξ
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The properties of the function space Elog
s (RN ) are characterized by the following

propositions:

Proposition 1 (Estimates for the components Φk(u) for u ∈ Elog
s (RN )). If u ∈

Elog
s (RN ) then we have the estimate

||Φk(u);L2(RN )|| ≤ ckk
−s, where

∑
c2
k < +∞

and ||{ck}; l
2||2 =

∑
c2
k ≤ ||u;Elog

s (RN )||2

Infact, we have,

c2
k =

∫
Γk

(log〈ξ〉)2sϕ(e−k〈ξ〉)2|û(ξ)|2dξ

Conversely, if u ∈ L2(RN ) is such that there exists a positive sequence {ck} ∈ l2

such that
||Φk(u);L2(RN || ≤ ckk

−s

then u ∈ Elog
s (RN ) and we also have the following estimate: for any ρ ≥ 1 there

exist positive constants C1, C2 such that

ρ2s||(log〈D〉)su;L2(RN )||2 ≤ C1s
2s||u;L2(RN )||2 + Cρ

2ρ2s||{ck}; l
2||2

Proposition 2 (Reconstruction of u from its Littlewood-Paley components uk =
Φk(u)). Suppose we have a sequence {uk} in L2(RN ) such that the Fourier transform
ûk of uk has

supp ûk ⊂ B(0, hek) for some constant h > 0
and there exist constants ck > 0 with {ck} ∈ l2 such that, for s > 1

2 ,

||uk;L2(RN )|| ≤ ckk
−s

then the series
∑

uk converges in L2(RN ) and the sum u =
∑

uk belongs to
Elog

s− 1
2

(L2(RN )). Moreover, for any ρ ≥ 1

ρ2s−1||(log〈D〉)(s−
1
2
)u;L2(RN )||2

≤ C1(s−
1
2
)2s−1||u;L2(RN )||2 + Cρ

2ρ2s−1(2s− 1)||{ck}; l
2||2

We observe that since 2s > 1,
∑

k−2s < +∞ and then by the Cauchy-Schwarz
inequality ∑

ck.k
−s ≤ (

∑
c2
k)

1
2 .(
∑

k−2s)
1
2 < ∞

and hence
∑
||uk;L2(RN )||2 < +∞.

We can also construct distributions in Elog

s− 1
2

(RN ) starting from a sequence of

C∞-functions provided that their derivatives satisfy appropriate growth conditions.
More precisely, we have

Proposition 3. Let {uk}be a sequence of C∞-functions on RN such that, for any
s > 1

2 there exists a function v ∈ Elog
s (RN ) and for any α ∈ NN there is a constant

A|α| so that we have

||Dαuk;L2(RN )|| ≤ A|α|e
k|α|||Φk(v);L2(RN )||
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then u =
∑

uk converges and belongs to Elog

s− 1
2

(RN ).

Moreover we have an estimate similar to the one in the previous proposition.

Remark. Roughly speaking the above propositions imply that the distributions in
the space Elog

s (RN ) are characterized in terms of their Littlewood-Paley components
by requiring that ∑

k2s||Φk(u);L2(RN )||2 < +∞.

6. A sketch of proof for the interior regularity

If u ∈ M1
loc(G;X) ∩ L∞

loc(G) is a weak solution of the subelliptic equation LXu =
f ∈ C∞(G) in G then the classical method consists in using as a test function in
the definition of the weak solution a localization αu of u with α ∈ D(G). However,
we only know that αu belongs to the space M1

0 (G;X) and so in order to apply
the logarithmic Sobolev type estimate and in particular, to apply the operator
(log(〈D〉))s we need an additional regularity of αu. This is achieved making use of
a technique already used in Hörmander’s paper, namely we regularize αu by means
of the fundamental solution Gδ of I− δ2∆ given by the pseudo-differential operator

Gδv = (I − δ2∆)−1(v) = Op((1 + δ2|ξ|2)−1)(v)

= (2π)−N

∫
(1 + δ2|ξ|2)−1v̂(ξ)ei〈x,ξ〉dξ, with δ > 0

and let δ → 0.
Then {Gδ}0<δ≤1 is a uniformly bounded family of operators on the classical

Sobolev spaces Hm(R),∀m ∈ R. This follows from the fact that the fundamental
solution G = F−1(1 + |ξ|2)−1 of (I − ∆) together with all its derivatives ( ∂

∂x)αG
decay exponentially as |x| → +∞. Hence Gδ and all its derivatives decay faster
than any power of δ as δ → 0 and this in turn implies that Gδ(v) → v in L2(RN ),
as δ → 0.

Step 1. Let s > 3
2 and the system of vector fields satisfy the following logarithmic

estimate: for all ε > 0 there is a constant Cε,s > 0 such that

||(log〈D〉)sv;L2||2 ≤ ε2s
m∑

j=1

||Xjv;L2||2 + Cε,s||v;L2||2, ∀v ∈ D(Ω)

Then, for α ∈ D(G \ Σ) we take αu where u ∈ M1
loc(G;X) ∩ L∞(G) is a weak

solution of LXu = f in G. Then we have

Proposition 4. For any integer l ≥ 0 and and ρ ≥ 1 we have the estimate

||(log〈D〉ρ)lGδ(αu);L2(RN )|| ≤ (c0l)l
l
mρcρ

where the constant c0 = c0(supp α) depends only on the supp α and the constants
mρ and cρ are independent of δ > 0 and l.

For the proof we consider the weak solution u and we take for the test function v
in the definition of the weak solution an appropriate regularization of the localized
u; more precisely, we take

v = βGδαGδ(βu) ∈ H1
0 (G)
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where β ∈ D(G \ Σ) such that β = 1 on supp α. We estimate using the Cauchy-
Schwarz inequality together with the logarithmic ε-estimate in the hypothesis of the
proposition to prove the required assertion.

Under the same hypothesis as in the above proposition, we use a similar method
to obtain estimates also for the following commutators applied to the weak solution:

[Xj , (log〈D〉ρ)sGδα]u

and
[Xj , [Xk, (log〈D〉ρ)sGδα]]u

Step 2. We can write

〈ξ〉2 = exp(log〈ξ〉2) =
∞∑

k=0

1
k!

(log〈ξ〉2)k

and hence

||〈D〉2Gδ(αu);L2|| = ||〈ξ〉2 ̂[Gδ(αu)](ξ);L2||

=
∑

k

1
k!
||(log〈ξ〉2)k ̂[Gδ(αu)](ξ);L2||

=
∑

k

1
k!

(
2
ρ
)k||(log〈ξ〉ρ)k ̂[Gδ(αu](ξ);L2||

=
∑

k

1
k!

(
2
ρ
)kck

0k
k.kmρcρ

Taking ρ = 4ec0 in the proposition to get

=
∑

k

1
k!

(
1
2e

)kkk.kmρcρ, since
2c0

ρ
=

1
2e

≤
∑

k

1
2k

(
kk

k!ek
).kmρcρ

≤ ||αu;L2||+ cρ

∞∑
k=1

1
2k

.kmρ since
kk

k!
< ek

which proves that {Gδ(αu); 0 < δ ≤ 1} is a uniformly bounded set in the classical
Sobolev space H2(RN ). Hence is a weakly relatively compact subset and therefore
admits a weakly convergent subsequence in H2(RN ); i.e. Gδν (αu) → αu weakly in
H2(RN ) for a subsequence δν → 0, This proves that αu ∈ H2(RN ). This implies
once again by regularization that {Gδ(αu) ∈ H4(RN ); 0 < δ ≤ 1} is a uniformly
bounded set in H4(RN ). Repeating the above argument we see that αu ∈ H4(RN ).
This bootstrap argument shows that αu ∈ Hm(RN ) for all m > 0 and then by the
classical Sobolev embedding theorem it follows that αu ∈ C∞(RN ), which completes
the proof of the interior regularity of the weak solution.
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7. The Dirichlet problem and regularity upto the boundary

We assume that the boundary ∂G is non charcteristic wth respect to the system
of vector fields X and hence we have the trace and extension theorems for the space
M1(G;X). Given g ∈ C∞(∂G) take a C∞ - extension w of g to G and take u − w
in place of u to transform the probelm to the homogeneous Dirichlet problem:

LX(u− w) = f − LXw = h in G

u− w ∈ M1
0 (G;X)

Thus we assume that u ∈ L∞(G) ∩M1
0 (G;X) and that u satisfies LXu = h in G

in the sense of weak solutions.
Since the boundary ∂G is non-charcteristic with respect to the system X, if x0 ∈

∂G there is a vector field Xi of the system such that the vector Xi(x0) is transversal
to the boundary at x0. In a neighbourhood U of the point x0 ∈ ∂G we localize
u using a cut off function α ∈ D(U) and then make a C∞ diffeomorphism to
flatten the piece of the boundary U ∩ ∂G. In the new system of coordiates y =
(y1, · · · , yN−1, yN ) = (y′, yN ) we may assume that the vector field Xi ∈ X which
is transversal to ∂G at x0 is transformed to ∂

∂yN
. Thus the system of vector fields

X = {X1, · · · , Xm} is transformed to the system Y = {Y1, · · · , Ym−1,
∂

∂yN
} and the

vector field X0 to Y0. Here Y1, · · · , Ym−1 are the new tangential vector fields on the
image of U ∩ ∂G, contained in RN−1: if y = (y′, yN ) then

Yj =
N−1∑
k=1

ajk(y′, yN )
∂

∂yk
, for j = 1, · · · ,m− 1

The equation LXu = h is transformed to

LYu = − ∂2

∂y2
N

(αu) +
m−1∑
j=1

Y ∗
j Yj(αu) =

∂(c̃βu)
∂yN

+ Y0(βu) + c̃βu + h̃(y)

for suitable β, c̃ ∈ D(RN
+ ) and supp α and supp β are contained in a neighbour-

hood of 0 in RN
y with β = 1 on supp α.

It can be verified that the transformed system of vector fields Y =
{Y1, · · · , Ym−1,

∂
∂yN

} and Y0 satisfy the logarithmic estimate in a neighbouhood V

of 0 in RN
y .

We use the tangential pseudo-differential operator

〈D′〉 where D′ = (
∂

∂y1
, · · · ∂

∂yN−1
),

η′ = (η1, · · · , ηN−1) and 〈η′〉2 = e2 + |η′|2.
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It follows as before that the logarithmic estimate implies that for any ε > 0 there
exists a constant Cε,s > 0 such that

||(log〈D′〉sv;L2(RN
y )||2

≤ ε2s
(m−1∑

j=1

||Yjv;L2(RN )||2 + || ∂v

∂yN
;L2(RN )||2

)
+ Cε,s||v;L2(RN )||2

for all v ∈ D(V ∩ RN
y )

and hence also for all v ∈ M1
0 (V ∩ RN

y ) by the density of D(V ∩ RN
y )

We introduce the tangential function spaces:
We shall denote, for s > 0, by

Elog
0,s = Elog

0,s (RN
+ ) = {u ∈ L2(RN ); (log〈D′, 0〉)su ∈ L2(RN )}

and the corresponding function space in the (tangential) phase space

F log
0,s = F log

0,s (RN
+ ) = {v ∈ L2(RN

+ ); (log〈η′, 0〉)sv(η) ∈ L2(RN
+ )}

Here we have used the standard notation

RN
+ = {(y′, yN ) ∈ RN ; yN > 0, y′ ∈ RN−1}

and
η = (η′, ηN ) ∈ RN−1 × R+.

Clearly we also have
Elog

0,s (RN
+ ) = Elog

s (RN )|RN
+

We also make use of the tangential Littlewood-Paley decomposition of functions
in L2:

Φ′
−1(f) = ϕ−1(〈D′, 0〉)(f), and Φ′

k(f) = ϕ(e−k〈D′, 0〉)(f), k ∈ N

where
F(ϕ−1(〈D′, 0〉)(f) = ϕ−1(〈η′, 0〉)f̂(η)

and
F(ϕ(e−k〈D′, 0〉)(f) = ϕ(e−k〈η′, 0〉)f̂(η)

Once again the distributions in the space Elog
0,s (RN

+ ) are characterized by∑
k2s||Φ′

k(u);L2(RN
+ )||2 < +∞

We have more precise estimates similar to the ones in the propositions of section 5.

8. Idea of the proof for the regularity upto the boundary

As in the proof of the interior regularity, since the system of vector fields Y =
{Y1, · · · , Ym−1,

∂
∂yN

} satisfy the logarithmic estimate, we obtain the estimate

||(log〈D′, 0〉ρ)l(αv);L2(RN
+ )|| ≤ l!||〈D′, 0〉ρ(αv);L2(RN

+ )||

for any integer l ≥ 0 and ρ ≥ 1, and α ∈ D(RN
+ ) is a localizing cut off function.
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Denoting, by

∆y′ =
N−1∑
j=1

∂2

∂y2
j

the tangential Laplacian on RN−1
y′ we take the fundamental solutions

G′
δ = (1− δ2∆y′)−1

as the regularizing operators. Starting from the weak solution u of the transformed
problem for the differential operator

LYu = − ∂2

∂y2
N

(αu) +
m−1∑
j=1

Y ∗
j Yj(αu) =

∂(c̃βu)
∂yN

+ Y0(βu) + c̃βu + h̃(y)

we take as test function

v = βG′
δ(log〈D′, 0〉ρ)jα2(log〈D′, 0〉ρ)jG′

δ(βu)

in the trasformed differential equation for LY. Here, in the right hand side

βG′
δ(log〈D′, 0〉ρ)jα2(log〈D′, 0〉ρ)jG′

δβ

is a tangential pseudo-differenial operator on RN−1
y′ . Here the integration by parts

with respect to the variable yN occurs only once. This proves the required estimate.
As in the proof of the interior regularity this estimate implies that

〈D′, 0〉l(αu) ∈ L2(RN
+ ), for all integers l ≥ 0

and any α ∈ D(V ∩ RN
+ ). In particular,

∂(αu)
∂yN

∈ L2(RN
+ ) and so αu belongs to

H1(RN
+ ). Making use of the differential equation

∂2(αu)
∂y2

N

=
m−1∑
j=1

Y ∗
j Yj(αu) +

∂(c̃βu)
∂yN

+ Y0(βu) + c̃βu + h̃(y)

we see that αu belongs to H2(RN
+ ). By the boot strap argument as before we

prove that αu belongs to H l(RN
+ ) for all integers l ≥ 0. Then by applying the

classical Sobolev embedding theorem it follows that αu ∈ C∞(RN
+ ). Taking α =

1 in a neighbourhood of 0 ∈ RN we conclude that u ∈ C∞(RN
+ ∩ Ṽ ) for some

neighbourhood Ṽ . Finally by the usual patching up argument we obtain the C∞-
regularity upto the boundary from the interior.

Appendix—A sufficient condition for the logarithmic estimate

In all our preceding considerations the fundamental hypothesis consists in that
the system of vector fields X satisfy a logarithmic estimate. Sufficient conditions
in order that such an estimate holds involve precise decay assumptions near the
degeneracy set on the coefficients of the vector fields which degenerate. In order to
illustrate such a sufficient condition we shall begin with the following example in
two dimensions:
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(A) A 2-dimensional example. Suppose

X = {X1, X2} = { ∂

∂x1
, b(x1)

∂

∂x2
}

where b ∈ C∞(R), b(0) = 0 and b(x1) 6= 0 for x1 6= 0

i.e. LX = −( ∂
∂x1

)2 − a(x1)( ∂
∂x2

)2 where a(x1) = b(x1)2 and hence a ∈ C∞(R),
a(0) = 0 and a(x1) > 0 for x1 ∈ R \ 0.

A specific example is

a(x1) = exp[−2|x1|
−1
s ], s > 0

Proposition 5. Suppose that there exists an ε ≥ 0 such that

lim sup
x1→0

|x1|
1
s | log a(x1)| ≤ ε

then for any compact set K in R2 there exist constants c0 > 0 and cε,s > 0 such
that

||(log〈D〉)su;L2||2 ≤ c0ε
2s

2∑
j=1

||Xju;L2||2 + cε,s||u L2||2, ∀u ∈ D(K)

This is a particular case of the following result due to Wakabayashi and Suzuki.

Proposition 6. Suppose that f, a be non-negative continuous functions on R such
that

f(t) > 0, a(t) > 0 in R \ 0

and there is an ε ≥ 0 such that

lim sup
t→0

|f(t)
−1
2

∫ t

0
f(τ)dτ |

1
s | log a(t)| ≤ ε

then, for any compact set K in R2, there exist constants c0 > 0 and cε,s > 0 such
that

||f(x1)
1
2 (log〈D〉)su;L2||2 ≤ c0ε

2s
2∑

j=1

||Xju;L2||2 + cε,s||u;L2||2, ∀u ∈ D(K)

An idea of the proof - Let F be a primitive of f . We shall write t for the variable
x1. Since a is continuous and a(0) = 0 we can find a t0 > 0 such that a(t) < 1 for
|t| < t0 and

|F (t)[− log a(t)]s ≤ 2εsf(t)
1
2 for |t| < t0

Once again since a(0) = 0, a(t) > 0 in R \ 0 and is continuous, there is a large
enough positive number λ0 > 0 such that a(t) ≤ λ−1

0 , for |t| < t0. Now for any
λ > 0 and since | log a(t)| = − log a(t), for any v ∈ D(R), we have

|f(t)
1
2 (log λ)sv;L2||2 =

∫
f(t)(log λ)2s|v(t)|2dt

=
∫

dF (t)
dt

(log λ)2s|v(t)|2dt
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=
∫

[
d
dt

, F (t)](log λ)2s|v(t)|2dt

≤ 2|(dv

dt
, F (t)(log λ)2sv)|

which by the Cauchy-Schwarz inequality implies

≤ 2||dv

dt
;L2||.||F (t)(log λ)2sv);L2||

≤ 8ε2s||dv

dt
;L2||2 +

1
8ε2s

||F (t)(log λ)2sv);L2||2

We estimate the second term of the last inequality as follows:
For λ ≥ λ0 we set

Eλ = {t ∈ R; a(t)λ ≤ 1} ⊂ {t ∈ R; |t| < t0}

and writing

||F (t)(log λ)2sv);L2||2 =
∫
R

F (t)2(log λ)4s|v(t)|2dt,

we split the integral into a sum of integrals over Eλ and its complement Ec
λ and

estimate the two integrals seperately.
We observe that, in supp v ∩Ec

λ we have a(t)λ > 1 for λ ≥ λ0 and hence we can
take

1
8ε4s

F (t)2(log λ)4s ≤ λ ≤ a(t)λ2

(if necessary for a larger λ ≥ λ0 > 0). On the other hand, in the set supp(v)∩Eλ for
λ ≥ λ0 we have a(t)λ ≤ 1 so that log λ < − log a(t) and hence using the hypothesis
of the proposition we see that

F (t)2(log λ)4s ≤ F (t)2(log λ)2s(− log a(t))2s ≤ 4ε2sf(t)(log λ)2s

Finally, we obtain∫
R

F (t)2(log λ)4s|v(t)|2dt =
∫

Eλ

+
∫

Ec
λ

≤ 4ε2s

∫
Eλ

f(t)(log λ)2s|v(t)|2dt + ε2s

∫
Ec

λ

a(t)λ2|v(t)|2dt

After substituting this in the estimates at the beginning we conclude that, for
λ ≥ λ0, we have

||f(t)
1
2 (log〈D〉)sv;L2||2 ≤ 16ε2s{||dv

dt
;L2||2 + (a(t)λ2v, v)L2}

The required estimate follows from this immediately.
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(B) The general case. In the special case considered above in part (A), a(0) = 0
where a(x1) is the coefficient of the vector field X2 and hence X2 degenerates along
the manifold Σ = {x1 = 0} and, by continuity, a(x1) > 0 and remains close to 0 in
a small neighbourhood V of x1 = 0, that is, we have

0 < a(x1) < 1, and | log a(x1)|s = [− log a(x1)]s ≤ (2ε)s|I|−1

This latter condition can be interpreted as the local behaviour of the symbol
X2(x, ξ) = X2(x1, x2; ξ1, ξ2) = a(x1)ξ2 of the vector field X2 along the integral
curve t → exp(tX1)(0) of the vector field X1 starting from a point x0 ∈ Σ, the
manifold where X2 has degeneracy and where the vector field X1 is transversal to
the degeneracy manifold Σ = {x1 = 0}),.

Since the degeneracy set Σ is, in general, a union of one-codimensional smooth
hypersurfaces we are led to assume a micro-local refinement of the above condition,
involving also the commutators XJ ; J = {j1, · · · , jk}. This corresponds to taking
derivatives of a(x1) in the spcial case considered in part (A). In order to formulate
the condition more precisely we introduce some notation.

Formal reduction of the problem. Let x0 be a point of the degeneracy set Σ.
Then by definition of Σ, we know that there exists a unit co-vector ξ ∈ SN−1 such
that the symbols of all orders XJ(x, ξ) vanish at (x0, ξ).

For an integer k ≥ 1 consider the symbols XJ(x, ξ) of the commutators XJ =
[Xj1 , [Xj2 , · · · [Xjk−1

, Xjk
]]], J = {j1, · · · , jk} of orders |J | ≤ k.

Since the condition of Hörmander holds outside the degeneracy set Σ we have a
subelliptic estimate of the following form: given an integer k ≥ 1 there exists a real
number 0 < h = h(k) ≤ 1

2 such that∑
|J |≤k

||〈D〉h−1XJu;L2||2 ≤ C{(LXu, u) + ||u, L2||2}

Σ being non characteristic with respect to the system of vector fields X there
exists a vector field Xr ∈ X transversal to Σ at x0. Let t → exp(tXr)(x0) be the
(local) integral curve of the vector field Xr starting from x0. We may now introduce
new local coordinates x = (x′, xN ) = (x′, t) so that x0 = (0′, 0) and the integral
curve is straightened and hence is of the form x′=a constant vectorin RN−1.

The left hand side of the above subelliptic estimate can now be rewritten as∑
|J |≤k

∫
R
{
∫
RN−1

〈ξ′, DxN 〉
2h−2|XJ(x′, xN ; ξ′, DxN )û(ξ′, xN )|2dξ′}dxN

where XJ(x, ξ) = XJ(x′, xN ; ξ′, ξN ) is the symbol of the commutator XJ and
û(ξ′, xN ) is the partial Fourier transform of u with respect to x′. Observe that

〈ξ〉2h−2|XJ(x, ξ)|2

is a pseudo-operator symbol of order 2h. Then

p(x′, xn; ξ′) = |ξ′|−2h.[|ξ|2h−2|XJ(x, ξ)|2]|ξN=0

is a pseudo differential symbol of order zero on RN−1
x′ . Thus the subelliptic estimate

becomes
(p(x′, xN ;D′)u, u) + ||DXN

u||2 ≤ C{(LXu, u) + ||u||2}
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Formulation of the sufficient condition. We introduce the following functions
associated to the symbols XJ(x, ξ), |J | ≤ k, for all k ≥ 1, along this integral curve;

a(t;x0, r, k) = minξ∈SN−1

∑
|J |≤k

|XJ(exp(tXr)(x0), ξ)|2

The function t → a(t;x0, r, k) being a non-negative continuous function which
vanishes at t = 0 (that is, at the initial point x0 of the integral curve of Xr), for any
δ > 0 there exists a neighbourhood (−ρ, ρ) of the parameter t = 0 such that the
function a remains small and > 0. For intervals I contained in such a neighbourhood
(−ρ, ρ) we introduce the mean value

[a]I(x0; r, k) = |I|−1

∫
I
a(t;x0, r, k)dt

Hence, for any δ > 0, there is a ρ > 0 such that for any interval I ⊂ (−ρ, ρ) we have

[a]I(x0; r, k) < δ

The condition on a(x1) is refined to the following assumption introduced by
C. -J. Xu:

Hypothesis (A). There exist a real number s > 0 and an ε > 0 such that

inf

(
sup{|I|1/s| log[a]I(x0; r, k)|; I ⊂ (−ρ, ρ) and [a]I(x0; r, k) < δ}

)
< ε

where the infimum is taken over all δ > 0, k ∈ N, ρ > 0, 1 ≤ r ≤ m.

That is, there is an s > 0 and an ε > 0 such that there exist a vector field Xr ∈ X
transversal to Σ at x0, an integer k ≥ 1 and a δ > 0 so that for sufficiently small
arcs γr of the integral curve of Xr through x0 where

[a]γr(x
0; r, k) < δ

and
| log[a]γr(x

0; r, k)|2s ≤ (2ε)2s|l(γr)|−2.

We are now in a position to formulate a sufficient condition which generalizes the
condition in the Proposition 5 of Wakabayashi and Suzuki:

Theorem 4 (C. -J. Xu). Suppose the system of vector fields X = {X1, · · · , Xm}
satisfy the following hypothesis:

(i) there exists a union of C∞ hypersurfaces Σ = ∪j∈JΣj in Ω such that Σ is non
characteristic with respect to the system X, and moreover the system X satisfies the
condition of Hörmander in Ω except on Σ, i.e. the rank of the Lie algebra G(X) at
every point x ∈ Ω \ Σ is equal to N , the dimension of Ω.

Assume further that the system of vector fields X satisfy the Hypothesis (A). Then
there exist constants C0 (which is independent of ε > 0) and a constant Cε,s such
that

||(log〈D〉)su;L2||2 ≤ C0ε
2s(LXu, u) + Cε,s||u;L2||2
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A suitable decomposition of Littlewood-Paley type is used in order to estimate
the term (p(x′, xN ;D′)u, u) using the Hypothesis (A) where the method of proof
sketched in part (A) can be adapted. For each component in this decomposition
one applies the following lemma due to E.Sawyer :

Lemma 1 (E. Sawyer). Suppose m1(t), m2(t) be two non negative weight functions
defined on an interval I0 ⊂ R and belonging to L1

loc(I0). Then, the weighted estimate∫
I0

|v(t)|2m1(t)dt ≤ C

∫
I0

{|v′(t)|2 + m2(t)|v(t)|2}dt, ∀v ∈ C1
0 (I0)

holds if and only if

[m1]I ≤ C ′{3[m2]3I + 2|I|−2} for every subinterval I such that 3I ⊂ I0

where [mi]I denotes the mean value of mi over the interval I:

[mi]I = |I|−1

∫
I
mi(t)dt

The proof for a general u is then completed using the standard partition of unity
argument with respect to a covering of Σ by small neighbourhoods of its points x0.
The technical details of the proof of the theorem we refer to the paper of Xu.
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dégénérés, Ann. Inst. Fourier 19 (1969), 277 - 304.
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