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REGULARITY FOR A CLASS OF SUBELLIPTIC OPERATORS

M. K. VENKATESHA MURTHY

ABSTRACT. We are concerned with the regularity of solutions of subelliptic equa-
tions of the form

Lxu= Z XiXu+ Xou+ a(z)u= f(z) G
j=1
where X = {X1,---, X, } and X, are real C™ vector fields defined in an open
neighbourhood Q of a bounded domain G with smooth boundary dG in RY
and a(z), f(z) € C* (). Suppose that the system of vector fields X satisfies the
finite type brackets condition of Hérmander except on a union of smooth surfaces
3> which are non characteristic for the system X and that an a priori estimate
of Sobolev type with a logarithmic weight holds. Then any weak solution of the
subelliptic equation Lxu = f(z) in G belongs to C*°(G \ ).

The class of operators considered includes certain infinitely degenerate elliptic
type operators Lx. Since the components of ¥ are in general, hypersurfaces (one-
codimensional submanifolds) suitable microlocal conditions have to be assumedon
the symbols of the vector fields of the system X and their commutators in order
that the logarithmic a priori estimate holds.

If further the boundary is C™ and is not characteristic with respect to the
system of vector fields X then any weak solution of the Dirichlet problem for
Lx with C°° data is C° upto the boundary except on ¥; that is, the solution
belongs to C*(G'\ £)NC°(G\ ).

1. INTRODUCTION

We are concerned with C'*°-regularity of solutions to a class of second order
subelliptic equations of degenerate type with C*°-coefficients. Such a study goes
back to the work of Kolmogorov in 1934, who proved the hypoellipticity for the
equation

i, ou_ou
0x? oy 0z

by explicitely constructing a fundamental solution. Hérmander in his famous paper
of Acta Mathematica of 1969 studied the problem of hypoellipticity of general second
order equations in detail. For operators of arbitrary orders of degenerate elliptic
type the problem of C*° and Gevrey hypoellipticity was considered in a paper of
Baouendi and Goulaouic in 1971.

It is known from Hérmander’s paper that for a second order equation P(z, D)u =
f with real principal symbol to be hypoelliptic the principal symbol pa(z, ) should
necessarily be a semidefinite quadratic form in €. Since the work of Hormander
several authors have obtained important results on hypoellipticity of second order
operators with C'*°-coefficients, to mention only a few authors, we have J.-M. Bony,
Y. Morimoto and T. Morioka, S. Wakabayashi, R. Wheeden, C.-J. Xu, C. Zuily.
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For a second order operator, in any open set where the rank of the matrix of the
second order coefficients is constant, in a suitable coordinate system the operator
can be written in the form

m
Z X 32 + Xo + a(x)
j=1
where Xg, X1, -+, X, are real C*-vector fields and a(z) is a C'*°-real valued func-
tion (see Hormander, Acta Mathematica, 119 (1969)).
The results described here are motivated by examining the following standard
examples in two and three dimensions.

Some model examples of operators of degenerate elliptic type. With the
standard notations x = (x1,--- ,zy) as a coordinate system in RY, N = 2, 3, some
examples are given by the following degenerate elliptic operators:
2 2
5o+t
Oy Ox3
2 -

O | expl—2an |2 ith a real number s > 0
- EXP|—4|T S | =5, W1 a real numbper s N
Ox? P ! Ox3

with k a positive integer;

0? 9 . o, T =1, 02 .
922 + exp[—2(z7 sin (x—l) s ]a—m%, with a real number s > 0;
82 2 92
8733% + a—x% + exp[—2|x1]T]a—x§, with a real number s > 0;
2 2 2
with an integer m > 0 and a real number 0 < s < m + 1;

P el =212+ explefon]fexp(—— )2
ex ex X ex —F
82 p’ ’82 p 1 p\x!@m%’

with a real number 0 < s < 2.

Here, while the first example is a degenerate elliptic type operator of finite order
degeneracy at x1 = 0 the others are all degenerate elliptic type operators of infinite
order degeneracy at x1 = 0.

We shall review here some recent progress on the C'*°-regularity theory for subel-
liptic operators of this type wherein the vector fields may degenerate to infinite
orders along smooth surfaces which are non characteristic with respect to the fam-
ily of vector fields (see section 2 for definitions). The results of this survey were
presented at the International Conference on Recent Advances in Partial Differential
Equations in memory of Filippo Chiarenza held at Messina in December 2005.

2. NOTATION AND FUNCTION SPACES

Suppose G is a bounded domain in RY with C*-boundary 0G and suppose ¥ =
{X1, -+, X} and X are real C*°-vector fields defined in an open neighbourhood
Q of G. Let X; denote the formal adjoint of X;, j = 1,---,m. Consider the
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subelliptic second order equation associated to the system of vector fields X and
Xol

m
Lyxu= Z X;Xju+ Xou+a(z)u= f(z) inG
j=1
where a, f € C°°(Q2). We also denote the principal part by

m
0 _ *
Lh=> XX,
j=1

Function spaces. We introduce the following natural spaces of distributions as-
sociated to the system of vector fields X, similar to the classical Sobolev spaces:

MY %) = {ue L*(Q); XjueL*Q), for j=1,---,m}

which is a Hilbert space with the natural scalar product and norm, namely,

(w,0)ar (0,2) = (V) r2(0) + Y (Xju, X;0) 12(q)
j=1

[l M€ )2 = (u, )y = llus LQ)IP + Y (1XGu; LA(Q)I
j=1

The corresponding local space M, (€;X) is the space of all distributions u €
D'(Q) such that pu € M1(£; X) for all test functions ¢ € D(1Q).

We denote as usual by M} (£2; X) the closure of D(Q) in M*(Q;X) and its dual
space by M (Q; %).

The elements of the dual space M 1/(9; X) can be represented (in a non unique
way) as the space of distributions of the form

F=fo+Y Xjfj, where fo,fi, -, fm € L*(Q)
Jj=1

with the natural duality pairing
(F,u) = /Q (fou + ijXju)dx
j=1

Definition 1. A C°°-submanifold of co-dimension one (a hypersurface) ¥ in ) is
said to be non characteristic with respect to the system of vector fields X if

for any point xo € X there exists atleast one vector field X; of the system X which
is transversal to Xat xo; i.e. Xj(x0) & Ty 2.

Trace of M!(Q; X) on . If ¥ is a hypersurface in {2 which is not characteristic with
respect to the system of vector fields X then we can define, for any u € M'(£2; X),
the trace uly in the following standard manner:

Suppose xg € X and that the vector field X; of X is transversal to X at xo. Then
we use the classical method of localizing using a C'**°-cut off function and a local
C*°-diffeomorphism on a small open neighbourhood U of zg in € to flatten the
portion U N'Y to a subset of the hyperplane {y = (v/,yn) € RY; yny = 0} so that
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0
the vector field X is transformed to the normal vector field —— and the remaining

dyn
vector fields are transformed to vector fields Yi,---,Y,,—1. The system of vector
fields X is transformed to the system 9 = {Y1, - ,Y—1, é)y%}' Then the classical

method is adapted to define the trace operator u — u|y; on M*(; X).

We shall assume from now onwards that

the boundary OG of the domain G is a C*°-hypersurface which is non character-
istic with respect to the system of vector fields X.

When the boundary 9G is a C*°-hypersurface which is non characteristic with
respect to the system of vector fields X, the trace u|gg = You is well defined. Then
we have

M}(G;%) = {ue MY %); vou=0 on OG}
which is a Hilbert space with the induced scalar product and obviously D(G) is
dense in M} (G;X) thus defined.
Weak solution of Lyu = F.

Definition 2. A weak solution of the equation Lyu = F in G for F € MII(G; X)
is defined as

u € My, (G; %), /G{Z (Xju)(X;v) + (Xou)v + a(x)uvider = F(v)
j=1

for all v € Ma(G; %)

We shall denote by &(X) the Lie algebra generated by the system of vector fields
Xo and X with the standard bracket operation [X,Y] = XY — Y X; ie. &(X)
is the smallest C*°(€2)-submodule containing X which is closed under the bracket
operation.

Definition 3. The rank of the Lie algebra &(X) at a point z € €2 is the dimension
of the vector space generated by all the vectors Z(z); Z € &(X).

We have the following classical result of Héormander:

Theorem 1 (Hérmander). If the rank of the Lie algebra &(X) at every point x € G
is equal to the dimension of G = N then the differential operator Lx is hypoelliptic
in G.

i.e. For any point € G among the commutators
X17X27 e 7—Xm7 [Xj17Xj2]7 Tty [Xj17 [Xj27 Ty [X]k_lank]Hu T

where J = {j1,j2, - ,jx} C {1, ,m} there exist N commutators which generate
the tangent space T (G) then Ly is hypoelliptic in G.

Definition 4 (Condition of Héormander). The system of vector fields X is said to
satisfy the condition of Hérmander in a subset w of 2 if the rank of the Lie algebra
&(X) at every point of the subset w is equal to IV, the dimension of 2.

Remark. If the rank of the Lie algebra &(X) is a constant < N then the operator
Lz is not hypoelliptic.
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We shall make use of the standard notation: if J = {j1,--- ,jx} with j1,--- ,jx €
{1,--- ,m} we denote by |J| = k the length of the commutator

X=X, [Xjo, - [Xjpys X5 ]]]
We also need the following definition:

Definition 5. Suppose ¥ = U,¢c;¥; is a union of C*° one- codimensional hypersur-
faces in €). ¥ is said to be non characteristic for the system of vector fields X if for
any point xg € ¥ there exist at least one vector field X; € X such that the vector
Xi(zg) is transversal to all the hypersurfaces 3; passing through the point zo; i.e.
Xi(zp) is transversal to every ¥;, j € J(xg) = {j € J;20 € 3;}.

This definition is motivated by the following example in R?:
Suppose
82 2 . ™ -1 82
8737% — exp[—{21 Sm(;l)} s ]8735
. : -1

where X = {X1, Xo} with X; = 3%1 and Xy = exp[—{z? sin(;-)} 2 ]8%2

Here ¥ = {z1 =0}, Xj = {z1 = ;} for all j € Z\ 0 and ¥ = Ujez%;.

The vector field X; = -2~ is transversal to every >, j € Z while X, vanishes on

Oz
Y = UjezX; to infinite order.

Lx=—

3. THE MAIN RESULT

We shall use the notation: (¢£)2 = e? + |¢]2 and, for s > 0,

(log{D))*v = (Op(log(£))*)v = (27T)_N/ (log(€))*0(&)exp(i(x, £))dE

Hence using the Parseval formula, we have

Itos(D))*w; AR = [ (log(e))lo(e) P
Then the main result is the following interior regularity theorem

Theorem 2. Suppose the system of vector fields X = {X1, -+, X} satisfy the
following hypothesis:

(i) there exists a union of C*° hypersurfaces ¥ = Ujcs%; which is non charac-
teristic with respect to the system of vector fields X, where X satisfies the condition
of Hormander in ) except on X, i.e the rank of the Lie algebra &(X) at every point
x € Q\ X is equal to the dimension of Q = N

(ii) there exists an s > % such that the following logarithmic estimate holds: there
exists a constant C' > 0 such that

1(log(D))*v; L*(Q)|| < Cllo; MY (%), for all v € D(Q)
Then, for f € C*(G), any locally bounded weak solution
u€ M (G;X)NL5.(G) of Lxu= feC®(G)
belongs to C*°(G \ ¥).

i.e. Lx is hypoelliptic in G except on the union of hypersurfaces ¥ = U;c;%;.
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Remark. The logarithmic estimate with s = 1, namely

[|(log(D))v; LX(Q)[1> < LY 1Ko L)1 + [0 L2 (Q)]1}, Vo € D(Q)
j=1
is not enough to prove the hypoellipticity of Lx.

However, an estimate of the form: if Ve > 0 there exists a constant C'¢ > 0 such
that

m
[|(log(D))u; LAQ)|* < €Y 1 X0 LA + Celfo; L2 ()
j=1
would be enough to prove the hypoellipticity. But this can not be derived as a
consequence of the s = 1 logarithmic estimate.

When s > 1, using the fact that the vector fields are homogeneous differential
operators of order one, by a standard interpolation argument it is possible to prove
that the logarithmic estimate with s > 1 implies that Ve > 0 there exists a constant
Ce,s > 0 such that

[[(log(D))*v; L* ()]

< 3 |1X50; LAQ)| + Coslfos L2, for all v € D(Q).
7=1

The result of theorem 1 can be extended to a C°°-regularity result upto the
boundary for solutions of the Dirichlet problem as follows:

Theorem 3. Suppose the system of vector fields X satisfies the hypothesis (i) and
(ii) of the theorem 2. Further assume that

(iii) the boundary OG of the bounded domain G is a C*°-smooth one codimen-
sional manifold which is non characteristic with respect to the system X. Then,
given functions f € C®(G) and g € C*°(0G) any bounded weak solution u €
MY (G;X) N L>®(G) of the Dirichlet problem

Lyxu=f inG, ~yu=ulpg=g ondG
belongs to C*°(G\ )N CY(G\ ¥).

Remark. Under suitable sufficient conditions on the system X and the commutators
X7 the logarithmic Sobolev type estimate holds and since the 3J; are general hyper-
surfaces (one-codimensional submanifolds of €2 these involve conditions of microlocal
nature on the symbols of the commutators X (see the Appendix).

4. LOGARITHMIC SOBOLEV TYPE SPACES

In view of the assumption (i) in the above theorems it is necessary to study the
properties of the corresponding spaces of distributions. This is done as is customary
in Harmonic Analysis by means of an appropriate decomposition of Littlewood -
Paley type for functions on the Phase space or the Fourier transform space.

We shall denote, for s > 0, by

E® = EXRY) = {ue L*(RY); (log(D))*u € L*(RY)}
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with its natural scalar product and the corresponding norm
(11, 0) s = (1, 0) 2y + ((10g(D))*u, (108(D)) ") e
llu, E2|* = [Ju; LARY)|[? + || (log(D))*u; L*(RY)||*.
In view of Plancheral’s theorem we have, by the Fourier transform, the space of
functions
F® = FERY) = {v e L2(RY); (log(€))*v € L*(RY)}
which is provided with the scalar product and the corresponding norm
(v, w) piog = (v, W) 2y + ((log(€))*u, (1og(€))*v) L2 (rn)-
[0, F°812 = [Jo; L2RM)[]? + || (log (€))*v; L*(RY)|.

The logarithmic Sobolev type regularity hypothesis (ii) in the above theorems (see
sec. 3) can be reformulated as follows: For the system of vector fields X there is a

continuous linear mapping from M'(G; %) to EX&(RN).

5. LITTLEWOOD-PALEY DECOMPOSITION OF FUNCTIONS ON THE PHASE SPACE

For the study the properties of the function spaces E=°% and F1°® and the estimates
needed for the proof of the main result we make use of a technique from Harmonic
Analysis which consists of decomposition of functions in the phase space.

We write Ry = (0,+00) as a union U{>° | Ij where

I1=(0,6%),Ip=(e,e3), I, = (e%,eh),- - I = ("1, FT3) = &Fpy, - -
and in correspondence with this we obtain a decomposition of the phase space
N _ |+

Ry = Ui Iy
where
T ={cRY; (&) € I}, forall k=—1,0,1,---.

We introduce a C*-partition of unity: let ¢_1 € D(I_1) = D((0,e?)) and g = ¢ €
D(Io) = D((e,e?)) be two test functions such that

+oo
p-1(() + ) wle™) =1
k=0

in the sense that any f € L2(Rév ) can be decomposed as (a convergent series in
L2(RY))

400 [e’e]
=0 1D+ D el DN() =D ®ul(f)
k=0 k=-1
where

& 1(f) = o1 ((D)(F) = (2m) N / -1 ((6) f(€)explife, €))de
= (2m)" ENfe

N/Sp(e—k

O (f) = (e "(D))(f) Jexp(i(x, £))d¢
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The properties of the function space Ex8(RY) are characterized by the following

propositions:

Proposition 1 (Estimates for the components ®(u) for v € EX3(RN)). If u €
E8(RN) then we have the estimate

[|@(u); L2(RM)|| < crk™%,  where Zcz < 400

and ||{ex}; P17 =D 6 < [Ju; ELERY)|]?
Infact, we have,

¢ = / (log(€))* pl(e~*(€))?a(€) 2de
I

Conversely, if u € L?>(RYN) is such that there exists a positive sequence {cy} € i?
such that
1k (u); L (RY| < exk™

then u € E;Og(]RN) and we also have the following estimate: for any p > 1 there
exist positive constants C, Co such that
p**||(log(D))*u; LARM)[|* < C15™[Ju; L2RY)[|* + CHp*[[{er}: 2|

Proposition 2 (Reconstruction of u from its Littlewood-Paley components uy =
. (u)). Suppose we have a sequence {uy,} in L>(R™) such that the Fourier transform
up of up has

supp 1y, C B(0,he®)  for some constant h > 0
and there exist constants i, > 0 with {ci} € % such that, for s > 1,

[Jug; L2RY)|| < k™

then the series Y uy converges in L2(RN) and the sum u = Y ug belongs to
Elo_gl (L2(RN)). Moreover, for any p > 1

)
1
p* 7Y (log{ D))=~ 2)u; L2 (RY)||?
1.5, o
§01(8—5)2S Hlu; L2 (RY)[]? + C5p* 7 (25 — 1)|{ex}; 21

We observe that since 2s > 1, Y. k™2 < 400 and then by the Cauchy-Schwarz

inequality
Yake <O O k) <o
and hence Y ||ug; L2(RM)||? < +oo.
We can also construct distributions in Elf% (RN) starting from a sequence of
C*°-functions provided that their derivatives satisfy appropriate growth conditions.
More precisely, we have

Proposition 3. Let {uy}be a sequence of C™-functions on RY such that, for any
5> % there exists a function v € E}gog(RN) and for any o € NN there is a constant

Ajq| s0 that we have

1 D%ug; L2 (RV)[| < AjyeMl]| @ (v); L2 (RY)]]
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then u = > uy converges and belongs to Ei(:gl (RM).
2

Moreover we have an estimate similar to the one in the previous proposition.
Remark. Roughly speaking the above propositions imply that the distributions in
the space Es (R™N) are characterized in terms of their Littlewood-Paley components
by requiring that

D k|| ®g(w); L (RV)]|* < +o0.
6. A SKETCH OF PROOF FOR THE INTERIOR REGULARITY

If u e M} (G;X) N L2 (G) is a weak solution of the subelliptic equation Lxu =
f € C*(G) in G then the classical method consists in using as a test function in
the definition of the weak solution a localization au of u with o € D(G). However,
we only know that au belongs to the space M{(G;X) and so in order to apply
the logarithmic Sobolev type estimate and in particular, to apply the operator
(log((D)))* we need an additional regularity of au. This is achieved making use of
a technique already used in Hormander’s paper, namely we regularize au by means

of the fundamental solution G of I —§?A given by the pseudo-differential operator
Gsv = (I = 02A)" (v) = Op((1+ 8%[¢*) ) (v)

_ (27r)_N/ (14 82J¢2)16(6)ei @8 de, with 6> 0

and let 6 — 0.

Then {Gs}o<s<1 is a uniformly bounded family of operators on the classical
Sobolev spaces H™(R),Vm € R. This follows from the fact that the fundamental
solution G = F~1(1 + [£]?)~! of (I — A) together with all its derivatives (%)O‘G
decay exponentially as || — +o0o. Hence G5 and all its derivatives decay faster
than any power of § as § — 0 and this in turn implies that Gs(v) — v in L2(RY),
as 0 — 0.

Step 1. Let s > % and the system of vector fields satisfy the following logarithmic
estimate: for all € > 0 there is a constant C¢ s > 0 such that

[|(log(D))*v; LI < € ) [|X;03 L?||* + Cesllos LI, Vo € D(Q)
j=1
Then, for o € D(G \ ¥) we take au where u € M} (G;X) N L>(G) is a weak
solution of Lxu = f in G. Then we have

Proposition 4. For any integer 1 > 0 and and p > 1 we have the estimate
[|(log(D)?)'Gs(au); L*(RY)|| < (cot)'i™c,

where the constant co = co(supp «) depends only on the supp « and the constants
m, and c, are independent of 6 > 0 and 1.

For the proof we consider the weak solution u and we take for the test function v
in the definition of the weak solution an appropriate regularization of the localized
u; more precisely, we take

v = BGs5aGs(Bu) € Hi (G)
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where 8 € D(G \ X) such that § = 1 on supp a. We estimate using the Cauchy-
Schwarz inequality together with the logarithmic e-estimate in the hypothesis of the
proposition to prove the required assertion.

Under the same hypothesis as in the above proposition, we use a similar method
to obtain estimates also for the following commutators applied to the weak solution:

(X, (log(D)”)*Gsalu

and
(X5, [ Xk, (log{D)”)*Gsal]u

Step 2. We can write

[e.e]

1
(6)? = exp(log(§)?) = | 4 (log(
k=0

and hence
1(D)*G(au); L] = ||<5>2[Gm>]< ); L7
= H log(€)2)¥ (G (au))(€); L]
k

_Zk' ¥ (log (6)°)* (G (au] (¢); L]
k

_ 1 2 Veck ik kmoc,
2w

Taking p = 4ecy in the proposition to get

2cg 1
= Z kk k™ec,, since o _ 2

p 2e
= Z 2k: klekz ).k ¢y
< ||eu; L?|| + ¢ Zi kE™e  since k—k < e
- ’ P 2K" k!

k=1

which proves that {Gs(au); 0 < ¢ <1} is a uniformly bounded set in the classical
Sobolev space H2(R™). Hence is a weakly relatively compact subset and therefore
admits a weakly convergent subsequence in H?(RV); i.e. Gs,(aqu) — au weakly in
H?(RYN) for a subsequence d,, — 0, This proves that au € H?(RY). This implies
once again by regularization that {Gs(au) € H*(RM);0 < § < 1} is a uniformly
bounded set in H*(RY). Repeating the above argument we see that au € H*(RY).
This bootstrap argument shows that au € H™(RY) for all m > 0 and then by the
classical Sobolev embedding theorem it follows that au € C*(RY), which completes
the proof of the interior regularity of the weak solution.
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7. THE DIRICHLET PROBLEM AND REGULARITY UPTO THE BOUNDARY

We assume that the boundary 0G is non charcteristic wth respect to the system
of vector fields X and hence we have the trace and extension theorems for the space
MYG;X). Given g € C*°(9G) take a C* - extension w of g to G and take u — w
in place of u to transform the probelm to the homogeneous Dirichlet problem:

Lr(u—w)=f—-Lyw=h in G

u—w € Mj(G; %)

Thus we assume that u € L>(G) N M} (G; X) and that u satisfies Lyu=h in G
in the sense of weak solutions.

Since the boundary dG is non-charcteristic with respect to the system X, if 2g €
OG there is a vector field X; of the system such that the vector X;(zo) is transversal
to the boundary at zy. In a neighbourhood U of the point zyp € G we localize
u using a cut off function @ € D(U) and then make a C* diffeomorphism to
flatten the piece of the boundary U N dG. In the new system of coordiates y =
(y1,-+ ,yn—1,y~n) = (v, yn) we may assume that the vector field X; € X which
is transversal to 0G at xg is transformed to 8@%. Thus the system of Vector fields

X ={X1,---,X,,} is transformed to the system 9 = {Y1,---, Y1, d } and the

vector field Xg to Yp. Here Y7, .-+ ,Y,,_1 are the new tangential vector ﬁelds on the
image of U N G, contained in RV~1: if y = (¢, yn) then
N-1 P
Y] ajky yN for ]:177m_1
=1 yk;

The equation Lyxu = h is transformed to

& (S _ 0(cBu) Bt
Lou = —@(au) + ; Yi'Y;(au) = Oun + Yo(Bu) + ¢Bu + h(y)

for suitable 8, ¢ € D(Rf ) and supp o and supp (3 are contained in a neighbour-
hood of 0 in RZ]/V with 8 =1 on supp a.

It can be verified that the transformed system of vector fields Y =
Y1, . Y1, 31%} and Yj satisfy the logarithmic estimate in a neighbouhood V'

of 0 in ]Rév.

We use the tangential pseudo-differential operator
o 0
oy’ Oyn—1”’

i = (m,-- s v-1) and (7)* = & + 1|,

(D') where D' = (
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It follows as before that the logarithmic estimate implies that for any € > 0 there
exists a constant C¢ s > 0 such that

[|(log(D")*v; L*(Ry)|I?

m—1
s ov
<é ( > [[Yjo; L(RY)|* + 15,5 ;L2(RN)II2> + Ce sl[v; L*(RM)|[?
= YN
for all v e D(VNRY)

and hence also for all v € M} (V N ]Rév) by the density of D(V N R]yv)
We introduce the tangential function spaces:
We shall denote, for s > 0, by

Byt = Egi(RY) = {u € L®Y); (log(D',0)°u € L*(RV)}
and the corresponding function space in the (tangential) phase space
1 1
Fy¥ = Ff(RY) = {v e L*(RY); (log(r',0))°v(n) € L*(RY)}
Here we have used the standard notation
RY ={(¥,yn) €RY; yy >0, y e RV}
and
n=(nn) eRVI xR,
Clearly we also have
1
EVERY) = E95(RY) |

We also make use of the tangential Littlewood-Paley decomposition of functions
in L?:

Ly (f) = e 1 ((D,0)(f), and  ®y(f) = (e (D', 0))(f), keN
where )
Flo-1((D",0))(f) = p-1((n', 0)) f(n)
and
Flp(e (D', 0))(f) = (e, 0)) f(n)
Once again the distributions in the space E(lff (RY) are characterized by
D k(@) (w); L (R * < 400

We have more precise estimates similar to the ones in the propositions of section 5.

8. IDEA OF THE PROOF FOR THE REGULARITY UPTO THE BOUNDARY

As in the proof of the interior regularity, since the system of vector fields ) =
{Y1,-+ Y1, 81%} satisfy the logarithmic estimate, we obtain the estimate

1(log(D',0)7)!(aw); LARI)|| < 2] [{D", 0)° (aww); LA (RY) |

for any integer 1 > 0 and p > 1, and o € D(Rf) is a localizing cut off function.
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Denoting, by
N-1
82
Ay’ = Z a2
j=1 ayj
the tangential Laplacian on ]Ré\,f ~1 we take the fundamental solutions
Gs=(1-8A,)""1

as the regularizing operators. Starting from the weak solution u of the transformed
problem for the differential operator

02 s - 9(éBu) o
E@u——ay ou +;Y au) = ayiN-FYO(ﬂu)—i-cﬂu#—h(y)

we take as test function
v = BGj(log(D',0)") a*(log(D', 0)” ) G5(Su)
in the trasformed differential equation for Lg). Here, in the right hand side
BG5(log(D',0)") a*(log(D',0)7) G
is a tangential pseudo-differenial operator on R;}f ~1. Here the integration by parts

with respect to the variable yn occurs only once. This proves the required estimate.
As in the proof of the interior regularity this estimate implies that

(D', 0)(au) € LARY), for all integers >0

(o)
YN
H'(RY). Making use of the differential equation

) m—1 ~
0% (au) Y2V (a d(¢fu)
83/]\/ J Oyn

Jj=1

and any o € D(V NRY). In particular, € L*(RY) and so au belongs to

+ Yo(Bu) + é6u + h(y)

we see that au belongs to H?(RY). By the boot strap argument as before we
prove that au belongs to H!(RY) for all integers 1 > 0. Then by applying the

classical Sobolev embedding theorem it follows that au € C“(Rf). Taking o =

1 in a neighbourhood of 0 € RY we conclude that u € Cm(ﬁf N V) for some

neighbourhood V. Finally by the usual patching up argument we obtain the C>°-
regularity upto the boundary from the interior.

APPENDIX—A SUFFICIENT CONDITION FOR THE LOGARITHMIC ESTIMATE

In all our preceding considerations the fundamental hypothesis consists in that
the system of vector fields X satisfy a logarithmic estimate. Sufficient conditions
in order that such an estimate holds involve precise decay assumptions near the
degeneracy set on the coefficients of the vector fields which degenerate. In order to
illustrate such a sufficient condition we shall begin with the following example in
two dimensions:
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(A) A 2-dimensional example. Suppose

0 0
X ={X1, X2} = {87:):1’1)@1)8732

where b € C*°(R), b(0) =0 and b(z1)#0 for z;#0
ie. Ly = —(8%1)2 — 61,(361)(8%2)2 where a(x1) = b(z1)? and hence a € C*®°(R),
a(0) =0 and a(zq) > 0 for z; € R\ 0.
A specific example is
-1
a(zy) = exp[—2|x1]=], s>0
Proposition 5. Suppose that there exists an ¢ > 0 such that

lim sup |m1|%|loga(x1)| <e€
xr1—

then for any compact set K in R? there exist constants co > 0 and Ce,s > 0 such
that
2
(log(D))*us 2|I” < coe® S [1Xus 2|12 + cesllu L2IP, Vu € D(K)
j=1

This is a particular case of the following result due to Wakabayashi and Suzuki.

Proposition 6. Suppose that f,a be non-negative continuous functions on R such
that

f(t)>0, a(t)>0 in R\O

and there is an € > 0 such that
ot
limsup ()% [ 7(r)dr|* logan)] < e
t—0 0

then, for any compact set K in R2, there exist constants co > 0 and Ce,s > 0 such
that

2
1 (1) Qog(DY)*us L2 < coe® S 1 X5 212 + coollus L,V € D(K)
j=1
An idea of the proof - Let F' be a primitive of f. We shall write ¢ for the variable
x1. Since a is continuous and a(0) = 0 we can find a ¢y > 0 such that a(t) < 1 for
|t| < to and
IF(t)[-loga(t)]* <2 f(H)2 for |t| <to
Once again since a(0) = 0, a(t) > 0 in R\ 0 and is continuous, there is a large

enough positive number \g > 0 such that a(t) < Ay, for [t| < to. Now for any
A > 0 and since |loga(t)| = —logaf(t), for any v € D(R), we have

[£(t)2 (log A)*v; L2 = /f(t)(logk)zslv(t)ﬁdt

_ / df; f) (log A2 [v(#)[2dt
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— [ Penos o) s

<212 F(t)(log \)v)|

= &7
which by the Cauchy-Schwarz inequality implies

dv

< 2| T 2L (1) log M) **0); T2
dv 1
2 L7202 25, \. 7212
< 8H|| s L2 + e 1P (1) (log A)*v); 17

We estimate the second term of the last inequality as follows:
For A > \g we set

Ey={teRa(t)A <1} C{t eR;|t| <to}

and writing
|| E(t)(log A)**v); L?||? =/ F(t)*(log \)**[o(t)Pdt,
R

we split the integral into a sum of integrals over E) and its complement E and
estimate the two integrals seperately.
We observe that, in supp v N E we have a(t)A > 1 for A > g and hence we can
take
1 2 4 2
@F(t) (log \)* < X <a(t)A

(if necessary for a larger A > Ao > 0). On the other hand, in the set supp(v)NE) for
A > Ao we have a(t)\ < 1 so that log A < —log a(t) and hence using the hypothesis
of the proposition we see that

F(1)*(log A)** < F(t)2(log A)2*(~ log a(t))* < 4¢ f(t) (log \)**

Finally, we obtain

/R F(t)*(log \)*[o(t)dt = /E +/ 5

<a [ () (log N2 [u() 2t + €2 / a(t)A2|o(t)2dt
N ES

After substituting this in the estimates at the beginning we conclude that, for
A > Ao, we have

F ()% (log(D) s E2I < 1662 {115 2211 + ()N, v) 2}

The required estimate follows from this immediately.
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(B) The general case. In the special case considered above in part (A), a(0) =0
where a(x1) is the coefficient of the vector field X3 and hence X5 degenerates along
the manifold ¥ = {x; = 0} and, by continuity, a(z1) > 0 and remains close to 0 in
a small neighbourhood V' of 1 = 0, that is, we have

0<a(z1) <1, and |loga(zy)|® = [~loga(z)]® < (2¢)%1|7!

This latter condition can be interpreted as the local behaviour of the symbol
Xo(z,8) = Xo(z1,22;61,&) = a(x1)& of the vector field Xo along the integral
curve t — exp(tX1)(0) of the vector field X starting from a point 20 € X, the
manifold where Xa has degeneracy and where the vector field X; is transversal to
the degeneracy manifold ¥ = {x; = 0}),.

Since the degeneracy set X is, in general, a union of one-codimensional smooth
hypersurfaces we are led to assume a micro-local refinement of the above condition,
involving also the commutators Xj; J = {j1, - ,Jx}. This corresponds to taking
derivatives of a(x;) in the spcial case considered in part (A). In order to formulate
the condition more precisely we introduce some notation.

Formal reduction of the problem. Let 20 be a point of the degeneracy set X.
Then by definition of 3, we know that there exists a unit co-vector £ € SV~ such
that the symbols of all orders X (x,¢) vanish at (20, €).

For an integer k > 1 consider the symbols X ;(z,§) of the commutators X; =
[Xju [Xj27 T [Xjk—qukma J = {j1,-+,jx} of orders |J| < k.

Since the condition of Hormander holds outside the degeneracy set > we have a
subelliptic estimate of the following form: given an integer k& > 1 there exists a real

number 0 < h = h(k) < % such that

> DY X gus 2| < C{(Lxeuyu) + [Ju, L2}
|J|<k
> being non characteristic with respect to the system of vector fields X there
exists a vector field X, € X transversal to ¥ at 0. Let t — exp(tX,.)(2") be the
(local) integral curve of the vector field X, starting from 2°. We may now introduce
new local coordinates z = (2/,xy) = (2/,t) so that 2° = (0/,0) and the integral
curve is straightened and hence is of the form a’=a constant vectorin RV 1.
The left hand side of the above subelliptic estimate can now be rewritten as

S LU, €D N i€ Doy i€ )P Yo
T1<k

where Xj(z,&) = Xy(a/,zn;&,&Nn) is the symbol of the commutator X; and
(&', xN) is the partial Fourier transform of u with respect to z/. Observe that

(€2 X 5 (2,6)?

is a pseudo-operator symbol of order 2h. Then
(', wn; €) = €172 116221 X (2, €)1 lew—o

is a pseudo differential symbol of order zero on Ri\f ~1. Thus the subelliptic estimate
becomes
(p(2’,ans D")u,u) + || Dxyul? < C{(Lxu, w) + [[ul*}
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Formulation of the sufficient condition. We introduce the following functions
associated to the symbols X j(x,§), |J| < k, for all k£ > 1, along this integral curve;

at; 2%, r, k) = mingegv—1 Y | X(exp(tX,)(z°), &)
|J|<k

The function t — a(t; 2% r, k) being a non-negative continuous function which
vanishes at t = 0 (that is, at the initial point 2° of the integral curve of X,), for any
d > 0 there exists a neighbourhood (—p, p) of the parameter ¢ = 0 such that the
function a remains small and > 0. For intervals I contained in such a neighbourhood
(—p, p) we introduce the mean value

[a]r (2% 7, k) = ]I|_1/a(t;x0,r, k)dt
1

Hence, for any 6 > 0, there is a p > 0 such that for any interval I C (—p, p) we have
[a]r (2% k) <6

The condition on a(x1) is refined to the following assumption introduced by
C.-J. Xu:

Hypothesis (A). There exist a real number s > 0 and an € > 0 such that

inf (SUP{Ill/sllog[a]z(wo;T, K)l; 1C(=p,p) and [a]i(a%r,k) < 5}> <e

where the infimum is taken over all 0 >0, k€N, p>0,1<r <m.

That is, there is an s > 0 and an € > 0 such that there exist a vector field X, € X
transversal to 3 at 2, an integer £ > 1 and a § > 0 so that for sufficiently small
arcs 7, of the integral curve of X, through z° where

[a]%(azo; r k) <o
and
| log[al,, (7, k)[** < (2€)*°|I(7,)] .

We are now in a position to formulate a sufficient condition which generalizes the
condition in the Proposition 5 of Wakabayashi and Suzuki:

Theorem 4 (C. -J. Xu). Suppose the system of vector fields X = {X1,--- , Xm}
satisfy the following hypothesis:

(i) there exists a union of C™° hypersurfaces ¥ = Ujes¥; in Q such that ¥ is non
characteristic with respect to the system X, and moreover the system X satisfies the
condition of Hormander in Q0 except on X, i.e. the rank of the Lie algebra &(X) at
every point © € Q\ X is equal to N, the dimension of Q.

Assume further that the system of vector fields X satisfy the Hypothesis (A). Then
there exist constants Cy (which is independent of € > 0) and a constant Cc s such
that

1(log(D))*u; L2||* < Coe* (Lxu, u) + Cesllus L?|I?
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A suitable decomposition of Littlewood-Paley type is used in order to estimate
the term (p(2’,xn; D')u,u) using the Hypothesis (A) where the method of proof
sketched in part (A) can be adapted. For each component in this decomposition
one applies the following lemma due to E.Sawyer :

Lemma 1 (E. Sawyer). Suppose mi(t), ma(t) be two non negative weight functions
defined on an interval Iy C R and belonging to L} (Iy). Then, the weighted estimate

loc
[o(t)Pma(t)dt < C/ {Il' @) +ma()u(t)[}dt, Vv € Cy(lo)
Iy I

holds if and only if
[ma]r < C'{3[malar + 2|I|72}  for every subinterval I such that 3I C I

where [m;]; denotes the mean value of m; over the interval I:
;= |I|_1/ml-(t)dt
I

The proof for a general u is then completed using the standard partition of unity
argument with respect to a covering of ¥ by small neighbourhoods of its points zV.
The technical details of the proof of the theorem we refer to the paper of Xu.
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