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PROJECTED DYNAMICAL SYSTEMS AND VARIATIONAL
INEQUALITIES EQUIVALENCE RESULTS

SOFIA GIUFFRÉ, GIOVANNA IDONE, AND STÉPHANE PIA

Abstract. We present some results of equivalence between projected dynamical
systems and variational or quasi-variational inequalities. In particular we prove
the result in strictly convex and smooth Banach Spaces, providing also some
equivalent formulations in terms of Unilateral differential inclusions. Moreover
we obtain for Hilbert spaces, using the Clarke tangent cone, a more general
equivalence result with extension to non convex subsets.

1. Introduction

As it is well known in Hilbert spaces the critical points of the projected dynam-
ical system based on general tangent cone of a convex set are equivalent to the
equilibrium points of a variational inequality. In particular in [7] Cojocaru, Daniele
and Nagurney introduced in the framework of Hilbert spaces the operator

(1.1) ΠC(x,−F (x)) = lim
λ→0

PC(x− λF (x))− x

λ
= PTC(x)(−F (x))

where PC denotes the standard projection on a closed convex subset C of an Hilbert
space. The authors applied this new operator to the study of the following class of
differential equations called Projected Dynamical Equations

dx

dt
= lim

λ→0

PC(x− λF (x))− x

λ
= PTC(x)(−F (x))

and to the study of Variational Inequalities (VI).
In the present paper we improve this result, providing an equivalence theorem in

strictly convex and smooth Banach Spaces and we give some equivalent formulations
in terms of Unilateral differential inclusions. The result is obtained using new
effective concepts of projection.

Moreover we achieve for Hilbert spaces a more general equivalence result with
extension to nonconvex subsets and in this way we prove an equivalence theorem
between the extended definition of Projected Dynamical systems and a quasi vari-
ational inequality. The idea we are going to develop is to define on an appropriate
convex and close cone a projected Dynamical system which represents an extension
of the theory developed by Cojocaru, Daniele, Isac, Nagurney and Raciti (see [14],
[15], [6], [8], [7], [19]). Precisely we use the Clarke tangent cone (see [18]). Also in
this case a crucial step is the introducing of new concepts of projection.

Objects of future research will be the study of existence of critical points of the
“extended” projected dynamical systems and the develop of extended definitions of
more computable projected dynamical systems.
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Finally let us remark that the equivalence result in Banach spaces presented in
the international conference Variational Analysis and Partial dierential equations
is contained in [12]

2. Preliminary Results

We denote by X a Banach space with dual space X∗ and by ‖.‖ and ‖.‖∗ the
respective norms. We denote also the duality pairing between X∗ and X by 〈f, x〉
for f ∈ X∗ and x ∈ X, 〈x, f〉 the duality pairing between X and X∗ for f ∈ X∗

and x ∈ X.
We define the duality mapping J : X → X∗ by

J(x) = {f ∈ X∗ : 〈f, x〉 = ‖f‖2
∗ = ‖x‖2}, ∀x ∈ X

In the same manner we have the duality mapping J∗ : X∗ → X defined by:

J∗(f) = {x ∈ X : 〈x, f〉 = ‖x‖2 = ‖f‖2
∗}, ∀f ∈ X∗

The existence of J and J∗ is a corollary of the Hahn-Banach analytic form (see
for instance [5]).

Remark 2.1. If X is an Hilbert space, we have J = IdX = J∗.

Example 2.2. If X = Lp(Ω, R) with 1 < p < ∞ then

J(x) = ‖x‖2−p|x|p−1sgn(x)

and
J∗(x) = ‖x‖

p−2
p−1 |x|

1
1−p sgn(x)

where sgn(x) = χ[x>0] − χ[x<0]. This result could be usefully applied to Time
Dependent Traffic Equilibria problems (see [10]).

Now we recall two definitions we need in the sequel.

Definition 2.3 (see [11]). A space (X, ‖.‖) is strictly convex if

∀x ∈ X, ∀y ∈ X : ‖x‖ = ‖y‖ = 1, x 6= y ⇒ ‖tx + (1− t)y‖ < 1,∀t ∈]0, 1[.

Let us denote by S(X) = {x ∈ X : ‖x‖ = 1}.

Definition 2.4 (see [11]). A Banach space X is said to be smooth at x0 ∈ S(X)
whenever there exists a unique f ∈ S(X∗) such that f(x0) = 1. If X is smooth at
each point of S(X) then we say that X is smooth.

From [11] we have also the following characterization criteria: A Banach space
(X, ‖.‖) is smooth if and only if the norm ‖.‖ admits a Gâteaux derivative in each
direction.

Remark 2.5. Hilbert spaces and Lp spaces (1 < p < ∞) are reflexive, strictly convex
and smooth.

From [4] we know that if we have X reflexive, strictly convex and smooth then J ,
J∗ are one-to-one single-valued operators and J−1 = J∗. More precisely we have:

• X is reflexive if and only if J is surjective;
• X is smooth if and only if J is single-valued;
• X is strictly convex if and only if J is injective.
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Besides the notion of projection operator in Hilbert space, it is possible to give
an effective projection operator definition in a more general framework. Let us
recall the following definition of metric projection operator (for more details see for
instance [22]).

Definition 2.6 (see [22]). Let X be a Banach space and C a closed convex subset
of X. We call the metric projection operator from X on C the set valued mapping
π(C|.) : X → C defined by

x → π(C|x) = {y ∈ C : ‖x− y‖ = dC(x)}

where dC(x) = infz∈C ‖x− z‖.

Note that for x ∈ C, π(C|x) is the set of optimal solution of the following mini-
mization problem:

(2.1) inf
y∈C

‖x− y‖2

From now on and unless otherwise stated, we make the following assumptions:
X Banach space, reflexive, strictly convex, and smooth. Then these additional
assumptions ensure that π(C|.) = PC(.) is single valued and PC is called the best
approximate operator. Moreover we have the following characterization of PC(x):

(2.2) x̄ = PC(x) ⇔ 〈J(x− x̄), y − x̄〉 ≤ 0, ∀y ∈ C

As an extension of what we have on Hilbert spaces, (2.2) is called the basic varia-
tional principle for PC in X. This characterization plays a fundamental role for our
application.

Another possibility to generalize the notion of projection is to use, as done by
Alber in [2], the Lyapunov function. The Lyapunov function is the strictly convex
function in y, V (x, y) given by:

V (x, y) := ‖x‖2 − 2〈J(x), y〉+ ‖y‖2

We remark that if C is a closed convex subset of X and if x ∈ C then the problem

min
y∈C

V (x, y)

is uniquely solvable (apply for instance [5],Corollary III.20), then we can give the
following definition:

Definition 2.7 (see [2] or [22]). We call generalized projection of x on C the
following value:

ΠC(x) := arg min
y∈C

V (x, y)

Remark 2.8 (see [2]).
• The operator ΠC : X → C ⊂ X is the identity on C, i.e. for every x ∈

C,ΠC(x) = x.
• In a Hilbert space, V (x, y) = ‖x − y‖2, ΠC coincides with the projection

operator PC .

As stated in [3] we have the following characterization of ΠC(x).
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Lemma 2.9. Assume that C is a closed convex subset of X, then:

(2.3) x̂ = ΠC(x) ⇔ 〈J(x)− J(x̂), y − x̂〉 ≤ 0, ∀y ∈ C

Here again the variational characterization plays a fundamental role for our ap-
plication.

From Corollary 1, page 22, [11] we know that if X is reflexive then:
X strictly convex ⇔ X∗ smooth,
X smooth ⇔ X∗ strictly convex.

Definition (2.6) applies also to X∗ and to convex and closed subset Γ ⊂ X∗, and we
have the following variational principle:

(2.4) f̄ = PΓ(f) ⇔ 〈J∗(f − f̄), g − f̄〉 ≤ 0, ∀g ∈ Γ

We can introduce also the Lyapunov function on X∗ ×X∗:

V ∗(f, g) = ‖f‖∗ − 2〈J∗(f), g〉+ ‖g‖∗
and then the following definition:

Definition 2.10. We call generalized projection of f on Γ ⊂ X∗ the following value:

ΠΓ(f) := arg min
g∈Γ

V ∗(f, g)

We have the following variational principle:

(2.5) f̂ = ΠΓ(f) ⇔ 〈J∗(f)− J∗(f̂), g − f̂〉 ≤ 0, ∀g ∈ Γ

Finally we remind some classical results regarding Tangent and Normal Cones,
please refer to [21] for more details.

Definition 2.11. Let be C ⊂ X convex, we call General Tangent Cone to C at
x̄ the set given by:

TC(x̄) = lim sup
λ→0

1
λ

(C − x̄)

Remark 2.12. The definition 2.11 is valid also if C is non convex. If C is a convex
subset of X, the definition 2.11 is equivalent to:

TC(x̄) =
⋃
λ>0

λ(C − x̄)

Definition 2.13. We call Regular Tangent Cone to C at x̄ the set given by:

(2.6) T̂C(x̄) = lim inf
λ→0, x→x̄, x∈C

1
λ

(C − x̄)

This cone is also called Clarke Tangent Cone.

Remark 2.14. We always have T̂C(x̄) ⊂ TC(x̄). If C is convex then T̂C(x̄) = TC(x̄).

Definition 2.15. We call Regular Normal Cone to C at x̄ the set given by:

(2.7) N̂C(x̄) = {v|〈v, x− x̄〉 ≤ ◦(‖x− x̄‖) per x ∈ C}
Where ‖.‖ is the norm on X and ‘◦’ means

(2.8) lim sup
x→x̄,x∈C,x 6=x̄

〈v, x− x̄〉
‖x− x̄‖

≤ 0
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Definition 2.16. We call General Normal Cone to C at x̄ the set given by:

(2.9) NC(x̄) = {v| ∃xν ∈ C, vν ∈ N̄C(xν), con (xν , vν) → (x̄, v)}

Note: As done in [18] we use ν indexes to indicate the elements of a suite.

Definition 2.17. We call Clarke normal Cone the set given by:

(2.10) N̄C(x̄) = Closed convex hull of NC(x̄)

Remark 2.18. N̄C(x̄) and NC(x̄) are closed and convex. N̂C(x̄) is convex if C is
convex. The following inclusions are always true:

(2.11) N̂C(x̄) ⊂ NC(x̄) ⊂ N̄C(x̄)

Proposition 2.19. We have:

N̄C(x̄) = {v|〈v, w〉 ≤ 0, ∀w ∈ T̂C(x̄)},(2.12)

T̂C(x̄) = {w|〈v, w〉 ≤ 0, ∀v ∈ N̄C(x̄)}(2.13)

We recall for readers utility the following basic definitions and properties.

Definition 2.20. Let C ⊂ X be convex, we call Normal cone to C in x the set
given by:

NC(x) = {ξ ∈ X∗, 〈ξ, y − x〉 ≤ 0,∀y ∈ C}

Definition 2.21. Let M be a cone of X, the polar set of M , noted M0 is defined
by:

M0 = {ξ ∈ X∗, 〈ξ, x〉 ≤ 0,∀x ∈ M}

If X is reflexive, then the following relationships hold:

(TC(x))0 = NC(x),∀x ∈ C

(NC(x))0 = TC(x),∀x ∈ C.

TC and NC are always closed and if C is nonempty and convex they are nonempty
and convex. The following one is a very important result due to Albert.

Theorem 2.22 ([3], Theorem 2.4). Assume that X is a real reflexive strictly convex
and smooth Banach space, and K a non-empty, closed and convex cone of X then:
∀x ∈ X and ∀f ∈ X∗ the decompositions

x = PK(x) + J∗ΠK0J(x) and 〈ΠK0J(x), PK(x)〉 = 0

f = PK0(f) + JΠKJ∗(f) and 〈PK0(f),ΠKJ∗(f)〉 = 0(2.14)

hold.

Remark 2.23. If X is an Hilbert space the decomposition x = PK(x) + J∗ΠK0J(x)
reduces to x = PK(x) + PK0(x).
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3. Projected Dynamical Systems for non Convex subsets in Hilbert
spaces

Let us start introducing the following concepts of projected dynamical system for
non convex subsets of an Hilbert space.

Definition 3.1. We call the Clarke Generalized Projected-Dynamical System the
operator

Λg
C : C ×X∗ → X

defined by setting:
Λg

C(x, h) = ΠT̂C(x)(J
∗(h))

Definition 3.2. We call Generalized Projected Dynamical System (g-PDS), the
discontinuous right hand side differential equation given by:

(3.1)
dx

dt
= Λg

C(x,−F (x)) = ΠT̂C(x)(J
∗(−F (x)))

The associated Cauchy problem is given by:

(3.2)
dx

dt
= Λg

C(x,−F (x)) = ΠT̂C(x)(J
∗(−F (x))), x(0) = x0 ∈ C

Remark 3.3. If C is convex then T̂C(x) = TC(x) and we obtain the Projected
Dynamical system defined in [12] and if in addition X is an Hilbert Space then
(3.1) is the Projected dynamical system used in [14], [15], [6], [8], [7], and [19].

We also introduce a quasi-variational inequality or using a common used denom-
ination (see [20]) a quasi-complementarity system.

Definition 3.4. We call Quasi-Complementarity System based on Clarke tangent
cone, the problem given by a subset of a real Hilbert space H, a closed subset C
and the set value mapping D : C → 2H such that :

D(x) = x + T̂C(x)

and the following quasi-Variational inequality:

(3.3) x ∈ C : 〈F (x), y − x〉 ≥ 0, ∀y ∈ D(x)

where F is a mapping from C → H.

Then we may obtain the following equivalence results.

Theorem 3.5. Assume that X is an Hilbert Space. If (3.3) and (3.2) admits a
solution then each equilibrium point of (3.3) is a critical point of (3.2) and, if (3.2)
admits critical points then they are equilibrium points of (3.3).

Proof. If x∗ is an equilibrium point of (3.3), then we get:

x∗ ∈ C : 〈x∗ − λF (x∗)− x∗, x− x∗〉 ≤ 0, ∀x ∈ x∗ + T̂C(x∗), ∀λ > 0

which can be written in the following way

x∗ = Px∗+T̂C(x∗)(x
∗ − λF (x∗)), ∀λ > 0
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but as x∗ ∈ x∗ + T̂C(x∗) we deduce that PT̂C(x∗)(−F (x∗)) = 0 .�
Now suppose that x∗ is a critical point of (3.2), using Moreau’s theorem we can
write that

−F (x∗) = PT̂C(x∗)(−F (x∗) + PN̄C(x∗)(−F (x∗) = PN̄C(x∗)(−F (x∗)

If F (x∗) = 0 then (3.3) is trivially verified. Now we suppose that F (x∗) 6= 0.
Then as −F (x∗) = PN̄C(x∗)(−F (x∗)) we get −F (x∗) ∈ N̄C(x∗) which means by
polarity

〈−F (x∗), ω〉 ≤ 0, ∀ω ∈ T̂C(x∗)

and this is (3.3). �

4. Projected Dynamical Systems in Banach Spaces

In the paper [12] the authors provided two equivalence theorems: the first one
based on the metric projection operator and the second one based on the generalized
projection operator. We remind without proof some definitions and results:

Definition 4.1. We call the Metric Projected Dynamical System the operator

Λm
C : C ×X∗ → X

defined by setting:
Λm

C (x, h) = PTC(x)(J
∗(h))

So we can define as done in [17] and in [7] the differential equation with a dis-
continuous right hand side.

Definition 4.2. We call M-Projected Dynamical System (m-PDS), the discontin-
uous right hand side differential equation given by:

(4.1)
dx

dt
= Λm

C (x,−F (x)) = PTC(x)(J
∗(−F (x)))

Consequently the associated Cauchy problem is given by:

(4.2)
dx

dt
= Λm

C (x,−F (x)) = PTC(x)(J
∗(−F (x))), x(0) = x0 ∈ C

Definition 4.3. We call the Generalized Projected-Dynamical System the operator

Λg
C : C ×X∗ → X

defined by setting:
Λg

C(x, h) = ΠTC(x)(J
∗(h))

Definition 4.4. We call Generalized Projected Dynamical System (g-PDS), the
discontinuous right hand side differential equation given by:

(4.3)
dx

dt
= Λg

C(x,−F (x)) = ΠTC(x)(J
∗(−F (x)))
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The associated Cauchy problem is given by:

(4.4)
dx

dt
= Λg

C(x,−F (x)) = ΠTC(x)(J
∗(−F (x))), x(0) = x0 ∈ C

In a Hilbert Space both (4.1) and (4.3) are equal to (1.1).
We consider now the variational problem given by:

(4.5) x ∈ C : 〈F (x), v − x〉 ≥ 0, ∀v ∈ C

where F : C → X∗.
The following existence results are known.

Definition 4.5. (see [10]) Let E be a real topological vector space, C ⊂ E convex.
Then F : C → E∗ is said to be:

(i) pseudomonotone iff, for all x, y ∈ C, 〈F (x), y − x〉 ≥ 0 ⇒ 〈F (y), x− y〉 ≤ 0;
(ii) hemicontinous iff, for all y ∈ C, the function ξ → 〈F (ξ), y − ξ〉 is upper

semicontinous on C;
(iii) hemicontinous along line segments iff, for all x, y ∈ C, the function ξ →

〈F (ξ), y − x〉 is upper semicontinous on the line segment [x, y].

Then we have the following result.

Theorem 4.6. (see [10]) Let E be a real topological vector space, and let C ⊆ E be
convex and nonempty. Let F : C → E∗ be given such that:

(i) there exist A ⊆ C compact, and B ⊆ C compact, convex such that, for every
x ∈ C \A, there exists y ∈ B with 〈F (x), y − x〉 < 0;
either (ii) or (iii) below holds:

(ii) F is hemicontinous;
(iii) F is pseudomonotone and hemicontinous along line segments.

Then, there exists x̄ ∈ A such that 〈F (x̄), y − x̄〉 ≥ 0, for all y ∈ C.

We have (see [12]) the equivalence theorem given by

Theorem 4.7. Assume that the hypotheses of Theorems 2.22 and 4.6 hold. Then
each equilibrium point of (4.5) is a critical point of (4.1) and, if (4.1) admits critical
points then they are equilibrium points of (4.5).

and

Theorem 4.8. Assume that the hypotheses of Theorems 2.22 and 4.6 hold. Then
each equilibrium point of (4.5) is a critical point of (4.3) and, if (4.3) admits critical
points then they are equilibrium points of (4.5)

5. Projected Dynamical Systems, Unilateral Differential Inclusions

We consider also the two following differential inclusions:

−ẋ ∈ J∗(F (x) + NTC(x)(ẋ))(5.1)

−ẋ ∈ J∗(F (x) + NC(x))(5.2)
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Proposition 5.1. Let K be a non empty closed convex cone of X. For any s and
v in X the following relations are equivalent:

s = ΠK(v)(5.3)

J(v)− J(s) ∈ NK(s)(5.4)

s ∈ K, J(v)− J(s) ∈ Ko, 〈J(v)− J(s), s〉 = 0(5.5)

J(v)− J(s) ∈ Ko, and ∀ν ∈ Ko, ‖s‖2 ≤ 〈J(v)− ν, s〉(5.6)

Proof. Using the variational characterization of the generalized projection operator
(see [12]) we get that (5.3) is equivalent to:

s ∈ K, 〈J(v)− J(s), y − s〉 ≤ 0,∀y ∈ K

and by definition of a normal cone we get (5.4). Before the next step, first let us
prove that NK(s) = Ko ∩ {s}⊥.
By definition of NK(s), Ko and {s}⊥ we get immediately that Ko∩{s}⊥ ⊂ NK(s).
Now suppose that y ∈ NK(s) then we have

〈y, η − s〉 ≤ 0, ∀η ∈ K

If 〈y, η〉 > 0, as K is a cone, we get ∀λ > 0, 〈y, λη〉 ≤ 〈y, s〉 which implies a
contradiction. Then 〈y, η〉 ≤ 0 and y ∈ Ko. As s ∈ K we get 〈y, s〉 ≤ 0 and as
0 ∈ K we conclude that 〈y, s〉 = 0 and y ∈ {s}⊥. From the previous result we can
conclude that

J(v)− J(s) ∈ NK(s) ⇔ s ∈ K, J(v)− J(s) ∈ Ko, 〈J(v)− J(s), s〉 = 0

Now suppose that (5.5) holds, take ν ∈ Ko, as 〈ν, s〉 ≤ 0 = 〈J(v)− J(s), s〉 we get
〈ν, s〉 ≤ 〈J(v), s〉 − 〈J(s), s〉 and by definition of J we get:

‖s‖2 ≤ 〈J(v)− ν, s〉, ∀ν ∈ Ko

Now suppose that (5.6) holds, in particular we get

〈ν, s〉 ≤ 〈J(v), s〉 − ‖s‖2,∀ν ∈ Ko

If 〈ν, s〉 > 0 we have a contradiction. In fact 〈ν, s〉 is bounded by 〈J(v), s〉 − ‖s‖2

and Ko is a cone, so we get that 〈ν, s〉 ≤ 0, ∀ν ∈ Ko

But J(v) − J(s) ∈ Ko then 〈J(v) − J(s), s〉 ≤ 0 if we take ν = 0 in (5.6) we get
exactly (5.5). �

Remark 5.2. A proof of the previous result in Rn space can be found in [1].

Corrollary 5.3. The following statements are equivalent:

ẋ = ΠTC(x)(J
∗(−F (x)))(5.7)

−ẋ ∈ J∗(F (x) + NTC(x)(ẋ))(5.8) 
−ẋ ∈ J∗(F (x) + NC(x))

−ẋ = J∗(F (x) + PNC(x)(−F (x))
−ẋ = J∗(PNC(x)+F (x)(0))

(5.9)
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Proof. We apply Proposition 5.1 with K = TC(x), v = J∗(−F (x)) and s = ẋ, so we
get immediately (5.7) from (5.3). From (5.4) we get

JJ∗(−F (x))− J(ẋ) ∈ NTC(x)(ẋ)

As JJ∗ = IdX∗ we have the equivalence with (5.8). �

From Albert’s theorem we deduce that (5.7) is equivalent to

ẋ = J∗(−F (x)− PNC(x)(−F (x)))

so using the variational principle for metric projection we get:

〈J∗(−F (x) + J(ẋ) + F (x)), y + J(ẋ) + F (x)〉 ≤ 0, ∀y ∈ NC(x)

and this is equivalent to
−ẋ = J∗(PNC(x)+F (x)(0))

And this means that the vector J(−ẋ) is of minimum norm in (F (x) + NC(x)).
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tarity Systems, Projected Systems and Unilateral Differential Inclusions, Rapport de Recherche
5107 I.N.R.I.A, Janvier 2004.

[2] Ya.I.Alber: Metric and generalized projection operators in Banach spaces: proprieties and
applications, A.Kartsatos (Ed.), Theory and Applications of Nonlinear operators of Monotone
and accretive type, Marcel Dekker, New York,1996, pp 15-50.

[3] Ya.I.Alber: Decomposition theorem in Banach Spaces, Field Inst. Comm. 25, 2000, 77-99.
[4] V.Barbu, Th Precapanu: Convexity and Optimization in Banach Spaces, Romania Interna-

tional Publisherd, Bucarest.1978.
[5] Brezis: Analyse Fonctionnelle, Théorie et Applications, Masson. 1993
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D.I.M.E.T., Faculty of Engineering, University of Reggio Calabria, Loc. Feo di Vito, 89060 Reggio
Calabria Italia

E-mail address: sofia.giuffre@unirc.it

Giovanna Idone
D.I.M.E.T., Faculty of Engineering, University of Reggio Calabria, Loc. Feo di Vito, 89060 Reggio
Calabria Italia

E-mail address: idone@ing.unirc.it
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