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DEGENERATE GINZBURG-LANDAU FUNCTIONALS

BRUNO FRANCHI AND ELENA SERRA

Abstract. In this note we present the results of the recent paper [14] con-
cerning a class of Ginzburg–Landau functionals Eε associated with a couple of
non–commuting vector fields. We study the asymptotic behavior of the mini-
mizers, showing that it is independent of the topological degree of the boundary
datum. Moreover, we prove uniqueness and regularity of the minimizer of the
limit problem, in spite of the lack of lifting theorems in the natural function
spaces for the limit functional.

1. Introduction

In [14], we carried out an asymptotic analysis for the functional

(1) Eε(u) =
1
2

∫
G

(∣∣∣∣ ∂u

∂x1

∣∣∣∣2 + x2
1

∣∣∣∣ ∂u

∂x2

∣∣∣∣2
)

dx +
1

4ε2

∫
G
(|u|2 − 1)2dx,

in the naturally associated function spaces. Here G be a bounded open subset of
R2 with boundary ∂G that is a smooth simple closed regular curve. The functional
Eε in (1) can be considered as a “degenerate Ginzburg–Landau functional” associ-
ated with the family of smooth vector fields X = {X1, X2} := { ∂

∂x1
, x1

∂
∂x2

}. The
asymptotic theory for classical (i.e. elliptic or non degenerate) Ginzburg–Landau
functionals in G (see [1] and [2]) describes the behavior as ε → 0+ of the minima

uε := min
u∈W 1,2(G)

Eε(u)

of the variational functionals

(2) Eε(u) =
1
2

∫
G
|∇u|2dx +

1
4ε2

∫
G
(|u|2 − 1)2dx,

under the boundary constraint u = g on ∂G. Here W 1,2(G) := W 1,2(G, C) is the
usual space of complex-valued Sobolev functions, and g is a prescribed (say) smooth
function g : ∂G → S1, where S1 denotes the unit circle in C.

Roughly speaking, in the elliptic case the asymptotic behavior of uε as ε → 0+

depends on d := deg (g, ∂G), the Brouwer degree of g. Indeed, if d = 0 then

W 1,2
g (G, S1) := {u ∈ W 1,2(G, S1) ; u = g on ∂G)}

is not empty, since it contains at least a smooth extension of g to all of Ḡ, and
uε → u0 in W 1,2(G, S1), where u0 is a solution of the minimum problem

(3) min
u∈W 1,2(G,S1)

∫
G
|∇u|2dx
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(we shall see below that this minimum problem admit a unique smooth solution).
On the contrary, if d 6= 0, roughly speaking there is a subsequence uεk

that
converges uniformly on compact sets outside of a finite number of points (|d| points,
to be precise) to a limit function u∗, and singularities (the so-called vortices) may
appear.

It is well known that there are several properties of the functionals (1) and of the
associated Sobolev type spaces that either are already known in the literature, or
can be derived more or less mimicking the proofs of the corresponding statements
in the elliptic setting. However, we encountered at least two somehow unexpected
phenomena that require ad hoc arguments.

First of all, as soon as the functional is truly degenerate, i.e. as soon as ∂G
intersect the degeneration line {x1 = 0}, then the topological degree of the boundary
datum g does not affect anymore the asymptotic behavior of the minimizers, that
is always akin to that of the case d = 0 in the elliptic counterpart. In particular, if
for 1 ≤ p < ∞ we set

W 1,p
X (G, S1) := {u ∈ Lp(Ω, S1) : X1u, X2u ∈ Lp(G)},

and
W 1,p

X,g(G, S1) = {u ∈ W 1,p
X (G, S1) ; u ≡ g in ∂G},

then the space W 1,2
X,g(G, S1) – still defined as the set of functions u ∈ W 1,2

X (G, S1)
such that u = g on ∂G – is not empty, regardless of the topological degree of g
(Theorem 2.11 and Corollary 2.12), and the minimizers of the functionals in (1)
converge to a minimizer of E0 in W 1,p

X,g(G, S1) (see Theorem 2.14).
From the technical point of view, this basically relies on the fact that the sharp

trace spaces on the boundary for functions in W 1,p
X,g(G) allow jump discontinuities

when the boundary crosses the degeneration line, and we can always, starting from
a smooth function g taking values in S1, write it in the form g = exp(iϕ̃), with
ϕ̃ smooth on ∂G, except for a jump discontinuity in an arbitrarily fixed point
(discontinuity coming from the jump discontinuity of z → arg z).

In addition, in the elliptic setting – again if d = 0 – the minimizer of (3) is unique
and smooth up to the boundary. This fact can be derived writing the Euler equation
of (3), that leads to the study of the following Dirichlet problem for the harmonic
map equation:

(4)


−∆u0 = u0|∇u0|2 in G

|u0| ≡ 1 in G

u0 = g in ∂G.

Now, the smoothness and the uniqueness of the solution of (4) can be proved by
a lifting argument, i.e. relying on the facts that g can we written in the form
g = exp(iφ̃) for a smooth function φ̃ (since deg (g, ∂G) = 0), and that every u ∈
W 1,2(G, S1) can be written in the form u = exp(ih), with h ∈ W 1,2(G). In fact,
this property holds more generally for u ∈ W 1,p(G, S1) when p ≥ 2, since G ⊂ R2:
see, e.g., [3] or [4]. An elementary computation yields that h solves the Dirichlet



DEGENERATE GINZBURG-LANDAU FUNCTIONALS 445

problem

(5)

{
∆h = 0 in G

h = φ̃ in ∂G.

Thus, uniqueness and regularity of h (hence of u0) follow.
Unfortunately, a similar lifting statement fails to hold for an arbitrary function

u ∈ W 1,2
X (G, S1), for a lifting theorem in W 1,p

X (G, S1) holds if and only if p > 3
(tough, also when 1 ≤ p < 3, a function u ∈ W 1,p

X (G, S1) admits a lifting in larger
Sobolev spaces of fractional order). This phenomenon is clearly related to the fact
that – roughly speaking – the dimension of the Carnot–Carathédory space associated
with X1 and X2 equals 3 (to be slightly more precise: can be estimated by 3), that
is larger than 2, the dimension of G as a manifold. It is worth mentioning here
that our proof of the positive part of the lifting theorem does not follow the scheme
of the proof in usual Sobolev spaces, but rather relies on it, by building two lifted
functions ϕ̃± in G∩{x1 > 0} and G∩{x1 < 0} respectively, and showing that their
traces on {x1 = 0} fit well, thanks to the trace theorems in the spaces W 1,p

X ([8],
[6]) and the results of [4] .

In spite of the lack of lifting in W 1,2
X (G, S1), in [14] we were still able to carry

out the proof of the equivalence between the (degenerate) harmonic map equation
and a linear equation, by showing (Theorem 2.15 below) that weak solutions u ∈
W 1,2

X (G, S1) of −∆Xu = u|Xu|2 can be written in the form u = exp(ih), with
h ∈ W 1,2

X (G). Such a proof relies on a careful description of the singularities of the
so–called subelliptic harmonic map equation associated with X. In this Note, after
sketching the results of [12], we provide an alternative proof of this equivalence,
that still holds in much more general situations.

2. Main results

Definition 2.1. If 1 ≤ p < ∞, we can associate with the family X of vector fields
X = (X1, X2) = (∂1, x1∂2) the function space

(6) W 1,p
X (G) = W 1,p

X (G, R) := {u ∈ Lp(Ω) : X1u, X2u ∈ Lp(G)},

endowed with its natural norm.
By [7], W 1,p

X (G) is the completion of C∞(Ḡ) with respect to the W 1,p
X (G)-norm.

As usual, we shall say that u ∈ W 1,p
X,loc(G) if ϕu ∈ W 1,p

X (G) for all ϕ ∈ D(G), and

we define the space
◦

W 1,p
X (G) as the closure of C∞

0 (G) in W 1,p
X (G). The following

Poincaré inequality is well known (see, e.g. [11], [12], [17], [10]).

Theorem 2.2. If 1 ≤ p < ∞, there exists C > 0 such that for any ball B = B(x̄, r)
with respect to the Carnot–Carathéodory distance associated with X

(7)
∫

B

∣∣u− uB

∣∣p dx ≤ C rp

∫
B

∣∣Xu
∣∣p dx

for every u ∈ W 1,p
X (B), where uB :=

∫
B u dx denotes the average of u on B.
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In particular, for any p ∈ [1,∞) there exists CG,p > 0 such that

(8)
(∫

G
|u|p dx

)1/p

≤ CG,p

(∫
G
|Xu|p dx

)1/p

for any u ∈
◦

W 1,p
X (G).

From Poincaré inequality (7) the following compactness theorem follows as usual.

Theorem 2.3. The space
◦

W 1,p
X (G) is compactly embedded in Lp(G). Therefore

W 1,p
X (G) is compactly embedded in Lp

loc(G)

In addition, if p > 1 and 1
p + 1

p′ = 1, W−1,p′

X (G) will denote the dual space

(
◦

W 1,p
X (G))∗. It is well known that

(9) W−1,p′

X (G) = {divX f := X1f1+X2f2 where f = (f1, f2), fi ∈ Lp′(G), i = 1, 2},

endowed with the usual norm.
More generally, if k ∈ N, then we set

W k,p
X (G) := {u ∈ Lp(Ω) : Xi1 · · ·Xi`u ∈ Lp(G)

for any choice of i1, . . . , i` ∈ {1, 2} and for 1 ≤ ` ≤ k},
(10)

endowed with its natural norm.
Later on, we shall use the function space

W 1,p
X (G, S1) = {u : G → S1, u = u1 + i u2, uj ∈ W 1,p

X (G) for j = 1, 2},

where S1 is the unit circle in C.
Finally, we shall denote by Xu = (X1u, X2u) the intrinsic gradient associated

with X, by |Xu| its norm, and by ∆X the sum-of-squares differential operator
∆X = X2

1 + X2
2 (the so-called subelliptic Laplacian associated with X). By [16],

∆X is hypoelliptic, since the rank of the Lie algebra generated by X equals 2 at
any point of R2.

By the Poincaré inequality (8), the quadratic form associated with ∆X is coercive

in
◦

W 1,2
X (G), and hence the following well known result.

Theorem 2.4. If f ∈ W−1,2
X (G), the Dirichlet problem

(11)

{
∆Xu = f in G

u ≡ 0 in ∂G,

has a unique solution in
◦

W 1,2
X (G).

If ν is the outward unit normal, we denote by µ the measure on ∂Ω defined by

(12) µ =
(
〈X1, ν〉2 + (〈X2, ν〉2

)1/2H1 ∂G,

where H1 ∂G is the 1-dimensional Hausdorff measure concentrated on ∂G. It is
well known ([5]) that, due to the smoothness of ∂G, the measure µ coincides with
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the perimeter measure |∂G|X (see [13], [15]). Thus, following [6], [19], if p ≥ 1,
0 < s < 1, and u ∈ Lp(∂G, dµ), we denote by [u]s,p the Besov-type seminorm

(13) [u]ps,p =
∫

∂G
dµ(x)

∫
∂G

dµ(y)
|u(x)− u(y)|p

d(x, y)psµ(B(x, d(x, y)))
.

Finally, we denote by Bs,p
X (∂G) the linear space of all u ∈ Lp(∂G, dµ) such that

[u]s,p < ∞, endowed with its natural norm.
We denote by ∂GX the set of characteristic points of ∂G with respect to X, i.e.,

if ν is the outward unit normal to ∂G, then

∂GX := {x = (x1, x2), x1 = 0, ν(x) = (0,±1)}.
We assume that

Hypothesis 2.5 (Main geometric assumptions). We assume that ∂G ∩ {(0, y) : y ∈
R} 6= ∅. In addition, if (0, q) ∈ ∂G ∩ {x1 = 0} is a characteristic point of ∂G with
respect to X, then there exists a bounded open neighborhood U of (0, q) such that
G ∩ U = {(x1, x2) ∈ U ;x2 < f(x1)}, where f ′(x1) = O(|x1|) as x1 → 0.

For sake of simplicity, we assume also that we can write

∂G =
m⋃

j=1

Γj ∪ Γ0,

where, for j = 1, . . . ,m, Γj is a (connected) arc of ∂G intersecting the x2-axis and
that can be written as a graph. Moreover, dist (Γi,Γj) ≥ ε0 > 0 for i 6= j, and
dist (Γ0, {x1 = 0}) = ε0 > 0.

By Lemma 6 of [19], µ is a 1-Ahlfors measure in the sense of [6], since the domain
G satisfies Hypothesis 2.5. More precisely, we have:

Lemma 2.6. [[19], Lemma 6] If Hypothesis 2.5 holds, then

µ(B(x, r)) ≈ |B(x, r)|
r

for x ∈ Ḡ and 0 < r ≤ r0.

Trace theorems on the boundary for the spaces W 1,p
X (G) have been described in

the last few years in [8], [6], [19]. The following result can be deduced from Theorem
11.9 of [6], keeping in mind

(1) the equality between the perimeter measure that appears therein and our
measure µ (see e.g. [6], Remark 2.3.3);

(2) Lemma 2.6 above;
(3) that G is a (ε, δ)-domain ([20] and [18], Theorem 3.3.3).

Theorem 2.7. [[6], Theorem 11.9] If p > 1 there exist two bounded linear operators

γ : W 1,p
X (G) → B

1−1/p,p
X (∂G), R : B

1−1/p,p
X (∂G) → W 1,p

X (G)

such that
(1) γ(u) = u

∣∣
∂G

when u ∈ C∞(Ḡ);

(2) γ ◦ R is the identity on B
1−1/p,p
X (∂G).
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In the sequel, the following proposition will provide a key tool.

Theorem 2.8. Let Q := (0, q) ∈ ∂G, and let u ∈ C(∂G \ {Q}) ∩ L∞(∂G) be
Lipschitz continuous on any open arc that is properly contained in ∂G \ Q. Then
u ∈ B

1−1/p,p
X (∂G) for all p ∈ (1, 3).

Definition 2.9. Let G ⊂ R2 be an open set satisfying the assumptions of Hypoth-
esis 2.5. If g ∈ C∞(∂G, S1), we put

W 1,p
X,g(G, S1) = {u ∈ W 1,p

X (G, S1) ; γ(u) = g},

where γ(u) = g must understood as an equality of traces in the sense of [19]. We
shall see below (see Corollary 2.12) that, if g ∈ C∞(∂G, S1), then W 1,p

X,g(G, S1) 6= ∅.

Proposition 2.10. Il u ∈ W 1,p
X (G), 1 < p < ∞, and γ(u) = 0, then u ∈

◦
W 1,p

X (G).

The following result is a keystone of [14].

Theorem 2.11. Let G ⊂ R2 be an open set satisfying the assumptions of Hypothesis
2.5, and let g ∈ C∞(∂G, S1). Then, if 1 < p < 3,

(14) g = γ(exp(i ϕ)) for at least one function ϕ ∈ W 1,p
X (G).

Corollary 2.12. With the assumptions of Theorem 2.11, if g ∈ C∞(∂G, S1), then
W 1,p

X,g(G, S1) 6= ∅.

Theorem 2.13. Let G ⊂ R2 be an open set satisfying the assumptions of Hypothesis
2.5, and let g ∈ C∞(∂G, S1). Then

i) there exists u0 ∈ W 1,2
X,g(G, S1) that solves the minimum problem

min
u∈W 1,2

X,g(G,S1)

∫
G
|Xu|2 dx.

ii) The minimizer u0 is a weak solution of the nonlinear Dirichlet problem

(15)


−∆Xu0 = u0|Xu0|2 in G

|u0| ≡ 1 in G

u0 = g in ∂G.

iii) The harmonic map equation (15) has a unique solution that is smooth in G.
In particular, the minimizer of i) is unique.

Theorem 2.14. Let G ⊂ R2 be an open set satisfying the assumptions of Hypothesis
2.5, and let g ∈ C∞(∂G, S1). For ε > 0 consider the functionals

(16) Eε(u) =
1
2

∫
G
|Xu|2dx +

1
4ε2

(|uε|2 − 1)2dx.

Let uε be the minimizer of Eε in W 1,2
X,g(G) for ε > 0, and let u0 be defined in

Theorem 2.13. Then
uε → u0 as ε → 0

strongly in W 1,2
X (G).
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As anticipated in the Introduction, in spite of the lack of lifting in W 1,2
X (G, S1),

in [14] we were still able to carry out the proof of the equivalence between the
(degenerate) harmonic map equation and a linear equation, by showing that weak
solutions u ∈ W 1,2

X (G, S1) of −∆Xu = u|Xu|2 can be written in the form u =
exp(ih), with h ∈ W 1,2

X (G).
More precisely, the following lifting result holds.

Theorem 2.15. If u0 ∈ W 1,2
X (G, S1) is a weak solution of (15), then there exists

h ∈ W 1,2
X (G, R) such that

(17) u0 = exp ih,

and

(18) Xu0 = iu0Xh.

Theorem 2.16. Let the assumptions of Theorem 2.13 hold. Then the function
h ∈ W 1,2

X (G, R) given by Theorem 2.15, that is defined up to an integer multiple of
2πi, can be chosen in order to solve the Dirichlet problem

(19)

{
∆Xh = 0 in G

γ(h) = γ(ϕ) in ∂G,

where ϕ has been defined in Theorem 2.11.

Proof. Let h be as in Theorem 2.15. We have

∆Xh = X1f1 + X2g2 = 0.

Thus, we have but to show that γ(h)− γ(ϕ) = 2kπ for some k ∈ Z. We have
exp(−iγ(ϕ)) exp(iγ(h)) = exp(i(γ(h)− γ(ϕ))) = exp(iγ(h− ϕ))

= γ(exp(ih− iϕ)) = γ(exp(ih))γ(exp(−iϕ))

= γ(u0)g−1 = 1,

and the proof is complete. �

Corollary 2.17. Let u0 ∈ W 1,2
X (G, S1) solve the Dirichlet problem (15). Then

(1) the solution is unique;
(2) u0 is smooth in G.

Proof. The second assertion follows from the hypoellipticity of ∆X ([16]) and The-
orem 2.16. Suppose now u1 ∈ W 1,2

X (G, S1) is another solution of (15), and let h1

be obtained from u1 as in Theorem 2.15, chosen in order to satisfy (19). If we

set h̃ := h − h1, we obtain that γ(h̃) = g − g = 0, and hence h̃ ∈
◦

W 1,2
X (G), by

Proposition 2.10. Since ∆X h̃ = 0, then h = 0, by Theorem 2.4. Thus, the assertion
is proved. �

Remark 2.18. Since ∆X is elliptic outside of an arbitrary open neighborhood V
of the axis {x1 = 0}, it follows trivially by classical Schauder theory that h (and
hence u0) are smooth up to boundary outside of V. It also evident that we cannot
expect continuity up to the boundary for a general Dirichlet datum g, by topological
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obstructions. On the other hand, suppose the topological degree of g is zero, so that
we can choose ϕ smooth up to the boundary. By (19) and Proposition 2.10, the

function θ := h− ϕ is a weak solution in
◦

W 1,2
X (G) of the Dirichlet problem

(20)

{
∆Xθ = −∆ϕ in G

γ(θ) = 0 in ∂G,

Thanks to the smoothness of the right hand side of the equation in (20), we can
apply regularity results up to the boundary in domains satisfying condition (S)
([12]) to conclude that θ (and hence h and eventually u0) is Hölder continuous up
to the boundary on all G.

3. The lifting problem in W 1,p
X (G, S1)

In this section, we provide a complete solution of the lifting problem in
W 1,p

X (G, S1). It turns out that the threshold separating the range of p’s in [1,∞)
for which a lifting theorem either holds or fails to hold is p = 3. As we already
stressed, this critical value differs from the critical value p = 2 of the usual elliptic
Sobolev spaces (see e.g. [3], [4]), reflecting the well know fact that the homogeneous
dimension of R2 endowed with the Carnot–Carathédory metric associated with X1,
X2 equals 3. In fact, this last statement is not fully correct, since the dimension of
this Carnot–Carathédory metric is not constant (it equals 3 on the x2-axis and is 2
away from it), because there is no underlying group structure making X1, X2 left
invariant.

Theorem 3.1. If u ∈ W 1,p
X (G, S1) with p ≥ 3, then there exists φ̃ ∈ W 1,p

X (G) such
that

(21) u = exp(iφ̃).

Theorem 3.2. If 1 ≤ p < 3, then there exists u ∈ W 1,p
X (G, S1) such that the

equation

(22) u = exp(ih).

has no solutions h ∈ W 1,p
X (G).

Proof. Clearly, we can carry on our arguments in a neighborhood of a point of
G ∩ {x1 = 0}, and hence, without loss of generality, we can assume G is the unit
ball B(0, 1) for the distance d. Moreover, let us remind that

(23) d(x, 0)α ∈ L1
loc(R2) if and only if α > −3.

It is enough to choose

u(x) = (u1(x), u2(x)) :=
1

(x4
1 + x2

2)1/2

(
x1|x1|, x2

)
for x ∈ G. �
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