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INTRINSIC LIPSCHITZ GRAPHS IN HEISENBERG GROUPS

BRUNO FRANCHI, RAUL SERAPIONI, AND FRANCESCO SERRA CASSANO

1. Introduction

In the last few years there have been a fairly large amount of work dedicated to
the study of intrinsic submanifolds - of various dimension and codimension - inside
the Heisenberg groups Hn or more general Carnot groups. For example intrinsically
C1 surfaces, rectifiable sets, finite perimeter sets, various notions of convex surfaces
have been studied. Here and in what follows, intrinsic will denote properties defined
only in terms of the group structure of Hn or, equivalently, of its Lie algebra h.

We postpone complete definitions of Hn to the next section. Here we remind
that Hn, with group operation ·, is a (connected and simply connected) Lie group
identified through exponential coordinates with R2n+1. If h denotes the Lie algebra
of all left invariant vector fields on Hn, then h admits the stratification h = h1⊕ h2;
h1 is called horizontal layer. The horizontal layer defines, by left translation, the
horizontal fiber bundle HHn. Since HHn depends only on the stratification of h, we
call ‘intrinsic’ any notion depending only on HHn. The stratification of h induces,
through the exponential map, a family of anisotropic dilations δλ for λ > 0. We
refer to δλ as intrinsic dilations. A privileged role in the geometry of Hn is played
by horizontal curves, i.e. curves tangent at any point to the fiber of HHn at that
point.

We recall the notions of Carnot-Carathéodory distance and Hausdorff measures
in Hn. Once a scalar product is defined in h, each fiber of the horizontal bundle over
a generic point p is consequently endowed with a scalar product 〈·, ·〉p. We denote
also by | · |p the associated norm. Thus, we can define the (sub-Riemannian) length
of a horizontal curve γ : [0, T ] → Hn as

∫ T
0 |γ′(t)|γ(t) dt. Given p, q ∈ Hn, their

Carnot-Carathéodory distance dc(p, q) is the minimal length of horizontal curves
connecting p and q.

Intrinsic s-dimensional Hausdorff measures Hs
c and Ss

c , s ≥ 0, are obtained from
dc, following Carathéodory construction as in Federer’s book [6]. The intrinsic
metric (or Hausdorff) dimension dimH(S) of a set S is the number dimH(S) def=
inf{s ≥ 0 : Hs(S) = 0}.

Heisenberg groups provide the simplest non-trivial examples of nilpotent strat-
ified, connected and simply connected Lie groups (Carnot groups in most of the
recent literature).
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We begin to recall some of the main definitions of intrinsic submanifolds: H-
regular submanifolds, H-rectifiable submanifolds, finite perimeter sets.

Intrinsic C1 surfaces - or H-regular surfaces - were first defined for codimension
one, in [8] and later, for general dimensions and codimensions in [11]. The definition
is the following one, if 1 ≤ k ≤ n,

k-dimensional H-regular surfaces ofHn are images of continuously Pansu differen-
tiable functions V → Hn, V open in Rk, with differentials of maximal rank, hence
injective;

k-codimensional H-regular surfaces of Hn are level sets of continuosly Pansu
differentiable functions U → Rk, U open in Hn, with Pansu differential of maxi-
mal rank, hence surjective.

Notice that no nontrivial geometric object falls under the scope of both defini-
tions. Indeed, for k > n, there is no k-dimensional subgroup of the horizontal fibre;
hence surfaces having as a tangent space a subgroup of the horizontal fibre are lim-
ited to have dimension ≤ n and, dually, the ones with an horizontal normal space
are limited to have codimension ≤ n.

The two families of low dimensional and low codimensional H-regular surfaces
contain very different objects. We recall here some of their properties as proved
in [11].

k-dimensional H-regular surfaces are Euclidean submanifolds of Hn ≡ R2n+1.
For k = 1, they are horizontal curves and for k ≤ n they are submanifolds of
Legendrian manifolds. They have topological dimension = metric dimension =
Euclidean dimension = k. Locally they have finite Sk

c measure. Their intrinsic
tangent k-planes coincide with their Euclidean tangent k-planes (both are cosets of
subgroups of Hn contained in the horizontal fibre).

Low codimensional H-regular surfaces, on the contrary, can be very irregular and
in general these surfaces are not Euclidean C1 submanifolds, not even locally (see
[15]). Nevertheless it can be proved that they have metric dimension = 2n + 2− k,
and topological dimension = 2n + 1− k. Locally they have finite S2n+2−k

c measure.
At each point there is a, continuosly varying, intrinsic tangent (2n + 1 − k)-plane
that is a coset of a subgroup of Hn.

Intrinsic rectifiable sets are defined as countable unions of compact subsets of
H-regular surfaces (see [8] and [11]). Precisely, if 1 ≤ k ≤ n, we say that M is a
k-dimensional H-rectifiable set if Sk

c (M) < ∞ and Sk
c almost all of M is contained

in the countable union of k-dimensional H-regular surfaces. Analogously, we say
that M is a k-codimensional H-rectifiable set - or a (2n + 2 − k)-dimensional H-
rectifiable set - if S2n+2−k

c (M) < ∞ and S2n+2−k
c almost all of M is contained in

the countable union of k-codimensional H-regular surfaces.
Sets with locally finite H-perimeter or - following De Giorgi - H-Caccioppoli sets

were first defined in [13]. Notice that there are several ways of defining intrinsic
bounded variation functions and finite perimeter sets in Hn or in much more general
settings. These definitions have been proposed independently by different authors
(see [3], [13], [7]) and are in fact equivalent, see [7]).
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We say, following [13], that E ⊂ Hn has locally finite H-perimeter if for any
bounded open set Ω ⊆ Hn

|∂E|H(Ω) := sup





∫

E

n∑

j=1

Xjφ(p) + Yjφ(p) dL2n+1
p



 < ∞,

where the supremum is taken over all φ ∈ C1
0 (Ω,HHn), such that |φ(p)|p ≤ 1. In

such a way, |∂E|H is a Radon measure in Hn.
Riesz’ representation theorem yields the existence of a |∂E|H-measurable section

νE of HHn, the generalized inward normal. Then, following De Giorgi (see [5]), we
define the H-reduced boundary ∂∗E saying that p ∈ ∂∗E if |∂E|H(B(p, r)) > 0 for
any metric ball B(p, r) and if

∣∣∣∣∣limr→0

1
|∂E|H(B(p, r))

∫

B(P,r)
νEd|∂E|H

∣∣∣∣∣ = 1.

One of the main results in [8] (see also [10]) states that the reduced boundary of
finite perimeter sets is a 1-codimensional H-rectifiable set. This theorem, beyond
extending the classical result to Heisenberg groups setting, is a strong support in
favour of the previously given definitions of H-regular surfaces and of H-rectifiable
sets.

Finally we particularly want to stress two important features:
(i): all these classes of sets and surfaces are invariant with respect to group

translations or group dilations of Hn. Precisely , if S is - say - the boundary
of a finite perimeter set E, then also any left translated surface τqS is again the
boundary of a finite perimeter. The same can be said if S is a H-regular surfaces
and, consequently, if S is a H-rectifiable sets .

(ii): the implicit function theorems proved in [8] and [11] yield that H-regular
surfaces are, locally, intrinsic graphs. By this we mean - see Definition 2.4 - that
there are subgroups V and W of Hn such that V ∩W = e, Hn = W · V - in short
Hn is the semidirect product of V and W - and there is ϕ : W → V such that S =
graph(ϕ), that is S = {w · ϕ(w) : w ∈ E ⊂W}.

Then, it is a natural problem to try to understand the classes of functions, acting
between subgroups of a given Carnot group such that their graphs are H-regular
surfaces or H-rectifiable surfaces. This problem has been addressed for the first
time in [1] where the authors characterize real valued functions on 1-codimensional
subgroups of Hn such that their intrinsic graphs are H-regular 1-codimensional
surfaces.

Notice that, following from (i), the defining properties of these classes of func-
tions have to be invariant when the graphs of the functions are group translated or
dilated. This fact gives origin - quite naturally - to apparently strange definitions
of intrinsically Lipschitz functions or of intrinsically differentiable functions, in our
notation Hn-Lipschitz functions or Hn-differentiable functions - see Definition 3.1
and Definition 4.4. These notions are different from the usual ones and can be seen
to reduce to the usual ones only in some very special situations.

We limit ourselves in this note to study Hn-Lipschitz functions acting between
subgroups of Hn. One of our aims is convincing the reader that they are very natural
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objects inside Hn, enjoying a number of very natural properties: they can be defined
equivalently by metric properties, boundedness of intrinsic difference quotients or
existence of parallel cones non intersecting their graphs; their graphs have locally
finite intrinsic Hausdorff measure and finally when they are 1-codimensional they
are boundary of sets with locally finite H-perimeter.

2. Notations and definitions

2.1. Heisenberg groups. For a general review on Heisenberg groups and their
properties we refer to [21], [14] and to [22]. We limit ourselves to fix some notations.
Hn is the n-dimensional Heisenberg group, identified with R2n+1 through expo-

nential coordinates. A point p ∈ Hn is denoted p = (p1, . . . , p2n, p2n+1) = (p′, p2n+1),
with p′ ∈ R2n and p2n+1 ∈ R. If p and q ∈ Hn, the group operation is defined as

p · q = (p′ + q′, p2n+1 + q2n+1 − 1
2
〈Jp′, q′〉R2n)

where J =
[

0 In

−In 0

]
is the 2n × 2n symplectic matrix. We denote as p−1 :=

(−p′,−p2n+1) the inverse of p and as e the identity of Hn.
For any fixed q ∈ Hn and for any r > 0 left translations τq : Hn → Hn and non

isotropic dilations δr : Hn → Hn are automorphisms of the group defined as

τq(p) := q · p and as δrp := (rp′, r2p2n+1).

We denote as h the Lie algebra of Hn. The standard basis of h is given, for
i = 1, . . . , n, by

Xi := ∂i − 1
2
(Jp′)i∂2n+1, Yi := ∂i+n +

1
2
(Jp′)i+n∂2n+1, T := ∂2n+1.

The horizontal subspace h1 is the subspace of h spanned by X1, . . . , Xn and
Y1, . . . , Yn. Denoting by h2 the linear span of T , the 2-step stratification of h is
expressed by

h = h1 ⊕ h2.

If p ∈ Hn we indicate

‖p‖ := d∞(p, e) := max{‖(p1, · · · , p2n)‖R2n , |p2n+1|1/2}
and

d∞(p, q) = d∞(q−1 · p, e) =
∥∥q−1 · p

∥∥ .

It is well known that d∞ is equivalent with the Carnot-Caratheodory distance of
Hn, moreover

d∞(z · x, z · y) = d∞(x, y) d∞(δλx, δλy) = λd∞(x, y)

for x, y, z ∈ Hn and λ > 0. We denote by U(p, r) and by B(p, r) the open and the
closed ball associated with d∞.

Definition 2.1. Hn is the semidirect product of the homogeneous subgroupsW and
V and we wright

Hn =W · V
if W := expw, V := exp v, w and v are homogeneous subalgebras of h (see [21]
5.2.4) such that
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(i): h = w⊕ v;
(ii): w ⊃ h2 or, equivalently, w is an ideal in h;

Clearly W ∩ V = {e}, moreover (ii) is equivalent to saying that W is a normal
subgroup of Hn.

Notice also that v ⊂ h1, indeed T /∈ v because T ∈ w, moreover if T + V ∈ v
for some V ∈ v, then both λT + λV ∈ v and λV + λ2T ∈ v yielding that T ∈ v.
Because v is a subalgebra of h1 it follows that the linear dimension of v is ≤ n, that
v is a commutative algebra and consequently that V ' Rk if k = dim v.

Each element p ∈ Hn can be written in a (unique) way as p = pW · pV, with
pW ∈W and pV ∈ V.

Proposition 2.2. If Hn = W · V, each q ∈ Hn has unique ‘components’ qW ∈ W,
qV ∈ V, such that q = qW · qV. The maps

q → qV and q → qW

are continuous and there is a constant c = c(V,W) > 0 such that

(1) c (‖qV‖+ ‖qW‖) ≤ ‖q‖ ≤ (‖qV‖+ ‖qW‖) .

Moreover,

(q−1)V = (qV)−1 and (q−1)W = q−1
V · (qW)−1 · qV

(p · q)V = pV · qV and (p · q)W = pW · pV · qW · p−1
V .

(2)

The norm and distance in W or in V are the restrictions to W and to V of ‖·‖
and d∞.

Remark 2.3. The component map

Hn →W : p 7→ pW

is not a Lipschitz map with respect to the previously indicated norms.

If Hn = W · V, we denote system of coordinate planes the double family LV and
LW of cosets of V and W, that is

LV(p) := p · V, ∀p ∈W and LW(q) := q ·W, ∀q ∈ V.

Each p ∈ Hn belongs exactly to one leaf in LV and to one in LW; the leaves in LV
(or in LW) are invariant by translations, that is x ∈ LV(p) =⇒ τxLV(p) = LV(p).

For a nonnegative integer k, Lk denotes the k-dimensional Lebesgue measure.
L2n+1 is the bi-invariant Haar measure of Hn, hence, if E ⊂ R2n+1 is measur-
able, then L2n+1(τp(E)) = L2n+1(E) for all p ∈ Hn. Moreover, if λ > 0 then
L2n+1(δλ(E)) = λ2n+2L2n+1(E). We explicitly observe that, ∀p ∈ Hn and ∀r > 0,

L2n+1(B(p, r)) = r2n+2L2n+1(B(p, 1)) = r2n+2L2n+1(B(0, 1)).

Notice also that, if ωk is the Lk measure of the unit Euclidean ball in Rk, then
L2n+1 (B(e, r)) = 2ω2nr2n+2 and, if k := dim v ≤ n,

Lk (B(e, r) ∩ V) = ωkr
k;

L2n+1−k (B(e, r) ∩W) = 2ω2n−kr
2n+2−k.

(3)
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Related with the distance d∞, Hausdorff measures are obtained following
Carathédory’s construction as in [6] Section 2.10.2. For m ≥ 0, we denote by
Hm the m-dimensional Hausdorff measures in Hn, obtained from the distances d∞.
Analogously, Sm denotes the spherical Hausdorff measure. We have to be more pre-
cise about the constants appearing in the definitions. Since explicit computations
will be carried out only for m a positive integer, we limit ourselves to this case. For
each A ⊂ Hn and δ > 0, Hm(A) := limδ→0Hm

δ (A), where

Hm
δ (A) = inf

{∑

i

ζ(Ci) : A ⊂
⋃

i

Ci, Ci closed, diam(Ci) ≤ δ

}

and the evaluation function ζ is

(4) ζ(C) :=





ωm2−mdiam(C)m if 1 ≤ m ≤ n,

ωm−12−m+1diam(C)m if m = n + 1,

ωm−22−m+1diam(C)m if n + 2 ≤ m.

We notice that, due to the lack of an optimal isodiametric inequality in Hn, it
is not known if, in general, Hm(E) = Sm(E) even for ‘nice’ subsets of Hn and for
m = Q. Related to this point see the recent paper [19] by Severine Rigot.

Translation invariance and homogeneity under dilations of Hausdorff measures
follow as usual from (2.1) and we have

(5) Hm(τpA) = Hm(A) and Hm(δrA) = rmHm(A),

for A ⊆ Hn, p ∈ Hn and m,r ∈ [0,∞).
Because the topologies induced by d∞ and by the Euclidean distance coincide,

the topological dimension of Hn is 2n + 1. On the contrary the metric dimension
(or Hausdorff dimension) of Hn, with respect to d∞ is 2n + 2.

If Hn =W ·V as in Definition 2.1, then if k, 1 ≤ k ≤ n, is the linear dimension of
v then the metric dimension of V is k while the metric dimension of W is 2n+2−k.
Hence

dimHn = dimV+ dimW.

2.2. Graphs. We assume that Hn =W · V is the semidirect product of W and V.

Definition 2.4. We say that a set S ⊂ Hn is a graph over W along V if, for each
ξ ∈ W, S ∩ LV(ξ) contains at most one point. Equivalently if there is a function
ϕ : E ⊂W→ V such that

S = {w · ϕ(w) : w ∈ E}
and we say that S is the graph of ϕ, S = graph(ϕ). Graphs over V along W are
defined symmetrically, S = graph(ψ), with ψ : F ⊂ V→W, if

S = {v · ψ(v) : v ∈ F}.
Observe that the notions of intrinsic graph and of euclidean graph are different

ones.
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Example 2.5. Let H1 = W · V, with V = {x = (x1, 0, 0)} and W = {w =
(0, w2, w3)}. For 1/2 < α < 1 let ϕ :W→ V be defined as

ϕ(0, w2, w3) = (|w3|α, 0, 0).

Then

graph(ϕ) = {w · ϕ(w) : w ∈W} =
{(

|w3|α, w2, w3 − 1
2
w2|w3|α

)}
.

It is easy to convince oneself, looking at the sections of graph(ϕ) in Figure 2, that
graph(ϕ) is not an Euclidean graph in any neighborhood of the origin.
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Figure 1. The surface graph(ϕ) ⊂ H1 of Example 2.5 when α = 2/3
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Figure 2. Sections of graph(ϕ) for x = −.2, x = 0 and x = .2

Notice that the bounds on α yield that graph(ϕ) is a H-regular surface of H1.
For a proof of this fact see Corollary 5.11 of [1].

On the other side, no relatively open neighborhood of the origin in S := {(x, y, 0) :
x, y ∈ R} ⊂ H1 is an intrinsic graph while it is an Euclidean graph. More generally
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no C2 Euclidean hypersurface of R2n+1 ≡ Hn is an intrinsic graph in any relatively
open neighborhood of a characteristic point of the hypersurface.

A trivial but key feature of so defined graphs is their invariance with respect to
dilations and translations. That is, if S is a graph (say from W to V) then also
δλS and τpS are graphs from W to V - obviously of different functions - and it is
possible to write explicitly the analytic form of these new functions.

Proposition 2.6. Let S = {ξ · ϕ(ξ)} with ϕ : E ⊂ W → V. Then the dilated set
δλS is the graph of ϕλ : δλE ⊂W→ V, precisely

δλS = graph(ϕλ) with ϕλ := δλ ◦ ϕ ◦ δ1/λ : δλE → V.

The same statement holds interchanging V and W.

Proof. Trivial: δλS = δλ(ξ · ϕ(ξ)) = δλξ · δλ(ϕ(ξ)) = δλξ · ϕλ(δλξ). ¤
Notice that in the preceding proposition, there is no assumption on W and V.

On the contrary, for translations of graphs, we have to distinguish between graphs
on W and graphs on V. Precisely we have

Proposition 2.7. Let S = {ξ · ϕ(ξ)} be a graph and let q = qW · qV ∈ Hn. Then
the translated set τqS is again a graph. Precisely

(i) If S is a graph over W, that is ϕ : E ⊂W→ V, then τqS = {η ·ϕq(η) : η ∈
E′ := q · E · (qV)−1 ⊂W}, where

ϕq(η) = qV · ϕ(q−1
V · q−1

W · η · qV), ϕq : E′ → V;

(ii) If S is a graph over V, that is ϕ : F ⊂ V→W, then τqS = {η · ϕq(η) : η ∈
F ′ := qV · F ⊂ V}, where

ϕq(η) = η−1 · qW · η · ϕ(q−1
V · η), ϕq : F ′ →W.

Proof. First case: because W is a normal subgroup of G then E′ = qW ·qV ·E ·q−1
V ⊂

W. Then τqS = {q · ξ · ϕ(ξ) : ξ ∈W} and

q · ξ · ϕ(ξ) = qW · qV · ξ · ϕ(ξ) = qW · qV · ξ · q−1
V · qV · ϕ(ξ).

Observe that qW ·qV ·ξ ·q−1
V ∈W then set η := qW ·qV ·ξ ·q−1

V that is ξ = q−1
V ·q−1

W ·η ·qV
and the first part of the proposition follows.

Second case: τqS = {q · ξ · ϕ(ξ) : ξ ∈ V}, then, recalling Proposition 2.2,

q · ξ · ϕ(ξ) = qV ·W q · ξ · ϕ(ξ) = qV · ξ · ξ−1 ·W q · ξ · ϕ(ξ);

here qV · ξ ∈ V and ξ−1 ·W q · ξ · ϕ(ξ) ∈ W, then setting η := qV · ξ and observing
that ξ−1 ·W q · ξ = η−1 · qV ·W q · q−1

V · η = η−1 · qW · qV · q−1
V · η = η−1 · qW · η, we get

also the second part of the Proposition. ¤
Notice that if q ∈W then the formula in (i) of Proposition 2.7 becomes completely

similar to euclidean ones

ϕq(η) = ϕ(q−1 · η), ϕq : τqE → V.

Analogously if q ∈ V the formula in (ii) becomes

ϕq(η) = ϕ(q−1 · η), ϕq : τqF →W.
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Given that V and W are metric spaces, continuous functions W→ V or V→W
are defined as usual. It is then easy to see that if g : E ⊂ W → V is a continuous
function then also any translated function gq : W → V is continuous. The same
statement holds for a function g : V→W.

3. Lipschitz functions and graphs

3.1. Lipschitz graphs. As we recalled in the introduction, the implicit function
theorem proved in [11] states that if S is a low codimensional H-regular surface,
that is if S is a non critical level set of a Pansu differentiable function f : Hn → Rk,
1 ≤ k ≤ n, then, given any p ∈ S, there are r > 0, a couple of subgroups V, W
such that Hn =W ·V and a function ϕ :W→ V such that S ∩B(p, r) ⊂ graph(ϕ).
Moreover if p ≡ e ∈ S then there is L > 0 such that, ∀η in a bounded neighborhood
of e,

(6) ‖ϕ(η)‖ ≤ L ‖η‖ .

Notice that L depends only on the norm of the Pansu differential of f , on the radius
r and on the choice of the subgroups V and W.

Let p = w̄ · ϕ(w̄) be a point of an H-regular surface S, then, locally near p,
S = graph(ϕ) and the H-regular translated surface τp−1S, near e, is the graph of

ϕp−1(η) := ϕ(w̄)−1 · ϕ(w̄ · ϕ(w̄) · η · ϕ(w̄)−1)

Hence (6) holds for ϕp−1 and, for any η in a neighborhood of e in W, we have
∥∥ϕp−1(η)

∥∥ ≡
∥∥ϕ(w̄)−1 · ϕ(w̄ · ϕ(w̄) · η · ϕ(w̄)−1)

∥∥ ≤ L ‖η‖ .

Changing variables, setting w = w̄·ϕ(w̄)·η·ϕ(w̄)−1, that is η = ϕ(w̄)−1·w̄−1·w·ϕ(w̄),
it follows that, ∀w, w̄ ∈W,∥∥ϕ(w̄)−1 · ϕ(w)

∥∥ ≤ L
∥∥ϕ(w̄)−1 · (w̄−1 · w) · ϕ(w̄)

∥∥ .

This we use as a definition of intrinsically Lipschitz function:

Definition 3.1. We say that ϕ : W → V (or ϕ : V → W) is Hn-Lipschitz, if there
is L > 0 such that, ∀p ∈ graph(ϕ),

(7)
∥∥ϕp−1(x)

∥∥ ≤ L ‖x‖ , ∀x ∈ domain of ϕ.

Equivalently, recalling Proposition 2.7, we have
(i) ϕ :W→ V is Hn-Lipschitz, if ∃L > 0 such that ∀w, w′ ∈W,∥∥ϕ(w)−1 · ϕ(w′)

∥∥ ≤ L
∥∥ϕ(w)−1 · w−1 · w′ · ϕ(w)

∥∥ ;

(ii) ϕ : V→W is Hn-Lipschitz, if ∃L > 0 such that ∀v, v′ ∈ V,∥∥v′−1 · v · ϕ(v)−1 · v−1 · v′ · ϕ(v′)
∥∥ ≤ L

∥∥v−1 · v′
∥∥ .

As usual the Lipschitz constant of ϕ is the infimum of the numbers L such that (7)
holds. As usual the definitions can be localized to subsets of V or of W.

Notice that there are plenty of non trivial Hn-Lipschitz functions in Hn. Indeed,
as explained at the beginning of this section, it follows from the implicit function
theorem of [11] and the very definition of Hn-Lipschitz functions that all H-regular
surfaces, of low codimension, are locally graphs of Hn-Lipschitz functions.
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Remark 3.2. Given that V and W are metric spaces, also the usual, seemingly more
natural, definition of Lipschitz function between metric spaces is available: we say
that f :W→ V (or f : V→W) is Lipschitz if there is L > 0 such that

(8)
∥∥f(η)−1 · f(η′)

∥∥ ≤ L
∥∥η−1 · η′

∥∥ , ∀η, η′ ∈W(or V).

The following example shows firstly that the two properties of being Lipschitz or
of being Hn-Lipschitz are independent from each other and secondly that (8) is not
invariant with respect to group translation of the graph of the function.

Example 3.3. Consider the subgroups V and W of H1 ≡ R3 defined as

V = {x = (x1, 0, 0)}, W = {x = (0, x2, x3)}.
Observe that W is a normal subgroup and that H1 = W · V as in Definition 2.1.
Moreover, ∀w = (0, w2, w3) ∈ W and ∀v = (v1, 0, 0) ∈ V, ‖w‖ = max{|w2|, |w3|1/2}
and ‖v‖ = |v1|.

Let f :W→ V be defined as

f(0, w2, w3) =
(
1 + |w3|1/2, 0, 0

)
.

It is easy to check that (8) holds with L = 1. Indeed

f(w)−1 · f(w′) =
(
|w′3|1/2 − |w3|1/2, 0, 0

)

and
∥∥f(w)−1 · f(w′)

∥∥ =
∣∣∣|w′3|1/2 − |w3|1/2

∣∣∣
≤

∣∣w′3 − w3

∣∣1/2 =
∥∥w−1 · w′

∥∥ .

On the contrary, f is not Hn-Lipschitz. To see this we translate the graph of
f moving p := (1, 0, 0) ∈ graph(f) to the origin e. Following the argument in
Proposition 2.7 we see that the translated set is the graph of fp−1 : W → V and
from (i) of Proposition 2.7 we have

fp−1(w) =
(
|w2 + w3|1/2, 0, 0

)
.

Now observe that (7) should be equivalent to the inequality |w2 + w3|1/2 ≤
Lmax{|w2|, |w3|1/2} that is, in general, false. This shows also that (8) is not invari-
ant under graph translations.

On the contrary, the function ψ :W→ V defined as

ψ(w) :=
(
1 + |w3 − w2|1/2, 0, 0

)

is Hn-Lipschitz but it is not Lipschitz in the sense of (8).

We will indicate in this note that Hn-Lipschitz functions enjoy many nice prop-
erties, i.e. properties that are typical of Lipschitz functions in Euclidean spaces.
Most of these properties cannot be stated in terms of usual regularity properties as
the previous example suggests. We only state the following mild regularity theorem

Proposition 3.4. Hn-Lipschitz functions are 1
2 -Holder continuous with respect to

the Carnot Caratheodory or the d∞ distance.
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Hence, in particular, Hn-Lipschitz functions are continuous functions.
We give now a very natural equivalent definition of Hn-Lipschitz functions. As

it is true for functions between Euclidean spaces, Hn-Lipschitz functions can be
characterized in terms of existence of parallel cones non intersecting their graphs.
First we give a notion of closed cone.

Definition 3.5. Assume that Hn = B · A is the product of two subgroups B and
A, with B ∩ A = {e}. For q ∈ Hn, α > 0 we define the closed cones CB,A(q, α) with
axis A, base B, vertex q as

CB,A(q, α) := q · CB,A(e, α)

where
CB,A(e, α) := {p : ‖pB‖ ≤ α ‖pA‖} .

Clearly, CB,A(e, 0) = A. Moreover

∪α>0CB,A(e, α) = Hn \ B ∪ {e}.
If S = {x ·ϕ(x)} is the graph of ϕ :W→ V and ϕ(e) = e then it is trivial to observe
that ‖ϕ(x)‖ < L ‖x‖ if and only if CW,V(e, α) ∩ S = {e} for all α, 0 ≤ α < 1/L. In
general we have

Proposition 3.6. A function ϕ : W → V is Hn-Lipschitz, with Lipschitz constant
≤ L, if and only if ∀q ∈ graph(ϕ) and ∀α : 0 ≤ α < 1/L,

CW,V(q, α) ∩ graph(ϕ) = {q}.
Proof. Indeed, if q ∈ graph(ϕ), CW,V(e, α) ∩ graph(ϕq−1) = {e}, hence {q} =
τq(CW,V(e, α) ∩ graph(ϕq−1)) = τq(CW,V(e, α) ∩ τq−1graph(ϕ)) = CW,V(q, α) ∩
graph(ϕ). ¤

See the following picture.

Figure 3. The graph of a H1-Lipschitz function W→ V and a cone CW,V(e, α)
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3.2. Difference quotients and directional derivatives. Another characteriza-
tion of Hn-Lipschitz functions can be given in terms of boundedness of their dif-
ference quotients. Let us begin defining a notion of translation invariant difference
quotient.

Definition 3.7. Let Hn =W · V. If f :W→ V, w ∈W, p := w · f(w) ∈ graph(f),
the Hn-difference quotient of f , at w along the direction Y ∈ w, is

∆Y f(w; t) = ∆Y fp−1(e; t) = δ1/t

(
fp−1(exp tY )

)
.

Simmetrically, if g : V→W and V ∈ v, q := v · g(v) the Hn-difference quotient is

∆V g(v; t) = ∆V gq−1(e; t) = δ1/t

(
gq−1(exp tV )

)
.

More explicitly, from Proposition 2.7 we obtain that, for f :W→ V,

(9) ∆Y f(w; t) = δ1/t

(
f(w)−1 · f(w · f(w) · exp tY · f(w)−1)

)
,

and for g : V→W

(10) ∆V g(v; t) = δ1/t

(
exp tV −1 · g(v)−1 · exp tV · g(v · exp tV )

)
.

Definition 3.8. Let Hn =W · V. The directional derivative DY f(x) is defined as

(11) DY f(x) := lim
t→0

∆Y f(x; t).

Notice that f(x) = e implies ∆Y f(x; t) := δ1/t (f(x · exp tY )) . Observe that if
DY f(x) exists then, ∀λ > 0,

DλY f(x) = lim
t→0

δ1/t∆λY f(x; t)

= δλ lim
t→0

δ1/λt∆Y f(x;λt) = δλDY f(x).

Clearly, directional derivatives are translation invariant; that is if p = x · f(x),

(12) DY f(x) = DY fp−1(e).

Next Proposition gives a characterization of Hn-Lipschitz functions in terms of the
boundedness of their difference quotients along horizontal directions. We would
like to stress that, notwithstanding the similarity of this statement with, e.g. the
one characterizing Lipschitz functions Hn → R in terms of the Lipschitzianity along
horizontal directions of Hn, this statement is a quite different one. Indeed in general
W is not a Carnot group because its Lie algebra is not generated by the horizontal
layer. Think, once more to the example of H1 = W · V, with W = {(0, x2, x3)}
and V = {(x1, 0, 0)}. Then w ∩ h1 - i.e. the horizontal subspace of the Lie algebra
w of W - is 1-dimensional and it is generated by the vector field Y1 = ∂x2 + 1

2∂x3

only. We state that, for f : W → V, the boundedness just of ∆Y1f ensures that f
is H-Lipschitz. For a proof see [12].

Proposition 3.9. Let Hn =W · V.
(i) If f :W→ V is Hn-Lipschitz with Lipschitz constant L then,

‖∆Y f(x; t)‖ ≤ L ‖expY ‖ , ∀Y ∈ w.

The analogous statement holds if f : V→W, with Y ∈ v.
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(ii) If f :W→ V and

‖∆Y f(x; t)‖ ≤ L ‖expY ‖ , ∀Y ∈ h1 ∩w,

then f is Hn-Lipschitz with Lipschitz constant C = C(L,V,W).

3.3. Surface measure of Lipschitz graphs. In this section we prove that the
graph of a Hn-Lipschitz function f has the same metric dimension as the domain of
f and that, if s is this metric dimension, Hs (graph(f) ∩ U) < ∞, for any bounded
U ⊂ Hn.

An interesting, non trivial, corollary of the previous estimate is that
1-codimensional Hn-Lipschitz graphs are boundaries of sets of locally finite Hn-
perimeter.

Remember that upper and lower bounds on the Hausdorff measure of a Lipschitz
graph are trivially true in Euclidean spaces. Indeed if f : Rk → Rn−k is Lipschitz
then the map Φ : Rk → Rn defined as Φ(x) := (x, f(x)) is a Lipschitz parametriza-
tion of the Euclidean graph of f and this gives the upper bound; on the other side
the projection Rn ≡ Rk × Rn−k → Rk is 1 Lipschitz yielding the lower bound.

Such a proof cannot work here because, from one side, projections Hn → W,
sending p 7→ pW, are not Lipschitz continuous; on the other side, even if f :W→ V
is very regular – see Example 3.10 – the ‘natural’ parametrization of graph(f) given
by

Φ : W→ graph(f) ⊂ Hn, Φ(w) = w · f(w)

is not a Lipschitz map between metric spaces..

Example 3.10. Consider once more the subgroups V and W of H1 ≡ R3 defined
as

V = {x = (x1, 0, 0)}, W = {x = (0, x2, x3)}
and let f : W → V be the constant map f(w) = (1, 0, 0) ∈ V. Then graph(f) is a
vertical plane in R3 parallel to W. The parametrization Φ acts as

Φ(w) = (1, w2, w3 +
1
2
w2).

Then Φ(e) = (1, 0, 0) and, if w̄ = (0, ε, 0) ∈W, Φ(w̄) = (1, ε, ε
2). It is easy to check

that
∥∥Φ(e)−1 · Φ(w̄)

∥∥ is comparable with ε1/2 while ‖w̄‖ is comparable with ε.

Remark 3.11. The situation is completely different for maps V→W. Indeed, when
f : V→W is Hn-Lipschitz, the map

Φ : V→ Hn, v 7→ Φ(v) := v · f(v),

is a Lipschitz map between the metric spaces V and Hn. Indeed, if v, v̄ ∈ V, using
(ii) of Definition 3.1, we have

∥∥f(v)−1 · v−1 · v̄ · f(v̄)
∥∥ =

∥∥v−1 · v̄ · v̄−1 · v · f(v)−1 · v−1 · v̄ · f(v̄)
∥∥

≤ ∥∥v−1 · v̄∥∥ +
∥∥v̄−1 · v · f(v)−1 · v−1 · v̄ · f(v̄)

∥∥
≤ (1 + L)

∥∥v−1 · v̄
∥∥ .
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Remark 3.12. It is a, certainly non trivial, open problem to understand if a different
Lipschitz continuous parameterization exists. About this, in [18] it has been proved
that, if the surface S is somehow more regular than just Lipschitz, then such a
parametrization exists. On the contrary, D.Vittone has provided us an example
(see [2]) showing that in general bilipschitz parametrizations may not exist.

Theorem 3.13. Assume that Hn =W·V as in Definition 2.1, and let k, 1 ≤ k ≤ n,
be the dimension of V. If f : W → V is a Hn-Lipschitz function with Lipschitz
constant L, then graph(f) has metric dimension 2n+2−k and there is a geometric
constant c = c(V,W) > 0 such that

(13) H2n+2−k (graph(f) ∩B(p,R)) ≤ c(1 + L)2n+2−kR2n+2−k.

Simmetrically, if f : V→W then graph(f) has metric dimension k and

(14) Hk (graph(f) ∩B(p,R)) ≤ c(1 + L)kRk.

Proof. The proof follows the same pattern as the Euclidean one when dealing with
functions f : V→W. Indeed, as observed in Example 3.10 in this case the natural
parametrization Φ of graph(f) is Lipschitz and also the projection Hn → V is a
Lipschitz map.

We consider now the only interesting case, that of functions W→ V.
The lower bound forH2n+2−k (graph(f)) is a consequence of the following Lemma

proved in [20]

Lemma 3.14. There is C = C(V,W) > 0 such that, ∀A ⊂ Hn

L2n+1−k(Π(A)) = H2n+2−k(Π(A)) ≤ S2n+2−k(A),

where Π : Hn → W is the ‘projection on the first component’ i.e. if p = pW · pV
then Πp := pW.

To get the upper bound, fix p ∈ graph(f) and R > 0, it is enough to prove that
it is possible to cover graph(f) ∩ B(p,R) with less than N := c

(
1
ε

)2n+2−k metric
balls of radius less than ε. Here c will depend on R, W, V and L.

Without loss of generality, we can assume that p = e. Let E := {w ∈ W :
w · f(w) ∈ B(e,R)}. From (1), it follows E ⊂ {w : ‖w‖ ≤ R/c}.

Fix ε, 0 < ε < 1. Using a Vitali covering argument choose a covering of graph(f)∩
B(e,R) with metric balls B(pi, 5ε), pi = w̄i · f(w̄i) ∈ graph(f), such that the
concentric smaller balls Bi := B(pi, ε) are pairwise disjointed. We estimate the
number N of balls Bi in this Vitali covering.

Define Ei ⊂ E as Ei := {w ∈ W : w · f(w) ∈ graph(f) ∩ Bi}. Clearly the sets
Ei are pairwise disjointed. To get the necessary estimate of N we get an estimate
from below of L2n+1−k(Ei).

For each Ei consider the group translation τp−1
i

that moves the point pi to the

origin e. Let Ẽi := {w : w ·fp−1
i

(w) ∈ B(e, ε)}. Remember that fp−1
i

is Hn-Lipschitz

with the same constant L of f , that fp−1
i

(e) = e hence
∥∥∥fp−1

i
(w)

∥∥∥ ≤ L ‖w‖ and
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∥∥∥w · fp−1
i

(w)
∥∥∥ ≤ (1 + L) ‖w‖. Hence

W ∩B

(
e,

ε

1 + L

)
⊂ Ẽi,

and, from (3) , it follows

L2n+1−k(Ẽi)

≥ L2n+1−k

(
W ∩B

(
e,

ε

1 + L

))
= 2ω2n−k

(
ε

1 + L

)2n+2−k

.

Recalling (i) of Proposition 2.7, we have that Ẽi = p−1
i · Ei · f(w̄i), that is

Ẽi = {f(w̄i)−1 · w̄−1
i · w · f(w̄i) : w ∈ Ei}.

It is easy to check, by a straightforward computation, that any map χ : W ≡
R2n+1−k →W ≡ R2n+1−k, given by

w 7→ χ(w) := v̄−1 · w̄−1 · w · v̄,

has Jacobian determinant equal to 1. Hence

L2n+1−k(Ei) = L2n+1−k(Ẽi) ≥ 2ω2n−k

(
ε

1 + L

)2n+2−k

.

Since all the Ei are disjointed and contained in B(e, (R + 1)/c) we get

N ≤
(

(1 + L)
R

c

)2n+2−k (
1
ε

)2n+2−k

.

When dealing with f : V → W the thesis follows from well known results on the
scaling of Hausdorff measures under Lipschitz maps (see e.g.([6]) or ([16])). ¤

Assume now that Hn =W ·V with dimV = 1. Notice that it follows the existence
of Y ∈ h1 such that V = {exp tY : t ∈ R}. Hence it is defined a real valued function
t : Hn → R such that

p = pW · exp (t(p)Y ) , ∀p ∈ Hn.

Then, given f : W → V it is possible to define the subgraph of f as the set E(f)
such that

E(f) := {p ∈ Hn : t(p) ≤ t(f(pW))} .

Then the following theorem holds

Theorem 3.15. Assume Hn =W ·V with dimV = 1. If f :W→ V is Hn-Lipschitz
and E(f) ⊂ Hn is the subgraph of f then E(f) is a set with locally finite perimeter.

Proof. The graph of f is the essential boundary of the subgraph. The result then
follows from Theorem 3.13 and the characterization of finite perimeter sets proved
in [20]. ¤
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3.4. Rectifiable sets. We recall the definition of H-rectifiable sets given in [11].

Definition 3.16. Let 1 ≤ k ≤ n and assume that M ⊂ Hn is such that

M ⊂ M0 ∪
(

+∞∪
j=1

Sj

)
.

We say that M is
k-dimensional H-rectifiable if Sk(M ∩ U) < ∞ for any bounded U ⊂ Hn,

Sk(M0) = 0 and Sj are k-dimensional H-regular surfaces;
k-codimensional H-rectifiable if S2n+2−k(M ∩U) < ∞ for any bounded U ⊂ Hn,

S2n+2−k(M0) = 0, Sj are k-codimensional H-regular surfaces.

We can give a, possibly, more general definition using the notion of Hn-Lipschitz
graphs.

Definition 3.17. Let 1 ≤ k ≤ n and assume that E ⊂ Hn is such that

E ⊂ E0 ∪
(
∞∪
i=1

graph(fi)
)

.

We say that E is
k-dimensional H-rectifiable if Hk(E ∩ U) < ∞ for any bounded U ⊂ Hn,

Hk(E0) = 0, fi : Ai ⊂ Vi →Wi are H-Lipschitz and dim(Vi) = k;
k-codimensional H-rectifiable if H2n+2−k(E ∩U) < ∞ for any bounded U ⊂ Hn,

H2n+2−k(E0) = 0, fi : Ai ⊂Wi → Vi are H-Lipschitz, dim(Vi) = k.

Since H-regular surfaces are locally graphs of Hn-Lipschitz functions it follows
that the scope of the second definition is larger than the first one. The equivalence
of the two definitions should depend on a Rademacher type theorem in the context
of Hn-Lipschitz functions.

4. Intrinsic Differentiable Functions

Assume that Hn =W·V as in Definition 2.1. We suggest here a possible definition
of intrinsic differentiability for functions f : W → V (or f : V → W). We look for
a definition that is invariant with respect to translations and dilations of graph(f)
in Hn, that is strictly related with the notion of Hn-Lipschitz functions and that
mimics Pansu definition of P-differentiability for functions between Carnot groups.

We recall the definition of P-differentiability: let f : G1 → G2, with G1 and G2

Carnot groups. We say that f is P-differentiable in g ∈ G1 if there is an H-linear
map L : G1 → G2, such that, ∀g′ ∈ G1,

∥∥L(g−1 · g′)−1 · f(g)−1 · f(g′)
∥∥
G2

= o(
∥∥g−1 · g′

∥∥
G1

),

where o(t)/t → 0 as t → 0+.
We first need a substitute notion for H-linear maps: these will be maps such

that their graph is a homogeneous subgroup of Hn and such that the map from the
domain to the graph is an homomorphism in an appropriate sense.

Definition 4.1. We say that



INTRINSIC LIPSCHITZ GRAPHS IN HEISENBERG GROUPS 439

(i): L : V→W is a Hn-linear map when, ∀v, v′ ∈ V and ∀λ > 0,

L(δλv) = δλ(Lv)

L(v · v′) = (v′)−1 · Lv · v′ · Lv′.

(ii): L :W→ V is a Hn-linear map when ∀w, w′ ∈W and ∀λ > 0,

L(δλw) = δλ(Lw)

L(w · w′) = L(w) · L(w′).

Notice that Hn-linear maps W→ V are precisely H-linear maps W→ V. On the
contrary the two notions are different for maps V→W.

Example 4.2. Consider the subgroups of H1: V={(x1, 0, 0)} andW={(0, x2, x3)};
the map

L : V→W defined as: L(x, 0, 0) := (0, x, 0)
is an H-linear map V→W but it is not Hn-linear because graph(L) = {(x, x, x2/2)}
is not a subgroup. Conversely, the map

L : V→W defined as: L(x, 0, 0) := (0, x,−x2/2)

is Hn-linear but it is not H-linear.

Proposition 4.3. Assume Hn =W · V as in Definition 2.1.
(i): If L : V → W is Hn-linear then graph(L) is a homogeneous subgroup of Hn

and the map ΦL defined as ΦL(v) := v ·L(v) is a homogeneous homomorphism (i.e.
a H-linear map) V→ graph(L).

(ii): If L : W→ V is Hn-linear then graph(L) is a homogeneous subgroup of Hn

and the map ΦL :W→ graph(L) defined as ΦL(w) := w · L(w) satisfies

ΦL(δλw) = δλ(ΦL(w))

ΦL(w · w′) = ΦL(w) · ΦL((Lw)−1 · w′ · Lw).

Now if f acts between subgroups of Hn, we define differentiability of f in the
usual way in the points where f vanishes and we extend the definition everywhere
making it invariant by graph translation. Precisely, if f :W→ V (or f : V→W) is
such that f(e) = e we say that f is Hn-differentiable in e when there is a Hn-linear
map dfe :W→ V, such that∥∥dfe(ξ)−1 · f(ξ)

∥∥ = o(‖ξ‖) as ‖ξ‖ → 0,

and, setting p := w · f(w), we say that f is Hn-differentiable in w ∈ W if fp−1 is
Hn-differentiable in e, that is, if there is a Hn-linear map dfw :W→ V, such that∥∥dfw(ξ)−1 · fp−1(ξ)

∥∥ = o(‖ξ‖) as ‖ξ‖ → 0.

Finally, writing explicitly the expression of fp−1 , we give the definition as follows

Definition 4.4. Assume Hn =W · V as in definition 2.1.
(i): let f : W → V; we say that f is H-differentiable in w ∈ W if there is a

H-linear map dfw :W→ V such that
∥∥dfw(ξ)−1 · f(w)−1 · f(w · f(w) · ξ · f(w)−1)

∥∥ = o(‖ξ‖)(15)

as ‖ξ‖ → 0.
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(ii): let f : V → W; we say that f is H-differentiable in v ∈ V if there is a
H-linear map dfv : V→W such that

∥∥dfv(η)−1 · η−1 · f(v)−1 · η · f(v · η)
∥∥ = o(‖η‖)(16)

as ‖η‖ → 0.

We limit ourselves now in quoting a couple of elementary properties of H-
differentials.

Definition 4.5. Assume that S := {x · f(x) : x ∈ A}, where A is an open neigh-
borhood of e in W. We say that a subgroup T of Hn is the regular tangent group of
S at e if there is another subgroup N, such that T ∩ N = {e} and Hn = T · N, and
if, for all α > 0, there is λ > 0 such that

CT,N(e, α) ∩ δλS ∩B(e, 1) = {e}.
More generally we say that T is the regular tangent group of S at p ∈ S if T is the
regular tangent plane of τp−1S at e.

Proposition 4.6. If f :W→ V is Hn-differentiable in x with differential dfx, then
T := graph(dfx) is the regular tangent group of S at p = x · f(x).

Proposition 4.7. Let f : W → V. Assume that f is Hn-differentiable and Y ∈
w ∩ h1, then the directional derivative DY f(x) exists and

(17) DY f(x) = dfx(expY ).
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