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QUASILINEAR ELLIPTIC EQUATIONS WITH NATURAL
GROWTH TERMS: THE REGULARIZING EFFECT OF THE

LOWER ORDER TERMS

LUCIO BOCCARDO

Abstract. This work contains a survey of some results on regularizing proper-
ties of the lower order terms in nonlinear Dirichlet and a contribution on the same
subjet (not previously published), presented in my lecture at “Recent Advances
in Partial Differential Equations”, Messina, December 2005.

“Noi navigammo dentro lo Stretto, gemendo:
da una parte c’era Scilla

e dall’altra la divina Cariddi”

1. A survey on the regularizing effect of the lower order terms.

We begin with a quick survey of some results on regularizing properties of the
lower order terms in nonlinear Dirichlet problems in Ω, bounded, open subset of
RN , with N > 2.

1.1. Semilinear equations. The solution u of the simple semilinear boundary
value problem in L2(Ω)

(1.1)
{−∆u + |u|r−1u = f(x) in Ω,

u = 0 on ∂Ω,

where f ∈ Lm(Ω), m ≥ 2 and r > 1, belongs to Lmr(Ω). Thus the summability of
the solutions increases as the power of the lower order term increases: for r very
large u is “almost bounded”. Furthermore, we repeat here a result of [15], written
in the following model case. Consider the Dirichlet problems

ur ∈ W 1,2
0 (Ω) : −∆ur + |ur|r−1ur = f(x) ∈ L2(Ω).

As r → +∞, the sequence {ur} converges in W 1,2
0 (Ω) to a bounded function u,

solution of the bilateral problem with operator −∆ and datum f on the convex set

K = {v ∈ W 1,2
0 (Ω) : |v| ≤ 1 in Ω}.

In L1, the study of semilinear elliptic problems was initiated by H. Brezis and
W. Strauss ([21], see also [3], [30]).

Then, in [13], is proved (for general elliptic operators with nonlinear principal
part) that if f ∈ L1(Ω), then the solution u of (1.1) belongs to Lr(Ω) and ∇u
belongs to Lq(Ω), q < 2r

r+1 . Remark that 2r
r+1 < 2 and 2r

r+1 → 2 (as r → +∞) and
that also the summability of ∇u depends (increasing) on r and, in [23], is proved
that if f ∈ Lm(Ω), 1+ 1

p < m < 2N
N+2 , then the solution u of (1.1) have finite energy.
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We recall the results of [7] in the following simple framework

(1.2)
{−∆u + h(u) = f(x) in Ω,

u = 0 on ∂Ω,

where 0 ≤ f ∈ L1(Ω) and h(s) : [0, σ) 7→ R+ is a continuous, increasing real
function such that (vertical asymptote)

lim
s→σ−

h(s) = +∞.

There exists a bounded, weak solution u of of the above boundary value problem.
Moreover |u| ≤ σ, and the measure of the set {x : u(x) = σ} is zero.

The common point of the above existence results is: more growth in the lower
order term gives more summability (until boundedness) of the solutions, even if the
right hand side only belongs to L1(Ω). Other contributions to the study of elliptic
equations with vertical asymptotes in the nonlinear term can be found in [24], [26].

The case where the right hand side is a measure turns out different than one might
expect. It was observed by Ph. Bénilan and H. Brezis (see [2]) that, if N ≥ 3,

{−∆u + |u|r−1u = µ in Ω,
u = 0 on ∂Ω,

has no solution when r ≥ N
N−2 and µ = δa (with a ∈ Ω) and has a solution for any

measure µ, if r < N
N−2 .

In [7] it is proved also a nonexistence theorem for the problem (1.2) if f = δa.

1.2. Quasilinear equations. Simple examples of functionals defined by multiple
integrals in the Calculus of Variations as

I(v) =
1
2

∫

Ω

a(x, v)|∇v|2 −
∫

Ω

f(x)v(x), v ∈ W 1,2
0 (Ω),

with 0 < α ≤ a(x, s) ≤ β, |a′s(x, s)| ≤ ν, give models of Dirichlet problems with
lower order terms with natural growth (that is, lower order terms with quadratic
dependence with respect to the gradient) since




〈I ′(u), φ〉 =

∫

Ω

a(x, u)∇u∇φ +
1
2

∫

Ω

a′s(x, u)|∇u|2φ−
∫

Ω

fφ,

∀φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

Moreover the differential operator I ′(v) is not pseudomonotone in the sense of H.
Brezis ([18]), since the lower order term maps W 1,2

0 (Ω) only to L1(Ω) and not to the
dual of W 1,2

0 (Ω). For existence of weak solutions of Dirichlet problems (1.3) with
lower order terms with quadratic dependence with respect to the gradient, also not
variational as (1.3), see [17] (bounded solutions), [6] (unbounded solutions) and the
references therein.

Consider the boundary value problem

(1.3)
{−div(a(x, u)∇u) + g(x, u)|∇u|2 = f(x) in Ω,

u = 0 on ∂Ω,
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under the assumptions: there exist α ∈ R+, d(x) ∈ L1(Ω) and β(s), ν(s) continuous
and increasing real functions such that

f ∈ L2(Ω),(1.4)

0 < α ≤ a(x, s) ≤ β(s),(1.5)

|g(x, s)| ≤ d(x)ν(s)(1.6)

and

(1.7) g(x, s)s ≥ 0.

An example is given by the Euler-Lagrange equation of the functional
1
2

∫

Ω

(1 + |v|m)|∇v|2 −
∫

Ω

fv.

The assumption (1.7), introduced in [19] for semilinear problems (that is, the lower
order term does not depend on the gradient) and in [16] for quasilinear problems, is
the key point in the study of the existence of unbounded solutions in W 1,2

0 (Ω) (see
[16], [4], [5], [6], [28]).

The theorem proved in [10] shows that the existence of finite energy weak solutions
of (1.3) can be proved only with the weaker assumption f ∈ L1(Ω), thanks to the
presence of the order term with quadratic dependence with respect to the gradient
and (1.7). This result is somewhat surprising because it is not true in the linear
case!

In [12] is studied the boundary value problem
{−∆u + u|∇u|2 = µ in Ω,

u = 0 on ∂Ω,

There exists a solution u in W 1,2
0 (Ω) for the previous problem if and only the measure

µ does not charge the sets of capacity zero in Ω. Moreover if we consider a sequence
{un} of solutions with L∞(Ω) data µn converging to a nonzero measure which is
singular with respect to the capacity (such as, for example, a Dirac mass), then un

converges to zero as n tends to infinity. This nonexistence result is closely related
to the work of H. Brezis and L. Nirenberg (see [20]), where (as a particular case of
more general results) it is proved that if µ is a bounded L∞(Ω) function, and u is
a smooth solution in Ω \K, with K a closed set of zero capacity, then u is smooth
in the whole of Ω; that is to say, u cannot be singular on sets of zero capacity.

Other results concerning the regularizing effect of lower order terms can be found
in [26] (bounded solutions) and in [27] (extra summability of solutions).

Once more, the case where the right hand side is a general measure is different
than the case where the right hand side is a summable function (or a measure abso-
lutely continuous with repect to the capacity) since there may even be nonexistence
of solutions instead of a regularizing effect (see [12], [7]).

2. New results

2.1. Degenerate coercivity: existence and nonexistence. In the papers [9],
[8], [1] [25] existence and regularity results for the following elliptic problem (with
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degenerate coercivity) are studied:

(2.1)
{−div(M(x, u)∇u) = f in Ω,

u = 0 on ∂Ω,

where M(x, s) : Ω × R → R is a Caratheodory function (that is, measurable with
respect to x for every s ∈ R, and continuous with respect to s for almost every
x ∈ Ω) satisfying the following condition:

(2.2)
α

(1 + |s|)θ
≤ M(x, s) ≤ β ,

for some real number θ such that

(2.3) 0 ≤ θ ≤ 1 ,

for almost every x ∈ Ω, for every s ∈ R, where α and β are positive constants. The
datum f belongs to Lm(Ω), for some m ≥ 1.

The main difficulty in dealing with problem (2.1) is the fact that, because of
assumption (2.2), the differential operator A(v) = −div(a(x, v)∇v), even if it is
well defined between W 1,2

0 (Ω) and its dual W−1,2(Ω), is not coercive on W 1,2
0 (Ω),

since when v is large, 1/(1 + |v|)θ goes to zero.
In [1] also a nonexistence theorem is proved. Here we repeat his statement in a

particular case.
Consider the example uλ of the problem

(2.4)




−div

( ∇uλ

(1 + |uλ|)γ

)
= λ ∈ R+ in Ω,

uλ = 0 on ∂Ω.

Defining (uλ is positive),

zλ =
1− (1 + uλ)1−γ

γ − 1
,

one has that zλ is a solution of{−∆zλ = λ in Ω,
zλ = 0 on ∂Ω.

Since the Laplacian is linear, then zλ = λ z1, where z1 is the unique solution of the
problem {−∆z1 = 1 in Ω,

z1 = 0 on ∂Ω.
Since z1 is radially symmetric, it can be explicitly calculated, and one has

z1(ρ) =
1

2N
(1− ρ2) , (ρ = |x|)

so that zλ(ρ) = λ z1(ρ) = λ
2N (1 − ρ2). By definition, zλ ≤ 1

γ−1 , so that one can
recover an “actual” solution uλ starting from zλ if and only if the maximum of zλ

is strictly smaller than 1
γ−1 . Since

max
B(0,1)

zλ(ρ) = zλ(0) =
λ

2N
,
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this can be done if and only if λ < 2N
γ−1 . Define λ∗ = 2N

γ−1 . For λ = λ∗ one has

zλ∗(ρ) =
1

γ − 1
(1− ρ2) ,

which implies

uλ∗(ρ) =
1

ρ
2

γ−1

− 1 .

Note that uλ∗ is not in L∞(Ω), and that it belongs to W 1,2
0 (Ω) if and only if γ > N+2

N−2 .
Moreover, a rather “bizarre” fact happens: the regularity of uλ∗ increases as γ
increases, and this is contradiction with the properties of the solutions in the case
γ < 1.

Observe also that if we consider as solutions of (2.4) the solutions given starting
from zλ also in the case λ > λ∗, one has

uλ(ρ) =





(
1− λ(γ − 1)

2N
(1− ρ2)

) 1
1−γ − 1, if ρλ < ρ ≤ 1

+∞, if 0 ≤ ρ ≤ ρλ

where

ρλ =

√
λ(γ − 1)− 2N

λ(γ − 1)
,

so that uλ is equal to +∞ on a set of positive Lebesgue measure.
Hence the degenerate coercivity of the differential operator gives solutions even

less regular (or no solutions at all) than solutions of Dirichlet problems with singular
right hand side.

2.2. Degenerate coercivity: the regularizing effect of the lower order
terms depending on the gradient. In this section, we present a theorem (ob-
tained in collaboration with Tommaso Leonori and Francesco Petitta) concerning
existence of weak solutions for the Dirichlet problem

(2.5) u ∈ W 1,2
0 (Ω) : −div(a(x, u,∇u)) + g(x, u,∇u) = f(x).

Here A(v) =−div(a(x, v,∇v)) is a differential operator from W 1,2
0 (Ω) into W−1,2(Ω)

and g(x, v,∇v) is a nonlinearity with natural growth and which satisfies a sign
condition.

More in details we assume that a(x, s, ξ) : Ω × R × RN → RN and g(x, s, ξ) :
Ω×R×RN → R are Caratheodory functions. Moreover we assume that there exist
d(x) ∈ L1(Ω), α, β, γ, σ, µ > 0, and b(s), continuous and increasing real function,
such that for almost every x ∈ Ω and for all s ∈ R, ξ ∈ RN

a(x, s, ξ) · ξ ≥ α

(1 + |s|)γ
|ξ|2 ,(2.6)

|a(x, s, ξ)| ≤ β |ξ|(2.7)

and (see [10])

(2.8)





0 ≤ g(x, s, ξ)s,
µ|ξ|2 ≤ |g(x, s, ξ)|, ∀ |s| ≥ σ,

|g(x, s, ξ)| ≤ b(|s|)d(x)|ξ|2.
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Finally, on the datum, we assume

(2.9) f ∈ L1(Ω).

It is possible to prove the following existence theorem:

Theorem 2.1. Under the assumptions (2.6), (2.7), (2.8), (2.9), there exists at
least one solution of (2.5) in the following weak sense

(2.10)





u ∈ W 1,2
0 (Ω), g(x, u,∇u) ∈ L1(Ω) :∫

Ω

a(x, u,∇u)∇φ +
∫

Ω

g(x, u,∇u)φ =
∫

Ω

fφ,

∀φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

Sketch of the proof. Consider the sequence of approximate equations

(2.11) un ∈ W 1,2
0 (Ω) : −div a(x, Tn(un),∇un) + g(x, un,∇un) = fn,

where fn is a sequence of smooth functions which converges strongly to f in L1(Ω)
and such that ‖fn‖

1
≤ ‖f‖

L1(Ω)
, Tk(v), k ∈ R+, is the usual truncation in W 1,2

0 (Ω)
defined by

Tk(s) =





−k if s ≤ −k,

s if − k < s < k,

k if s ≥ k

-

6

�
�
�
�
�
�

−k

k

k

−k

s

Tk(s)

and Gk(s) = s− Tk(s).
Since g(x, s, ξ)s ≥ 0, there exists at least one solution un ( [16], [4]) and un

belongs to L∞(Ω) ([29]).
We will follow the approach of [10] and we will use some techniques of [11], [16],

[4].
In (2.11), the use of the test function Tk(un) yields for any k > 0

α

∫

Ω

∇un

(1 + |un|)γ
∇Tk(un) +

∫

Ω

g(x, un,∇un)Tk(un) ≤
∫

Ω

fnTk(un)

which implies, for k ≥ σ,

α

(1 + k)γ

∫

Ω

|∇Tk(un)|2 + µσ

∫

{|un|>k}

|∇un|2 ≤ k‖f‖
L1(Ω)
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and so ∫

Ω

|∇un|2 ≤ Cα,σ‖f‖
L1(Ω)

.

Therefore there exist u ∈ W 1,2
0 (Ω) and a subsequence (still denoted by un) such

that un ⇀ u weakly in W 1,2
0 (Ω), and almost everywhere.

So we know that for any fixed k ∈ R+

Tk(un) ⇀ Tk(u) weakly in W 1,2
0 (Ω).

We shall use in (2.11) ϕ[Tk(un) − Tk(u)] as test function, with ϕ(s) = (eλ|s| −
1)sgn(s) The use of the test function ϕ(un) is one of the main tools in the existence
proof of [16], [17].

Since ϕ[Tk(un) − Tk(u)] converges to zero weakly in W 1,2
0 (Ω) and ∗-weakly in

L∞(Ω) we have

(2.12)
∫

Ω

fnϕ[Tk(un)− Tk(u)] → 0.

Thus we get

(2.13) 〈A(un), ϕ[Tk(un)− Tk(u)]〉+
∫

Ω

g(x, un,∇un)ϕ[Tk(un)− Tk(u)] → 0.

The main step of the proof is that (2.13) implies

(2.14) Tk(un) → Tk(u) strongly in W 1,2
0 (Ω).

The strong convergence (2.14) yields

(2.15) ∇un → ∇u in measure.

Now we do not use the classical method (see [16], [4], [10]) of using the Vitali
Theorem, in order to prove that g(x, un,∇un) converges in L1(Ω). We follow an
other Measure Theory approach due to F. Cavalletti ([22]).

Fix ε > 0. Let k0 ∈ R+ such that
∫

{|un|>k0}
|fn(x)| < ε (uniformly with respect to

n); let n1 ∈ N such that, for n > n1,
∫

Ω

|g(x, Tk0(un),∇Tk0(un))− g(x, Tk0(u),∇Tk0(u))| < ε

Moreover, for δ > 0, the use of ψδ,k(un), where

ψδ,k(s) =





0 if 0 ≤ s < k
s− k

δ
if k ≤ s < k + δ,

1 if s ≥ k + δ

ψδ,k(−s) = −ψδ,k(s)
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as test function in (2.11) yields
∫

Ω

g(x, un,∇un)ψδ,k(un) ≤
∫

Ω

fnψδ,k(un)

which implies, as δ → 0,
∫

{|un|≥k}

|g(x, un,∇un)| ≤
∫

{|un|≥k}

|fn|

and, for k ≥ σ

µ

∫

{|un|≥σ}

|∇un|2 ≤
∫

{|un|≥σ}

|fn|.

Set gn = g(x, un,∇un) and g0 = g(x, u,∇u). Then, for n > n1, we have
∫

Ω

|g(x, un,∇un)− g(x, u,∇u)|

=
∫

{|gn−g0|≤ε}

|gn − g0|+
∫

{|gn−g0|>ε}

|gn|+
∫

{|gn−g0|>ε}

|g0|

≤ ε|Ω|+
∫

{|gn−g0|>ε}∩{|un|≤k0}

|gn|+
∫

{|un|>k0}

|gn|+
∫

{|gn−g0|>ε}

|g0|

≤ ε|Ω|+
∫

{|gn−g0|>ε}

|g(x, Tk0(un),∇Tk0(un))|+
∫

{|un|>k0}

|fn|+
∫

{|gn−g0|>ε}

|g0|

≤ ε|Ω|+
∫

Ω

|g(x, Tk0(un),∇Tk0(un))− g(x, Tk0(u),∇Tk0(u))|

+
∫

{|gn−g0|>ε}

|g(x, Tk0(u),∇Tk0(u))|+
∫

{|un|>k0}

|fn|+
∫

{|gn−g0|>ε}

|g0|

≤ ε|Ω|+ ε +
∫

{|gn−g0|>ε}

|g(x, Tk0(u),∇Tk0(u))|+ ε +
∫

{|gn−g0|>ε}

|g0|

Since gn converges to g0 in measure, meas{x ∈ Ω : |gn − g0| > ε} → 0. Moreover g0

and g(x, Tk0(u),∇Tk0(u)) belong to L1(Ω): the absolute continuity of the Lebesgue
integral yields

lim
n

∫

{|gn−g0|>ε}

|g(x, Tk0(u),∇Tk0(u))| = 0, lim
n

∫

{|gn−g0|>ε}

|g0| = 0

Thus we have

(2.16) g(x, un,∇un) → g(x, u,∇u) strongly in L1(Ω).
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Again fix ε > 0 and let k0 ∈ R+ such that
∫

{|un|>k0}
|fn(x)| < ε (uniformly with

respect to n); let n2 ∈ N such that, for n > n2∫

Ω

|∇Tk(un)−∇Tk(u)|2 ≤ ε.

Using that ∇u ∈ L2(Ω) and the absolute continuity of the Lebesgue integral, then
(k > k0, k > σ, n > n1, n > n2)∫

Ω

|∇un −∇u|2 ≤ 2
∫

Ω

|∇Tk(un)−∇Tk(u)|2 + 4
∫

Ω

|∇Gk(un)|2 + 4
∫

Ω

|∇Gk(u)|2

≤ 2ε + 4
ε

µ
+ 4ε

which proves that

(2.17) un → u strongly in W 1,2
0 (Ω).

This convergence result and (2.7) imply

(2.18) a(x, Tn(un),∇un) → a(x, u,∇u) strongly in L2(Ω).

Use now φ as test function in (2.11)∫

Ω

a(x, Tn(un),∇un)∇φ +
∫

Ω

g(x, un,∇un)φ =
∫

Ω

fnφ

and recall (2.18), (2.16). Then it is possible to pass to the limit in and we obtain
that u is a solution of (2.5) in the sense of (2.10). ¤

Now we present two examples concerning the problem (2.5).

Example 2.2. Consider the boundary value problem


−div

( ∇u

(1 + |u|)
)

+ arctg(u)|∇u|2 = f(x) ≥ 0 in Ω,

u = 0 on ∂Ω,

Since u ≥ 0, the change z = log(1 + u) leads to{−∆z + arctg(ez − 1)e2z|∇z|2 = f(x) in Ω,
u = 0 on ∂Ω,

Existence and properties of z can be deduced by the results of [6].

Example 2.3. Consider the boundary value problem


−div

( ∇u

(1 + |u|)2
)

+ arctg(u)|∇u|2 = f(x) ≥ 0 in Ω,

u = 0 on ∂Ω,

Since u ≥ 0, the change w = [1− (1 + u)−1] leads to

(2.19)




−∆w + arctg

( w

1− w

) |∇w|2
(1− w)4

= f(x) in Ω,

u = 0 on ∂Ω.
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