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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
NONLINEAR BOUNDARY VALUE PROBLEMS

GIOVANNI ANELLO

Abstract. We present some results on the existence and multiplicity of solutions
for boundary value problems involving equations of the type −∆pu = f(x, u) +
λg(x, u), where ∆p is the p-Laplacian operator (p > 1), λ is a real parameter and
f, g : Ω × R → R, Ω ⊂ RN , are two Carathéodory functions. The approach is
variational and mainly based on a critical point theorem by B. Ricceri.

1. Introduction

Let Ω ⊂ RN be a non empty open bounded set with boundary ∂Ω of class C1.
Let f, g : Ω × R → R be two Carathéodory functions and let λ ∈ R. In this paper
we are concerned with the existence and multiplicity of solutions for the problem{

−∆pu = g(x, u) + λf(x, u) in Ω
B(u) = 0 on ∂Ω

where the boundary operator is of the type B(u) = δu+(1−δ)∂u
∂ν with δ ∈ {0, 1} and

ν being the outer unit normal to ∂Ω. For δ = 1, B(u) = 0 is the Dirichlet boundary
condition u|∂Ω = 0 while if δ = 1 we have the Neumann boundary condition ∂u

∂ν |∂Ω
=

0. Here ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator, where p > 1.
Variational methods have been extensively used to study the above boundary

value problem. In recent years, an incentive in using this methods was given by
some general variational results obtained by B. Ricceri in [19]. Applications of these
results to differential and integral equations have been made by several authors. We
cite, for instance, the papers [7, 8, 9, 10, 11, 12, 14, 15, 17, 20, 21] (see also reference
therein).

The existence and multiplicity theorems we present here are deduced in part
using the results in [19] jointly with regularity arguments and in part using some
developments and ideas which have originated from [19].

Throughout this paper, if p ∈ [1,+∞[ we put

‖u‖p =
(∫

Ω
|u|pdx

) 1
p

for all u ∈ Lp(Ω) and
‖u‖∞ = ess sup

Ω
|u|

for all u ∈ L∞(Ω).
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Moreover, we recall that:

• a weak solution for the problem

(Pλ)

{
−∆pu = g(x, u) + λf(x, u) in Ω
u = 0 (resp.∂u

∂ν = 0) on ∂Ω

is any u ∈ W 1,p
0 (Ω) (resp. u ∈ W 1,p(Ω)) satisfying the equation

∫

Ω
|∇u(x)|p−2∇u(x)∇v(x)dx =

∫

Ω
(g(x, u(x)) + λf(x, u(x)))v(x)dx

for all v ∈ W 1,p
0 (Ω) (resp. v ∈ W 1,p(Ω). Thus, the weak solutions are

exactly the critical points of the energy functional

(1) u ∈ W 1,p
0 (Ω) (resp. u ∈ W 1,p(Ω)) −→

∫

Ω

(
1
p
(|∇u|p −

∫ u(x)

0
(g(x, t) + λf(x, t))dt

)
dx;

• a strong solution for the same problem is any u ∈ W 1,p
0 (Ω)∩W 2,p(Ω)∩C0(Ω)

(resp. u ∈ W 2,p(Ω)∩C0(Ω)) satisfying equation −∆pu = g(x, u) + λf(x, u)
almost everywhere in Ω and the boundary condition pointwise.

2. The results

2.1. Dirichlet boundary condition. The results we present here are related to
problem (Pλ) with the Dirichlet boundary condition u|∂Ω = 0.

Our first theorem concerns the multiplicity of nonzero solutions for problem (Pλ)
with g and f(·, 0) identically 0. Using an idea developed in [22] (see also [5, 6]), we
can find conditions on f in order that the energy functional (1) have at least two
local minima. This fact, jointly to a mountain pass argument, allow us to obtain
at least two non-zero nonnegative solutions for problem (Pλ) for all λ ≥ λ∗ where
λ∗ ≥ 0 will turn out explicitly determined. The statement of the result is as follows

Theorem 1 (Theorem 3.4 of [2]). Let g ≡ 0 and assume the following growth
condition

i) p ≤ N and sup
t∈R

|f(·, t)|
1 + |t|q ∈ L∞(Ω) for some q > 0 with q < N(p−1)+p

N−p if

p < N ;

ii) p > N and sup
|t|≤r

|f(·, t)| ∈ L1(Ω) for all r > 0.

Moreover, suppose that:

iii) f(x, 0) = 0 for almost all x ∈ Ω;
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iv) there exist ξ0, ξ1 ∈ [0,+∞[ with ξ0 < ξ1 and u0 ∈ W 1,p
0 (Ω) with u0(x) ≥ 0

for a.a. x ∈ Ω such that
∫ ξ0

0
f(x, t)dt = sup

ξ∈[ξ0,ξ1]

∫ ξ

0
f(x, t)dt for a.a. x ∈ Ω;

η
def
=

∫

Ω

(∫ u0(x)

0
f(x, t)dt− sup

0≤ξ≤ξ0

∫ ξ

0
f(x, t)dt

)
dx > 0.

v) there exist C > 0 and s ∈]0, p[ such that sup
ξ≥0

∫ ξ
0 f(x, t)dt

1 + |ξ|s ≤ C for a.a.

x ∈ Ω.
Then for each λ >

‖∇u0‖p
p

p η , there exist two nonzero nonnegative weak solutions

uλ, vλ ∈ W 1,p
0 (Ω) ∩ C1+γ(Ω) (with γ ∈]0, 1[) of problem (Pλ).

Moreover, one has supλ∈K max{‖∇uλ‖p, ‖∇vλ‖p} < +∞ for every bounded set

K ⊂
]‖∇u0‖p

p

pη ,+∞
[
.

Sketch of Proof. We limit ourselves to sketch the proof of the existence of solutions.
Let λ as in the hypotheses. We put f(x, t) = 0 for all t ≤ 0, x ∈ Ω. So, the nonneg-
ative solutions of problem (Pλ) with f so modified are nonnegative solutions of the
original problem. By conditions i)− ii) the energy functional Ψλ defined by (1) is
sequentially weakly lower semicontinuous and continuously Gâteaux differentiable.
By condition v) we also infer that the same is coercive. Thus, if we consider the
weakly closed set

E = {u ∈ W 1,p
0 (Ω) : 0 ≤ u(x) ≤ ξ1},

where ξ1 is as in the hypotheses, then infE Ψ is attained in a point u1. Condition
iv) implies that u1 is, in point of fact, a local minimum for Ψλ. Moreover by
λ >

‖∇u0‖p
p

p η we also infer that u1 is not a global minimum. Therefore, Ψλ has
at least two distinct critical points. Moreover, one can show that Ψλ satisfies the
Palais-Smale condition. So, using a mountain pass theorem (see [18]), we also find
a third critical point. A standard argument shows that these three critical points
are nonnegative and, clearly, two of which must be nonzero. ¤

Among the existing results which are comparable with Theorem 1, we point out
Theorem 1.2 of [16] where the assumptions are close to ours. However, these results
are mutually independent. For example, Theorem 1 allows us to consider nonlin-
earity f such that supξ∈[0,δ]

∫ ξ
0 f(x, t)dt > 0 for all δ > 0, contrarily to Theorem 1.2

of [16].
Now we present a second multiplicity result for problem (Pλ) assuming f(·, 0),

g(·, 0) identically 0 and g sublinear with respect to the second variable. In this case,
it is possible to obtain the existence of at least two non-zero solutions for λ small
enough assuming only a mild growth condition on f (condition i) below) that is
fulfilled, for instance, when f ∈ C0(Ω× R).

Theorem 2 (Theorem 2.3 of [1]). Assume the following conditions
i) there exists q > N

2 such that sup
|ξ|≤r

|f(·, ξ)| ∈ Lq(Ω) for all r > 0 ;
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ii) f(x, 0) = 0 for a.e. x ∈ Ω;

iii) there exist a > 0 and s ∈]1, 2[ such that |g(x, t)| ≤ a|t|s−1 for all t ∈ R and
a.e x ∈ Ω.

iv) there exists a non empty open set D ⊆ Ω such that

lim inf
ξ→0

infx∈D

∫ ξ
0 g(x, t)dt

ξ2
= +∞.

Then, there exist σ, λ > 0 such that, for every λ ∈ [−λ, λ], there exist a strong
nonzero nonnegative solution uλ ∈ W 1,2

0 (Ω) ∩W 2,q(Ω) and a strong nonzero non-
positive solution vλ ∈ W 1,2

0 (Ω) ∩ W 2,q(Ω) of problem (Pλ) with max{‖uλ‖W 2,q(Ω),
‖vλ‖W 2,q(Ω)} ≤ σ.

Sketch of Proof. In order to find the non-zero nonnegative solution we consider the
function g0 defined by

g0(x, ξ) =

{
g(x, ξ) if (x, ξ) ∈ Ω× [0,+∞[
0 if (x, ξ) ∈ Ω× [0,+∞[

as well as the function f0 defined by

f0(x, ξ) =





f(x, ξ) if (x, ξ) ∈ Ω× [0, C]
f(x,C) if (x, ξ) ∈ Ω× [C, +∞)
0 if (x, ξ) ∈ Ω×]−∞, 0[

where C is a fixed number greater than (aC0)
1

2−s m(Ω)
1

q(2−s) , being m(Ω) the
Lebesgue-measure of Ω, C0 = C0(N, q, Ω) a positive constant such that, for each
h ∈ Lq(Ω) and for each weak solution u ∈ W 1,2

0 (Ω) of the equation −∆u = h on Ω,
one has ‖u‖∞ ≤ C0‖h‖q (see [13]). Now, consider the energy functional Ψλ defined
by (1) (with p = 2) where f, g are replaced by f0, g0 respectively. Applying Theorem
2.1 of [19] we find λ0 > 0 such that, for all λ ∈ [−λ0, λ0], Ψλ has a local minimum
uλ which is nonzero thanks to condition iv). Standard regularity arguments show
that uλ ∈ C0(Ω) and one can check that uλ must be nonnegative as well. More-
over, taking λ0 smaller if necessary, by Schauder estimates and the choice of C we
have ‖u‖∞ ≤ C. So uλ is a nonnegative solution of (Pλ). In order to obtain the
nonpositive solution it is suffice to repeat the previous proof replacing the functions
f, g with f̃(x, t) = −f(x,−t) and g̃(x, t) = −g(x,−t) respectively. Finally we can
easily find a uniformly (with respect to λ) upper bound for the W 2,q(Ω)-norm of
the solutions again using Schauder estimates. ¤
2.2. Neumann boundary condition. The results we present here are related to
problem (Pλ) with the Neumann boundary condition ∂u

∂ν |∂Ω
= 0. The first one deals

with the ordinary case N = 1, with Ω =]0, 1[. In this case, the boundary condition
becomes the two point condition u′(0) = u′(1) = 0. We consider the nonlinearity f
of the type α(x)h(t) and take g(x, t) = −t. Then, using a variational result stated in
[4], we are able to find λ∗ > 0 such that for all λ ≥ λ∗ problem (Pλ) admits at least
three weak solutions. Moreover, the number λ∗ will turn out explicitly determined.
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We note that the result below is, in some aspects, comparable with Theorem 1 and,
likely, it can be deduced by using arguments similar to ones used in the proof of
Theorem 1. However, applying the result of [4], the proof becomes very easy.

Theorem 3 (Theorem 4 of [4]). Let h : R → R be a continuous function. Let
α ∈ L1([0, 1]) with α 6= 0 and α(x) ≥ 0 for a.a. x ∈ [0, 1]. Put H(t) =

∫ t
0 h(ξ)dξ for

every t ∈ R, and assume that there exist t0, t1 ∈ R and r, b, s > 0, with |t0| < r < |t1|,
s < 2 such that

(i) H(t0) = sup|t|≤cr H(t);
(ii) H(t1) > H(t0)
(iii) supt∈R

H(t)
1+|t|s ≤ b

where c is the embedding constant of W 1,2(]0, 1[) in C0([0, 1]). Then, for every
λ >

t21−t20
2(H(t1)−H(t0))

R 1
0 α(x)dx

, the problem
{−u′′ + u = λα(x)h(u) in ]0, 1[

u′(0) = u′(1) = 0

admits at least three weak solutions uλ, vλ, wλ ∈ W 1,2(]0, 1[). Moreover, for every
bounded set

K ⊆
]

t21 − t20

2(F (t1)− F (t0))
∫ 1
0 α(x)dx

,+∞
[

,

we have

sup
λ∈K

max{‖uλ‖W 1,2(]0,1[), ‖vλ‖W 1,2(]0,1[), ‖wλ‖W 1,2(]0,1[)} < +∞.

Sketch of Proof. The solutions of the above problem are the critical points of the
energy functional Ψλ defined in (1) where g(x, t) = −t, f(x, t) = α(x)h(t) and
Ω =]0, 1[. Condition (iii) assures that Ψλ is coercive for all λ ≥ 0 and satis-
fies the Palais-Smale condition (see Example 38.25 of [23]). If we put Φ(u) =∫ 1
0 α(x)H(u(x))dx and consider the functions u0, u1 ∈ W 1,2(]0, 1[) identically equal

to t0 and t1 respectively, one has Φ(u0) < Φ(u1). Moreover, if u ∈ W 1,2(]0, 1[) is
such that ‖u′‖2

2 + ‖u‖2
2 < r2 we easily get

Φ(u0) ≥ sup
‖u′‖22+‖u‖22<r2

Φ(u).

Now, the conclusion follows by applying Theorem 2 and Remark 1 of [4] to the
functionals Φ and u ∈ W 1,2(]0, 1[) → 1

2‖u′‖2
2 + 1

2‖u‖2
2. ¤

The next result gives the existence of at least one solution under very general
conditions on the nonlinearity g. Here, as in Theorem 3, we suppose f of the type
α(x)h(t) and assume that the primitive H of h does not attain its maximum on a
compact interval [a, b] at the extreme points a, b. We assume p = 2.

Theorem 4 (Theorem 1 of [3]). Let [a, b] ⊂ R be a compact interval, and h : [a, b] →
R a continuous function. Let H be a primitive of h and suppose that

max{H(a),H(b)} < max
[a,b]

H.(2)



340 GIOVANNI ANELLO

Moreover let α ∈ L∞(Ω) with ess infΩ α > 0. Then, for every Carathéodory function
g : Ω× [a, b] → R satisfying

sup
t∈[a,b]

|g(·, t)| ∈ Lq(Ω)

for some q > N , there exist λ, σ > 0 such that, for every λ ∈ [−λ, λ], there exists
a strong solution uλ ∈ W 2,q(Ω) of problem (Pλ), where f(x, t) = α(x)h(t), fulfilling
uλ(x) ∈]a, b[ for all x ∈ Ω and ‖∇u‖2

2 + ‖u‖2
2 ≤ σ.

Sketch of Proof. By condition (2) we infer that there exists a subinterval [c, d] ⊂
[a, b] such that max{H(c),H(d)} < max[c,d] H and h(c) > 0, h(d) < 0. Now, extend
α(·)h(·) and g(·, ·) to Ω × R putting h(t) = h(c), g(x, t) = g(x, c) for t ≤ c and
h(t) = h(d), g(x, t) = g(x, d) for t ≥ d. Let K ⊂ [c, d] the set of the global maxima
of H. Then, if for ξ ∈ K we denote by uξ the constant function identically equal to
ξ, we see that each point of the set K̃ = {uξ, ξ ∈ K} is a global minimum for the
functional

J(u) =
1
2
‖∇u‖2 −

∫

Ω
H(u(x))dx

in W 1,2(Ω). Moreover, if for r > 0 we put K̃r = {u ∈ W 1,2(Ω) : infξ∈K(‖∇u −
∇uξ‖2 + ‖u − uξ‖2) ≤ r2}, then K̃r is weakly compact in W 1,2(Ω) and one has
inf∂K̃r

J > infW 1,2(Ω) J . This allows us to apply Theorem 2.1 of [19] to find, for
all r > 0, a positive number λr such that for all λ ∈ [−λr, λr] the functional
J(u) − λ

∫
Ω

(∫ u(x)
0 g(x, t)dt

)
dx has a local minimum which belongs to K̃r. From

this, using a regularity result jointly to a boot-strap argument, we find λ > 0 such
that, for all λ ∈ [−λ, λ], there exists a local minimum uλ of the previous functional
satisfying uλ(x) ∈]c, d[ for all x ∈ Ω. Consequently, uλ turns out a weak solution
of problem (Pλ). Finally, the fact that uλ is a strong solution follows from the
regularity result quoted above. ¤

Remark. Note that from Theorem 4 we can obtain in a straightforward way the
existence of at least n strong solutions result assuming that condition (2) holds for
n disjoint compact intervals.
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