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Abstract. A simple approach and an algorithm are proposed to solve the qua-
sistatic rolling frictional contact problem between an elastic cylinder and a flat
rigid body. The discretization is based on the boundary element method. The
unilateral frictional contact problem (nonsmooth but monotone) is formulated
in a compact form as a nonsymmetric linear complementarity problem which is
solved using Lemke’s algorithm.

1. Introduction

In the quasistatic case of a rolling elastic cylinder in frictional contact with a flat
rigid body, the relative slip velocity is a very important parameter of the problem.
To compute it, a direct method is presented in Abascal et al. [6, 7, 8], where two
approaches are used considering the velocity as unknown variable in the LCP solving
the frictional contact.

Here, we propose another approach based in solving the static frictional contact
problem and, afterwards, computing the velocity using an explicit appropriate re-
lation. The boundary element method (BEM) is used to discretize the mechanical
problem. Then the elastostatic, frictional contact, rolling problem is formulated as
a compact LCP using the boundary element method and the rigid displacement
approach.

2. Modelling, discretization and condensation of the problem

Following the approach used in [1] the rolling problem is reduced to a plane strain
state (see, e.g., [6, 7, 8]) where the Coulomb’s law describes the friction.

The friction is assumed to follow the dry Coulomb’s law where normal and tan-
gential tractions on the boundaries of the contact zone are related via a coefficient
of friction. Under this assumption, two points belonging to the cylinder A and the
rigid body B fall in three different states relative to each other (Fig. 1):

(1) Stick state

(1)
rA
N ≤ 0, rB

N ≤ 0, rA
N = rB

N , δn = 0,

rA
T = rB

T , st = 0,
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Figure 1. Potential contact zone.

(2) Slip state

(2)
rA
N ≤ 0, rB

N ≤ 0, rA
N = rB

N , δn = 0,

|rA
T | = µ|rA

N |, |rB
T | = µ|rB

N |, sgn(st) = −sgn(rA
T ),

(3) Separation state

(3) rA
N = 0, rB

N = 0, rA
T = 0, rB

T = 0, δn ≥ 0.

Here, µ is the constant coefficient of friction, rA
N , rB

N , rA
T and rB

T are the normal
and tangential tractions of cylinder A and rigid body B, respectively, at contacting
points, uN and uT are the normal and the tangential cylinder surface displacements,
st is the slip velocity and δn is the normal separation given by:

(4) δn = δn0 − uN .

The initial separation, δn0, for a cylinder and a flat body in contact can be approx-
imated by

(5) δn0 =
x2

2R
,

where R is the cylinder radius and x is the Eulerian coordinate along the contact
zone used to position each pair of points at each time relative to a rigid body
position of the cylinder.

When applying an Eulerian description of particles moving through the contact
area, the relative tangential slip velocity of each cylinder surface point is defined as

(6) st = δ̇t =
dδt(x, τ)

dτ

where τ is the time coordinate, x = x(τ) is the Cartesian coordinate of each point
relative to fixed axes and varying time τ , and δt is the tangential separation given
by

(7) δt = (xA − xB) + uA
T + uB

T

where xA and xB are the cartesian coordinates of contacting points of the cylinder
and the rigid respectively. uA

T and uB
T describe the tangential displacements of at

contacting points of the cylinder and the rigid body, respectively.
Substituting (7) into (6) leads to

(8) st = V A − V B + V AuA
T,x + V BuB

T,x + uA
T,τ + uB

T,τ
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where V α is the velocity of a point of the rigid body α(α = A,B) in the x-direction.

uA
T,x = ∂uA

T
∂x . Under steady-state rolling conditions, the variation with time vanishes,

so

(9) st = V A − V B + V AuA
T,x + V BuB

T,x

which is usually approximated [9] by

(10) st = |V | (ξ + sgn(V )(uA
T,x + uB

T,x)
)

where V is given by (V A + V B)/2, and ξ is the normalized relative rigid slip ve-

locity (creepage), defined as ξ =
V A − V B

|V | . In fact, we consider st, in practice, as

dimensionless variable denoted by s∗t [8]:

(11) s∗t = ξ + sgn(V )(uA
T,x + uB

T,x)

When the displacement derivatives are approximated using a finite difference scheme,
the tangential slip velocity for a point located at the coordinate xi is, under steady-
state rolling conditions, expressed as

(12) s∗t (xi) = ξ + sgn(V )
(

uT (xi+1)− uT (xi)
hi

)

where hi denotes the distance between two adjacent boundary points xi+1 and xi.
To analyze coupled 2D rolling contact between two cylinders, Abascal et al. have

formulated the problem considering the slip velocity as unknown variable. Indeed,
in [8], the NORM-TANG iteration [16] to solve two complementarity problems. In
[6], the problem is analyzed by minimizing a function representing the equilibrium
equation and the contact restrictions. In our case, the static contact-friction problem
between an elastic cylinder and a flat rigid body is first solved and, subsequently,
the slip velocity is computed explicitly using the above formula. The model is
discretized using the boundary element method which is more suitable for this class
of problem where the nonlinearity is limited to the boundary of the body. The here
adopted formulation follows the lines of [2], [3], [11], [12], [17] and [18] where the
matrix formulation of displacement boundary element in elastostatics is given by
[4]:

(13) Hu = Gt.

Here, u is the vector of the nodal boundary displacements, t is the vector of element
boundary tractions, and H, G are the appropriate matrices.

The number of equations in (13) depends on the number of nodes on the dis-
cretized boundary. Let us note that the number of boundary element tractions
(i.e., the dimension of t) depends on the nature of the boundary elements used.

The classical approach for the solution of the bilaterally constrained structures
goes through the specification of appropriate, known boundary displacements or
tractions, the rearrangement of the system (13), and finally, the formulation of a
nonsymmetric system of equations, after reordering:

(14) Ay = b.
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The 2n-dimensional vector y contains all the unknown boundary displacements or
tractions of the problem. In the contact area, both displacements and tractions are
unknown. They must be kept in the formulation and connected with the inequality
and complementarity relations of the unilateral contact mechanism. After solving
the arising LCP, one knows which of these variables vanishes. Thus, we proceed
with condensation and, then, formulate the linear complementarity problem.

Let us consider uc and tc as being the boundary nodal displacements and trac-
tions, respectively, at the frictional unilateral contact boundary of the cylinder.
After partitioning the boundary of the cylinder, the equation (14) gives:

(15)
[
Hff Hfc

Hcf Hcc

] [
u
uc

]
=

[
ff

fc

]
+

[
Gfc

Gcc

] [
tc

]

When nc is the number of the nodes at the unilateral contact boundary, then
uc and tc have 2nc elements, Hcc and Gcc have 2nc × 2nc elements, Hff has
2(n− nc)× 2(n− nc) elements, Gfc, Hfc and Hcf have 2(n− nc)× 2nc elements. u
denotes the nodal boundary displacements of the cylinder outside the contact area.
The next step is to perform a local coordinate transformation so that normal and
tangential to the unilateral boundary quantities appear in the formulation. There-
fore, let us consider w and r as the natural local coordinates (normal and tangential
coordinates) of the displacements and the tractions in the contact boundary, re-
spectively:

(16) ui
c =

[
ui

cx

ui
cy

]
, tic =

[
ticx
ticy

]
, wi =

[
ui

N
ui

T

]
, ri =

[
ri
N

ri
T

]
.

The transformation for a single unilateral boundary node i reads:

(17) Ciu
i
c = wi, −Cit

i
c = ri

with

(18) Ci =
[

cos φi sinφi

− sinφi cos φi

]
.

Since C−1
i = CT

i , relations (17) can be inverted:

(19) ui
c = CT

i w, tic = −CT
i r.

Taking into account these transformations, one has

(20)
[
Hff HfcC

T

Hcf HccC
T

] [
u
w

]
=

[
ff

fc

]
−

[
GfcC

T

GccC
T

] [
r
]
.

Then, the problem will be condensed, i.e., in order to get the flexibility matrix, the
unknown variable u will be reduced by considering the relation (20):

(21) u = H−1
ff ff −H−1

ff GfcC
T r −H−1

ff HfcC
T w

Then,

(22)
[
HccC

T −HcfH−1
ff HfcC

T
]
w =

[
fc −HcfH−1

ff ff

]

−
[
GccC

T −HcfH−1
ff GfcC

T
]
r
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Thus, w can be written as:

(23) w = w0 + Fr

where

w0 =
[
HccC

T −HcfH−1
ff HfcC

T
]−1 [

fc −HcfH−1
ff ff

]

and

F = −
[
HccC

T −HcfH−1
ff HfcC

T
]−1 [

GccC
T −HcfH−1

ff GfcC
T
]
,

or

(24)
[
wn

wt

]
=

[
wn0

wt0

]
+

[
Fnn Fnt

Ftn Ftt

] [
rN

rT

]
.

3. The frictional contact formulation

We follow the formulation of [13] and [14]. Let the normal forces and the friction
forces be assembled in vectors rN = {rN1, . . . , rNn}T and rT = {rT1, rT2, . . . , rTn}T ,
respectively, where, e.g., rTi is the frictional force of the i-th contact node.

Coulomb’s law of dry friction connects the tangential (frictional) forces with the
normal (contact) forces by the relation

(25) γi = µ|rNi| − |rTi|, i = 1, . . . , n, γi ≥ 0.

Here |.| denotes the absolute value and µ is the friction coefficient. The friction
mechanism is considered to work in the following way: If |rTi| < µ|rNi| (i.e., γi > 0),
the slipping value γiT must be equal to zero, and if |rTi| = µ|rNi| (i.e., γi = 0), then
we have slipping in the opposite direction of rTi:

(26)
if γi > 0, then yTi = 0
if γi = 0, then there exists σ > 0 such that yTi = −σrTi.

By assembling the contributions of all (n) unilateral nodes, relation (26) reads:

(27) γ = TT
NrN + TT

T rT

with the matrices TT and TN

(28) TT = diag
[
T1

T ,T2
T , . . . ,Tn

T

]
, TN = diag

[
T1

N ,T2
N , . . . ,Tn

N

]
.

These matrices are obtained from the linearized friction law considered in 2D [2, 13].

(29) Tj
T =

[
1 −1
0 0

]
, Tj

N =
[
µ, µ

]
.

Finally, the slip value in (25), (26) is written as

(30) yT = TT λ, λ ≥ 0

where λ is a vector of nonnegative slipping parameters. Then, γ and λ fulfil the
following complementarity condition:

(31) γT λ = 0
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Figure 2. The mesh around the cylinder contour.

3.1. The Linear Complementarity Problem formulation. To formulate the
linear complementarity problem the rigid body displacements approach is adopted.
The slipping value λ and the tangential displacements uT are then related by the
compatibility relation:

(32) TT λ− uT = dT

where dT denotes the initial tangential distance.
The general decomposition scheme with slack variables can be found in more

details for two-dimensional friction problems in [14].
The structure is assumed linear elastic which, on the assumption that everything

outside of the frictional contact interfaces has been condensed out, reads:

(33) ũ = F̃r̃

where

ũ =
[
uN

uT

]
, F̃ =

[
FNN FNT

FTN FTT

]
, r̃ =

[
rN

rT

]
.

Here, F̃ is the symmetric flexibility matrix where FNN is an n × n nonsingular
matrix with the mechanical meaning of being the normal flexibility matrix, FTT

is a 2n × 2n nonsingular matrix (the tangential flexibility) and FNT , FTN are the
corresponding couple flexibility matrices.

By using the previous relations, the unilateral kinematic conditions normal and
tangential to the interface, take the form:

yN − FNNrN − FNT rT = dN ,(34)
TT λ− FTNrN − FTT rT = dT .

A standard LCP formulation is derived by means of the following change of
variables. First, from the second relation in (34), rT is expressed as follows:

(35) rT = −F−1
TTFTNrN + F−1

TTTT λ− F−1
TTdT

Then, by eliminating rT from equations (34), we obtain

yN − (
FNN − FNTF−1

TTFTN

)
rN − FNTF−1

TTTT λ = dN − FNTF−1
TTdT(36)

γ +
(
TT

TF−1
TTFTN −TT

N

)
rN −TT

TF−1
TTTT λ = −TT

TF−1
TTdT
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Figure 3. Distribution of stick/slip and normal separation in the
potential contact zone.

Finally, a standard LCP is obtained from equations (36):

(37) z ≥ 0, Mz + b ≥ 0, (Mz + b)Tz = 0

with

(38)
z =

[
rN

λ

]
, b =

[
dN − FNTF−1

TTdT

−TT
TF−1

TTdT

]
,

M =
[
(FNN − FNTF−1

TTFTN ) FNTF−1
TTTT

−(TT
TF−1

TTFTN −TT
N ) TT

TF−1
TTTT

]
,

Mz + b =
[
yN

γ

]

Note also that (37) can be written as the variational inequality:

(39) z ≥ 0 : (Mz + b)T (v − z) = 0, ∀ v ≥ 0

4. Numerical results

To discretize the rolling problem with BEM (Fig. 2), constant elements are
used. In fact, Karami [10] and Stavroulakis et al. [18] remarked the existence of
oscillations in the traction behaviour with quadratic elements. Young modulus and
Poisson coefficient are taken to be 94500 and 0.1, respectively. The rigid body
normal and tangential displacement used were dN = R/2 and dT = 0.1dN where
R is the radius of the cylinder. The LCP (37 is solved using Lemke’s algorithm
[15] The results shown in the Figures 3, 4, 5, and 6 are obtained by applying a
normal and a tangential rigid body displacements approach. Figure 3 shows the
existence of a separation area in the potential contact zone. The stick/slip area is
not centered because of the tangential effect. In the Figures 4 and 5, the normal and
the tangential tractions in the frictional contact case are plotted. Figure 6 shows
the velocity behaviour only in the effective contact zone.
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Figure 4. Normal and tangential tractions in the frictional contact
case (µ = 0.1).
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Figure 5. Normal and tangential tractions in the frictional contact
case (µ = 0.3).
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