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CONTINUOUS SELECTIONS FOR MULTI-VALUED MAPS
WITHOUT CONVEXITY

YOUCEF ASKOURA AND CHRISTIANE GODET-THOBIE

Abstract. In this paper, we prove two new existence results of continuous se-
lections without convexity. Our results are improvements, in a large class of
topological spaces, of Yannelis and Prabhakar’s selection theorem [24] and its
generalizations obtained by Wu [23] and by Ding et al. [7]. Furthermore, we
apply our selection results to deduce some results of fixed point, coincidence and
equilibrium for abstract economy.

1. Introduction and preliminaries

Over the last few years, many results in nonlinear analysis which require con-
vexity (existence of continuous selections and fixed points, coincidence results, in-
equalities,...etc.) have been generalized with important extensions of the notion of
convexity.

We can find in the literature various generalizations of convexity : the topologi-
cal convex structures (Van de Vel [21]), the H-convexity (Horvath [12, 13], Bardaro
and Ceppitelli [3]), G-convexity (Park and Kim [16], Park [17]), L − G-convexity
(Park [18]), G −H-convexity (Verma [22]), simplicial convexity (Bielawski [6]), L-
convexity and B′-simplicial convexity (Ben-El-Mechaiekh et al. [4]),....and others.
These notions are defined and investigated, in order to generalize results (of non-
linear analysis) needing classical convexity. By these developments, many fixed
point results, selection results, coincidence results, inequality results and various
applications in game theory have been obtained in topological spaces without linear
structure [21, 12, 13, 3, 16, 17, 22, 6, 4, 5, 19, 20]

When reading some of these papers (in particular that of Horvath [12, 13], we
are inspired to do this work. The idea is the following : Consider a multi-valued
map T : X → Y . A process to obtain a selection for T , without the use of the
convexity of its values (see for example Horvath [12], theorem 2, section 3), is to
construct it as a composition of two functions: f : X → W , and g : W → Y , where
W is a geometric realization of a nerve of some covering of X. We remarked that
if we slightly change this composition and look for the two functions as follows :
f : X → X × W and g : X × W → Y ; where W stands for a similar set, and
do the necessary adaptation of the proof, we can transform the statement of the
convexity involved in the whole space Y to local needs of some properties of the
classical convexity. We give in the end of this paper an example proving that our
conditions are not a rewriting of the H-convexity.
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The selection results of this paper are improvements, in a large class of topological
spaces of Yannelis and Prabhakar’s selection theorem [24] and its generalizations
obtained by Wu and Shen [23] and by Ding et al. [7]. These results have been
generalized in another way, by the use of generalized convexities, by Horvath [12, 13],
Mao [15], Tarafdar [20], Park [17], Ding and Park [8] and Yu and Lin [25]. The no
requirement of any form of convexity in our work can be an advantage. It is, in fact,
clear that in practice, the definition (or the construction) of a convenient convexity
in order to study a given map can be difficult.

One of our results, Theorem 2 below, is also a generalization of a selection theorem
obtained in [1].

If not specified, we denote by X and Y two separated topological spaces such
that the following condition (A1) is fulfilled:

(A1) X is paracompact and Y is an absolute extensor for X × ∆N , for every
geometric simplex ∆N .

Note that the condition A1 is satisfied if X is metrizable and Y is a convex subset
of a locally convex topological vector space [9] or an mc-space [13].

Let T : X → 2Y be a multi-valued map (2Y denotes the set of all subsets of Y )
and f : X → Y, be a single valued map, Dom(f) denotes the definition domain of
f . For A ⊂ X, GrAT = GrT ∩ A× Y, GrT specifies the graph of T. A denotes the
adherence of A and int(A) designates the interior. If K is a subset of a given vector
space, co(K) denotes the convex hull of K. The abbreviation u.s.c. means : upper
semi-continuous and Tx will be used to denote T (x).

2. Existence of continuous selections

Let us begin by defining the so called local intersection property. We say that a
multi-valued map T : X → 2Y satisfy the local intersection property if : ∀x ∈ X, ∃Ux

a neighborhood of x such that ∩
x′∈Ux

Tx′ 6= ∅. This condition can also be found, in

the literature, under this equivalent formulation : X = ∪{int(T−1y), y ∈ Y }.
It is well known that the local intersection property guarantees the existence of

continuous selections for multi-valued maps with convex values (see [23, 24]). In the
following theorem, we prove the existence of continuous selections provided, some
local intersections of the values of the considered multi-valued map are nonempty
and contractible. Then, we use here the local intersection property and instead of
the convexity of the values, we need only one of the properties of convex sets : Every
non empty intersection of convex sets is convex, then contractible.

Theorem 1. Let C : X → 2Y be a multi-valued map with non empty values.
Suppose that the following condition is satisfied:

(c) ∀x ∈ X, there exists a neighborhood Ux of x such that, for every open set
V ⊂ Ux, ∩

x′∈V
Cx′ is nonempty and contractible.

Then, C has a continuous selection.

Proof. Let W be an open covering of X by open sets Ux satisfying the condition
(c) of Theorem 1. Let U = {Ui, i ∈ I}, be a locally finite open refinement of W ,
and let N (U) be the nerve of U (the geometric realization of the abstract nerve of
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U endowed with its natural topology). In order to avoid confusions, we denote, for
all i ∈ I, the vertex of N (U) corresponding to Ui by minuscule letter ui. Take for
every i ∈ I, an yi ∈ ∩

x∈Ui

Cx, which exists by the condition (c) of Theorem 1. The

simplex of N (U) which have the points ui, i ∈ J for vertices is denoted by ∆J . ∂∆J

designates the boundary of ∆J . For every finite J ⊂ I, let OJ = ∩
i∈J

Ui.

We consider a continuous partition of unity {Ψi, i ∈ I} subordinated to the cover
U . Then we have, ∀i ∈ I, supp(Ψi) ⊂ Ui, where supp(Ψi) denotes the support of
the function Ψi. For every L ⊂ I, L finite, we denote SL = ∩

i∈L
supp(Ψi) and we

remark that SL ⊂ OL.

Lemma 1. Let F be a closed subset of X, M a contractible subset of Y and f :
F × ∂∆K → M (∆K is a simplex of N (U)) a continuous function.

Then f has a continuous extension defined from F ×∆K to M.

Proof. (One part of the construction of this proof can be found in [15]). Without
loss of generalities, we can denote K = {1, 2, 3, ..., n}.
Let z =

n∑
i=1

1
nui. Denote z ∈ ∆K by

n∑
i=1

ziui. For all z ∈ ∆K\{z}, let

(1) k(z) = (1− nmin
i=1,n

{zi})−1.

k(z) is defined on all ∆K\{z}; because z 6= z, ∃zi0 6= 1
n and ∃zi1 < 1

n .
k is continuous (as composition of continuous functions) and k(z) ≥ 1, ∀z ∈

∆K\{z}. Let

(2) r(z) = k(z)z + (1− k(z))z and t(z) =
1

k(z)
.

We have: t(z) ∈ ]0, 1] and r(z) ∈ ∂∆K (if i∗ is the index where the minimum is
reached in (1), r(z)i∗ = 0 ).

lim
z→z

t(z) = 0, then t(.) can be extended by continuity to t̃(.) defined on ∆K as

follows:

t̃(z) =

{
t(z), if z 6= z

0, otherwise.

Let χ : M × [0, 1] → M be the function which contracts M to a given point y.
Define f̃ : F ×∆K → Y by :

f̃(x, z) =

{
χ(f(x, r(z)), t̃(z)) if z 6= z, x ∈ F

y if z = z, x ∈ F

f̃ is continuous on F ×∆K\{z} (by the continuity of functions r, t̃, f and χ). The
continuity of f̃ at (x, z), x ∈ F remains to be solved.

Supposing that the multivalued map Γ:F×∆K → Y, (x, z)7−→χ(f(x, ∂∆K), t̃(z))
is u.s.c. at (x, z), we easily obtain the continuity of f̃ as following: We have:
Γ(x, z) = {y} = {f̃(x, z)}. Let O be a neighborhood of Γ(x, z). There exists a
neighborhood Q of (x, z), such that ∀(x, z) ∈ Q, f̃(x, z) ∈ Γ(x, z) ⊂ O. Then f̃ is
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continuous at the point (x, z). Let us prove that Γ is u.s.c. at the point (x, z). Let
the function

h : F ×∆K × ∂∆K → Y,

(x, z, p) 7→ χ(f(x, p), t̃(z))

We have: Γ(x, z) = h(x, z, ∂∆K).
Let O be a neighborhood of y = h(x, z, p),∀p ∈ ∂∆K . From the continuity of h,

for all p ∈ ∂∆K ,∃Qp
x an open neighborhood of x in F, ∃Qp

z an open neighborhood
of z in ∆K and ∃Qp an open neighborhood of p in ∂∆K , such that,

(*) ∀(x, z, p′) ∈ Qp
x ×Qp

z ×Qp, h(x, z, p′) ∈ O

when p varies in ∂∆K , we obtain a cover of ∂∆K by open sets Qp satisfying (*) (with
the neighborhoods of x and of z associated in (*)). Since ∂∆K is compact, it can be
covered by a finite number of these open sets, let Qpi , i ∈ {1, ...,m}. Let Qx =

m
∩

i=1
Qpi

x

and Qz =
m
∩

i=1
Qpi

z (Qpi
x and Qpi

z are the neighborhoods of x and of z corresponding

to Qpi in the formula (*)). ∀(x, z, p) ∈ Qx × Qz × ∂∆K ,∃i ∈ {1, ...,m} such that
(x, z, p) ∈ Qpi

x ×Qpi
z ×Qpi , and then h(x, z, p) ∈ O. Thereafter, ∀(x, z) ∈ Qx ×Qz,

h(x, z, ∂∆K) ⊂ O. Let Q = Qx ×Qz, ∀(x, z) ∈ Q,Γ(x, z) ⊂ O, which means that Γ
is u.s.c. at the point (x, z).

Therefore, f̃ is continuous at (x, z). It is finally easy to see that f̃ |F×∂∆K
= f . �

Lemma 2. Let f : X × ∂∆K → Y (∆K is a simplex of N (U)) be a continuous
function.

Suppose that

(3) ∀L  K,∀x ∈ SL, f(x,∆L) ⊂ ∩
z∈OL

Cz

Then, there exists f̃ a continuous extension of f defined on X ×∆K , such that

(4) ∀L ⊂ K,∀x ∈ SL, f̃(x,∆L) ⊂ ∩
z∈OL

Cz

Proof. Denote g = f |SK×∂∆K
. We have: ∩

z∈OK

Cz ⊃ ∩
z∈OL

Cz, ∀L ⊂ K (because

OK ⊂ OL, if L ⊂ K). Then the image of SK × ∂∆K by g is a subset of ∩
z∈OK

Cz(
g(SK × ∂∆K) ⊂ ∩

z∈OK

Cz

)
. Indeed, ∀(x, p) ∈ SK × ∂∆K , (x, p) ∈ SL × ∆L, for

some L  K. Considering (3), g(x, p) ∈ ∩
z∈OL

Cz ⊂ ∩
z∈OK

Cz, i.e. g : SK × ∂∆K →

∩
z∈OK

Cz. From (c), ∩
z∈OK

Cz is contractible ( OK ⊂ Ui,∀i ∈ K), then by Lemma 1,

we conclude that g has a continuous extension g̃ defined on SK ×∆K to ∩
z∈OK

Cz.

Define

f1 =

{
f on X × ∂∆K

g̃ on SK ×∆K

From the above, ∀x ∈ SK , f1(x,∆K) = g̃(x,∆K) ⊂ ∩
z∈OK

Cz. Then we remark that

any continuous extension of f1 on X ×∆K satisfies (4) �
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Lemma 3. There exists a function f : X ×N (U) → Y, such that:

(5) for every simplex ∆J of N (U), f is continuous on X ×∆J , and:

∀x ∈ SJ , f(x,∆J) ⊂ ∩
z∈OJ

Cz

Proof. Let

H =
{

(f,L), L is a subcomplex of N (U),
f : X × L → Y satisfies (5) with L in the place of N (U)

}
Define in H the ordering:

(f,L) ≤ (g,L′) ⇔ L ⊆ L′ and g |X×L= f.

Prove that H is nonempty and inductive.
• H is nonempty:

We denote hi(x, ui) = yi,∀x ∈ X, ∀i ∈ I. We see that (hi, {ui}) ∈ H, ∀i ∈ I,
i.e. H is nonempty.

• H is inductive:
Let {(fλ,LΛ)}λ∈Λ be a chain in H, where Λ is an arbitrary set of indices.
Consider the function f defined on X × L (where L = ∪

λ∈Λ
Lλ), as follows:

f |X×Lλ
= fλ. f is well defined, because {(fλ,LΛ)}λ∈Λ is a chain of H. For

every simplex ∆K of L, ∃Lλ0 ⊃ ∆K . Consequently, (f,L) ∈ H, i.e. H is
inductive.

By the Zorn’s lemma, H has a maximal element (f,L). Prove that L = N (U).
Suppose the contrary.

Then, there exists a k−skeleton N (U)k of N (U) such that f is not defined on
X ×N (U)k, i.e. N (U)k * L. Let k0 the minimal integer such that N (U)k0 * L.

If k0 = 0, there exists ui0 ∈ N (U)\L. Define f̃(x, ui0) = yi0 ,∀x ∈ X, and f̃ = f
on Dom(f), we obtain a continuous extension of f defined on X × L ∪ {ui0} such
that (f̃ ,L ∪ {ui0}) ∈ H which contradicts the maximality of (f,L) in H.

Else, k0 > 0. This means that there exists a simplex ∆K of N (U)k0 , with strictly
positive dimension such that ∂∆K ⊂ L and ∆K * L. In other words, f is defined
on X × ∂∆K and satisfies (3), but it is not defined on X × ∆K . We infer, using
Lemma 2, an extension f̃ of f|X×∂∆K

defined on X × ∆K so that (4) is satisfied.
Put f = f on Dom(f) and f = f̃ on X × ∆K . As a result an extension f of f
defined on X × L′, where L′ = L ∪∆K which is a subcomplex of N (U), such that
(f,L′) ∈ H. This contradicts also the maximality of L.

Finally, we can claim that L = N (U). �

Now, it remains to end the proof of Theorem 1.
Let for this reason a function g : X × N (U) → Y satisfying (5) and Ψ(x) =∑

i∈I

Ψi(x)ui, the canonical application from X to N (U). Let, in a last time, the

function f defined as follows :

f : X −→ Y
x 7−→ g(x,Ψ(x))

Prove that f is continuous.
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Let x0 ∈ X. There exists Ox0 an open neighborhood of x0 which intersects only
finite number of sets of U . Let I0 = {i ∈ I,Ox0 ∩ Ui 6= ∅}. Then, there exists a
finite set of indices I1, so that Ψ(Ox0) ⊂ ( ∪

j∈I1
∆Jj ), where Jj ⊂ I0,∀j ∈ I1. Since g

is continuous on X ×∆Jj ,∀j ∈ I1, g is continuous on X × ( ∪
j∈I1

∆Jj ), consequently,

f(.) = g(.,Ψ(.)) is continuous on Ox0 , and therefore on X.
Verify that f is a selection of C. Let x ∈ X and Jx = {i ∈ I,Ψi(x) 6= 0}. We

have x ∈ SJx ⊂ OJx and then f(x) = g(x,Ψ(x)) ∈ g(x,∆Jx) ⊂ ∩
z∈OJx

Cz ⊂ Cx �

Now, we show a result which generalizes the principal result of [1]. In order to
state it, we need the following definition:

Definition 1. We say that the set-valued map T : X → 2Y is locally continuously
contractible, if ∀x ∈ X, ∃Ux a neighborhood of x such that: for every continuous
selection σ of T over Ux, there exists a continuous function M : GrUxT × [0, 1] → Y
satisfying the following conditions:

1) ∀(x′, z) ∈ GrUxT , M(x′, z, 1) = z and M(x′, z, 0) = σ(x′).
2) ∀x′ ∈ Ux, ∀z ∈ Tx′, M(x′, z, [0, 1]) ⊂ Tx′.

Remark 1. It is clear that, if Y is a topological vector space and Tx is convex,
∀x ∈ X, then, M(x′, z, t) = σ(x′) + t(z − σ(x′)) satisfies the previous conditions.

Theorem 2. Let T : X → 2Y , be a set-valued map satisfying the following condi-
tions :

(i) ∀x ∈ X, ∃Ux a neighborhood of x, on which T possesses a continuous selec-
tion,

(ii) T is locally continuously contractible,
Then, T has a continuous selection.

Remark 2. The condition (i) of the previous theorem is weaker than the local
intersection property.

Proof of Theorem 2. Let W be an open cover of X by open sets Ux such that : Ux

is an open set contained in the intersection of two neighborhoods of x such that :
the first one satisfies (i) and the second is the neighborhood of x which is mentioned
in the definition 1. Let U = {Ui, i ∈ I}, be a locally finite open refinement of W,
and let N (U) be the nerve of U (the geometric realization of the abstract nerve
of U endowed with its natural topology). For every i ∈ I, let σi be a continuous
selection of T on Ui. We resume in this proof the notations of the proof of Theorem
1 relating to the simplexes of N (U). We consider, as in the proof of Theorem 1, a
continuous partition of unity {Ψi, i ∈ I} subordinated to the cover U . We resume
also the notation SL = ∩

i∈L
supp(Ψi),∀L ⊂ I, L finite.

Lemma 4. Let f : X × ∂∆K → Y (∆K is a simplex of N (U)) be a continuous
function such that,

(6) ∀L  K,∀x ∈ SL, f(x,∆L) ⊂ Tx

Then, ∃g : X ×∆K → Y, a continuous extension of f satisfying :

(7) ∀L ⊂ K,∀x ∈ SL, g(x,∆L) ⊂ Tx
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Proof. Without loss of generalities, we take K = {1, ..., n}. If SK is empty, any
extension of f satisfies (7). In this case, since X × ∂∆K is closed in X × ∆K , f
possesses a continuous extension to X ×∆K .

Suppose that SK is nonempty. ∀(x, p) ∈ SK × ∂∆K , (x, p) ∈ SL ×∆L for some

L ⊂ K, then f(x, p) ∈ Tx. We define, as in Lemma 1, z =
n∑

i=1

1
nui and we consider

the functions k, r, t and t̃ constructed in the same lemma. Let σ be a continuous
selection of T on SK and M : GrSK

T × [0, 1] → Y satisfying the conditions of
Definition 1 with this selection σ. Define the function f̃ : SK ×∆K → Y, as follows:

f̃(x, z) =

{
M(x, f(x, r(z)), t̃(z)) if z 6= z, x ∈ SK

σ(x) if z = z, x ∈ SK

The continuity of f̃ can be obtained by the same way as in Lemma 1. The function
h of Lemma 1 is taken here as follows:

h : SK ×∆K × ∂∆K −→ Y,

(x, z, p) 7−→ M(x, f(x, p), t̃(z))

Let

g′ =

{
f on X × ∂∆K

f̃ on SK ×∆K
,

Let finally g be any continuous extension of g′(g exists because Dom(g′) is closed),
g satisfies (7). �

Lemma 5. There exists a function f : X ×N (U) → Y, such that:

(8) For every simplex ∆J of N (U), f is continuous on X ×∆J , and:

∀x ∈ SJ , f(x,∆J) ⊂ Tx

Proof. We consider as in the proof of Lemma 3,

H =
{

(f,L), L is a subcomplex of N (U),
f : X × L → Y satisfies (8) with L in the place of N (U)

}
.

To show the non emptiness of H, we define for every i ∈ I, hi(., ui) a continuous
extension of σi |S{i} . We see that (hi, {ui}) ∈ H, ∀i ∈ I, i.e. H is not empty.

The end of the proof is analoguous1 with the similar part of Lemma 3 �

The end of the proof of Theorem 2 is identical with that of Theorem 1. Let a
continuous function g : X × N (U) → Y satisfying (8). Let Ψ : X → N (U) the
canonical function defined by Ψ(x) =

∑
i∈I

Ψi(x)ui,∀x ∈ X. Define, in a last time,

the function f : X → Y , by f(x) = g(x,Ψ(x)),∀x ∈ X. The continuity of f can be
obtained as in the proof of Theorem 1.

Verify that f is a selection of T.
Indeed, let x ∈ X and Jx = {i ∈ I,Ψi(x) 6= 0}. We have, x ∈ SJx and then

f(x) = g(x,Ψ(x)) ∈ g(x,∆Jx) ⊂ Tx �

1we replace (5) by (8), (3) by (6), (4) by (7) and lemma 2 by lemma 4.
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Since the condition (ii) of Theorem 2 is satisfied for multi-valued maps with
convex values (remark 1), we deduce the following corollary. A similar result can
be found in [2] (proposition 2, page 81).

Corollary 1. Let T : X → 2Y be a multi-valued map with convex2 values having
locally continuous selections, i.e. ∀x ∈ X, ∃Ux a neighborhood of x on which T has
a continuous selection.

Then, T has a continuous selection (on X).

Proof. Since T has convex values, T is locally continuously contractible (from the
remark 1). T has, in addition, locally continuous selections, therefore, it sat-
isfies hypotheses of Theorem 2, which guarantees the existence of a continuous
selection. �

3. Some deductions

We give in this section some results analogous to those known in the literature
under other hypotheses. See [24, 7, 14, 23, 20] for the third first corollaries. For the
validity of application of previous selection results, the condition A1 is considered
in the regularity conditions (required for spaces) in all following statements.

The first corollary is a fixed point result in product spaces.

Corollary 2. Let I be a countable3 set of indices. For every i ∈ I, let Xi be
a metrizable convex subset of a locally convex topological vector space Ei and Di

a compact subset of Xi. Put X =
∏

i∈I Xi and let, for every i ∈ I, Si : X →
2Di a multi-valued map satisfying either the condition (c) of theorem 1 or the two
conditions (i) and (ii) of theorem 2.

Then, ∃x ∈ X, such that xi ∈ Six,∀i ∈ I. (for x ∈ X, we denote by xi the
projection of x to Ei).

Proof. For all i ∈ I, from Theorem 1 if Si satisfies (c) or Theorem 2 if Si satisfies (i)
and (ii), Si possesses a continuous selection, call it fi. Define f : X →

∏
i∈I Di, x 7→∏

i∈I fi(x). Using Himmelberg’s fixed point theorem (Theorem 2 in [11]), f has a
fixed point, let x. We have : xi ∈ fi(x) ∈ Si(x) �

The following result deals with the quasi-variational inequality.

Corollary 3. Let X be a convex metrizable subset of a locally convex topological
vector space E, D a compact subset of X, Y a separated locally convex topological
vector space, S : X → 2D a continuous multi-valued map with convex closed values,
T : X → 2Y a multi-valued map satisfying either the condition (c) of Theorem 1,
either the two conditions (i) and (ii) of Theorem 2 and f : X × Y × X → IR a
continuous function.

Suppose,
1) The function z 7→ f(x, y, z) is quasi-convex, ∀(x, z) ∈ X × Y,
2) ∀x ∈ X, ∀y ∈ T (x), f(x, y, x) ≥ 0.

2Here, Y is assumed, in addition to A1, to be a topological vector space.
3The condition ”I is countable” is required for the metrizability of the product space

∏
i∈I Xi
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Then, ∃x ∈ S(x),∃y ∈ T (x), such that

f(x, y, x) ≥ 0 for all x ∈ S(x).

Proof. Let σ be a continuous selection of T (which exists from Theorem 1 if T
satisfies (c), or Theorem 2 if T satisfies the conditions (i) and (ii) of this theorem).

Define the function H : X → 2D, by

H(x) = {z ∈ S(x), f(x, σ(x), z) = min
t∈S(x)

f(x, σ(x), t)}

From the continuity of the functions f, σ and S and the compactness of the values
of S, we conclude that H is u.s.c with compact values. Furthermore, we deduce the
convexity of the values of H from the convexity of the values of S and the condition
1).

Then the multi-valued map H : X → 2D satisfies all the hypotheses of the
Himmelberg’s fixed point theorem [11], consequently it has a fixed point x. Let
y = σ(x). We have,

0 ≤ f(x, σ(x), x) = min
t∈S(x)

f(x, σ(x), t) ≤ f(x, y, x),∀x ∈ S(x). �

Now we prove the existence of an equilibrium for abstract economies. By an
abstract economy, we mean a quadruple Γ = (Xi, Ai, Bi, Pi)i∈I . I is an arbitrary
set of indexes (agents), Pi : X =

∏
j∈I Xj → 2Xi is the preference correspondence

for i ∈ I. Ai, Bi : X → 2Xi are the constraint correspondences. An equilibrium for
this economy is a point x ∈ X such that xi ∈ Bi(x) and Ai(x) ∩ Pi(x) = ∅,∀i ∈ I.

Corollary 4. Let Γ = (Xi, Ai, Bi, Pi)i∈I be an abstract economy in which I is
countable. Let X =

∏
i∈I Xi. Suppose, ∀i ∈ I,

1) Xi is a convex metrizable subset of a locally convex topological vector space
Ei,

2) ∀x ∈ X, Bi(x) is convex and Ai(x) ⊂ Bi(x) ⊂ Di, where Di is a compact
subset of Xi.

3) The map x 7−→ Bi(x) is u.s.c. on X.
4) The set Wi = {x ∈ X, Ai(x) ∩ Pi(x) 6= ∅} is open.
5) The map Ti : Wi → 2Xi , Ti(x) = Ai(x) ∩ Pi(x) satisfies the condition (c) of

theorem 1 or the two conditions (i) and (ii) of theorem 2.
6) ∀x ∈ X, xi /∈ Ai(x) ∩ Pi(x).

Then, Γ possesses an equilibrium, i.e. ∃x ∈ X, such that xi ∈ Bi(x) and Ai(x) ∩
Pi(x) = ∅,∀i ∈ I.

Proof. For every i ∈ I, Ti admits a continuous selection fi ( from Theorem 1 or
Theorem 2).

Define, for all i ∈ I, the set-valued map Gi : X → Xi

Gi(x) =

{
fi(x) if x ∈ Wi,

Bi(x) otherwise.

Let us prove that Gi is u.s.c. The upper semicontinuity of Gi on Wi is a consequence
of the continuity of fi. Then, we have to show that Gi is u.s.c on X\Wi (X\Wi is
the complement of Wi in X).
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Let x ∈ X\Wi and O an open set in Xi which contains Gi(x). Then Bi(x) =
Gi(x) ⊂ O. From 3), ∃Q a neighborhood of x in X such that Bi(x′) ⊂ O,∀x′ ∈ Q.

From 2), fi(x′) ⊂ Ai(x′) ⊂ Bi(x′),∀x′ ∈ Wi. Therefore Gi(x′) ⊂ Bi(x′),∀x′ ∈ X.
We deduce that ∀x′ ∈ Q,Gi(x′) ⊂ O. Then Gi is u.s.c.

The set-valued map G :
∏

i∈I Xi →
∏

i∈I Di defined by G(x) =
∏

i∈I Gi(x),∀x ∈∏
i∈I Xi is u.s.c. [10], with closed convex values. G satisfies all the hypotheses

of Himmelberg’s [11] fixed point theorem. Consequently, it admits a fixed point,
call it x. We have, ∀i ∈ I, xi ∈ Gi(x). Taking 6) into account, we conclude that
xi ∈ X\Wi,∀i ∈ I and then, xi ∈ Bi(x) and Ai(x) ∩ Pi(x) = ∅,∀i ∈ I. �

We can apply Theorem 1 to prove, as in [12], the following coincidence result:

Theorem 3. Let X be a compact convex metrizable subset of a locally convex topo-
logical vector space E, Y a separated locally convex topological vector space and
C : X → 2Y a multi-valued map satisfying either the condition (c) of Theorem 1 or
the two conditions (i) and (ii) of Theorem 2. Then,

1) For every continuous function h : Y → X, there exists y0 ∈ Y such that
y0 ∈ C(h(y0)).

2) For every multi-valued map R : X → 2Y such that R−1 has a continuous
selection,

∃x0 ∈ X, C(x0) ∩R(x0) 6= ∅.

Proof. Denote by ρ a continuous selection of C (which exists from Theorem 1 if C
satisfies (c), or Theorem 2 if C satisfies (i) and (ii)).

From the proof of Theorem 1 or 2 (following the case), ρ is factorized as :

X
ρ−→ Y

Φ1 ↘ ↗ g
X ×N

where N is a geometric realization of a complex with a finite number of vertices in
this case. In fact, since X is compact, the covering used, in proofs of Theorems 1
and 2, for the construction of a continuous selection for the considered multi-valued
map can be taken finite. Φ1 is continuous. The function g given by Lemma 3 or
5 (following the used theorem) is also continuous, because it is continuous on all
subsets of type X×∆S , where ∆S is a simplex of N , and N contains a finite number
of simplexes. According to A1, g has a continuous extension g̃ : X × co(N ) → Y .
Put

Φ2 : X × co(N )
g̃−→ Y

h−→ X
Φ1−→ X ×N . Φ2 = Φ1 ◦ h ◦ g̃.

Φ2 is continuous, defined from the convex compact locally convex X × co(N ) into
itself. So it has a fixed point (apply for example Tychonoff’s fixed point theorem)
which we denote by (p0, q0) ∈ X ×N . Put y0 = g̃(p0, q0). We have : Φ1(h(y0)) =
(p0, q0) and then, g̃(Φ1(h(y0))) = y0, but, g̃ ◦ Φ1 = g ◦ Φ1 = ρ, which gives :
ρ(h(y0)) = y0, i.e. y0 ∈ C(h(y0)).

2) If R is a multi-valued map such that R−1 has a continuous selection, denoted
by h. From 1), ∃y0 ∈ Y such that y0 ∈ C(h(y0)). Put x0 = h(y0). Then, y0 ∈
R(x0) ∩ C(x0). �
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Corollary 5. Let I, J be two countable sets of indices, for every i ∈ I (resp.
j ∈ J), Xi (resp. Yj) a convex compact and metrizable subset of a locally con-
vex topological vector space Ei (resp. Fj), Gi : Y =

∏
j∈J Yj → 2Xi (resp. Hj : X =∏

i∈I Xi → 2Yj ) a multi-valued map satisfying either the condition (c) of Theorem
1 or the conditions (i) and (ii) of Theorem 2.

Then, ∃x ∈ X, ∃y ∈ Y, such that yj ∈ Hj(x) and xi ∈ Gi(y),∀(i, j) ∈ I × J.

Proof. Consider the two multi-valued maps C,R : X → 2Y defined by C(x) =∏
j∈J Hj(x) and R(x) =

⋂
i∈I

{y ∈ Y, xi ∈ Gi(y)}, for every x ∈ X. Then, R−1(y) =∏
i∈I

Gi(y), for every y ∈ Y . The multi-valued maps Hj and Gi, (j, i) ∈ J × I, have

(according to Theorem 1 or 2) continuous selections. Consequently, C and R−1

have continuous selections. After this, we apply the previous theorem, note that
its proof remains true if the multi-valued map C is supposed to have a continuous
selection. Then, there exists x ∈ X such that C(x)∩R((x)) 6= ∅. To end the proof,
choose an element y ∈ C(x) ∩R(x). �

An analogous result of the last corollary can be found in [25].

4. Comments and examples

Both of Theorems 1 and 2 are improvements, in a large class of topological spaces,
of the theorem of X. Wu and S. K. Shen [23], which is itself a generalization of the
theorem of N. C. Yannelis and N. D. Prabhakar [24].

Theorem 4 (Wu et Shen). Let X be a paracompact subset of a separated topological
space E and Y a separated topological vector space. Let S and T : X → 2Y be two
multi-valued maps satisfying the following conditions :

(i′) ∀x ∈ X, S(x) is nonempty and co(S(x)) ⊂ T (x),
(ii′) S satisfies the local intersection propriety.

Then, T has a continuous selection.

Deduction of Theorem 4 from Theorem 1: The multi-valued map co(S(.))
satisfies the condition (c) of Theorem 1. Indeed, from (ii′), in each point x of
X, there exists a neighborhood Ux of x in which the intersection of values of S is
nonempty ( ∩

x′∈Ux

S(x′) 6= ∅), since the values of co(S(.)) are convex, for every open

set V ⊂ Ux, ∩
x′∈V

co(S(x′)) is nonempty and contractible. Then co(S(.)) admits, by

virtue of Theorem 1, a continuous selection, which is a selection of T by (i′).

Deduction of Theorem 4 from Theorem 2: As it is mentioned in Remark 2,
the condition (ii′) is stronger than the condition (i) of Theorem 2. Since S(x) ⊂
co(S(x)),∀x ∈ X, co(S(.)) satisfies the condition (i) of Theorem 2. From Remark 1,
the application co(S(.)) is locally continuously contractible, i.e. satisfies the con-
dition (ii) of Theorem 2. Therefore, co(S(.)) admits a continuous selection from
Theorem 2, which will be a continuous selection of T from (i′).

We are wondering whether the condition (ii) of the theorem 2 can (or not) be
implicated by the continuity of the application T and the contractibility of its values.
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This question is a subject of our actual interests. But, in the case of Theorem 1,
this question has a very easy answer. Precisely, it is very easy to see that the
condition (c) can not be necessarily induced by the property of local intersection,
the continuity of the application C and the contractibility of its values, as it is
shown by the following example:

Example 1. Let Γ : [0, 1] → 2IR2
, where IR is the real line,

Γ(x) = [0, 1]× {0} ∪ [0, 1]× {1} ∪ {x} × [0, 1].

Γ is continuous, with contractible values and satisfies the local intersection property.
However, Γ dos not satisfies the condition (c).

We can also remark that the condition (c) of Theorem 1 is stronger than the
following condition :

(c′) ∀x0 ∈ X, ∃U a neighborhood of x0 such that ∩
x∈U

C(x) is nonempty and

contractible.
It is clear that if the condition (c) is satisfied, (c′) is also satisfied. The following
example shows that the condition (c) is stronger than the condition (c′).

Example 2. C : [−1, 1] → 2IR,

Cx =

{
[1, 2] ∪ [−2,−1], if |x| ≥ 1/4,
[1, 2], else.

.

C satisfies (c′) but not (c).

Now we give an example which proves that conditions of Theorems 1 and 2 are
not a rewriting of the H-convexity of values of the considered multi-valued map,
whatever the considered convexity structure defined on the image space.

Example 3. Let C be the unite circle of the euclidien space IR2 and the application
defined as:

S : C −→ 2C

x 7−→ {y ∈ C, ‖x− y‖ ≥
√

2}
‖.‖ is the euclidien norm.

Consider the function:
ϕ : IR −→ C

p 7−→ (cos(p), sin(p)),

Let x0 ∈ C, p0 ∈ IR such that ϕ(p0) = x0 and σ a continuous selection of S defined
on the set V0 = ϕ([p0 − π

2 , p0 + π
2 ]).

∀x ∈ V0, there exists a unique p ∈ [p0 − π
2 , p0 + π

2 ] such that x = ϕ(p). Sx ={
ϕ(r), r ∈ [p + π

2 , p + 3π
2 ]

}
=

{
ϕ(p + π

2 + λ), λ ∈ [0, π]
}

.

∀z ∈ Sx, there exists a unique r ∈ [p + π
2 , p + 3π

2 ] such that z = ϕ(r) with
r = p + π

2 + λ, λ ∈ [0, π]. We denote this r by rz.
S satisfies the condition (c) of Theorem 1. Indeed, it is not difficult to see that

∀V open contained in V0, ∩x∈V S(x) is a nonempty arc of C. Prove that S satisfies
the hypotheses of theorem 2. Since S satisfies the local intersection property, it
suffices to prove that S is locally continuously contractible.
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Let H : [p0 − π
2 , p0 + π

2 ]× [0, π] −→ GrV0S defined by

H(p, λ) = (ϕ(p), ϕ(p +
π

2
+ λ))

H is a continuous bijection, and since Dom(H) is compact, it is an homeomor-
phism. Then, H−1 is continuous from GrV0S to [p0 − π

2 , p0 + π
2 ]× [0, π].

If Π1 is the projection of IR2 to the abscissa axe and Π2 the projection of IR2 to
the ordinate axe, for x = ϕ(p) ∈ V0 and z ∈ Sx, z = ϕ(rz), p = Π1H

−1(x, z) and
λ = Π2H

−1(x, z) and rz = p + λ + π
2 .

Then the map (x, z) 7→ rz is continuous.
Let the function M : GrV0S × [0, 1] → C defined by,

M(x, z, t) = ϕ(trz + (1− t)rσ(x)

It is clear that M is continuous, M(x, z, 1) = z and M(x, z, 0) = σ(x) and it is easy
to see that M(x, z, [0, 1]) = ϕ([rz, rσ(x)]) is the arc (z, σ(z)) which is contained in
S(x).

Now, independently of the chosen convexity structure defined on IR2, prove that
the values of S can not be H−convex at the same time.

For this reason, we endow IR2 with a given c-structure [12] F. Recall that a c-
structure on a given topological space E is a set-valued map F : 〈E〉 → 2E , (〈E〉 is
the set of all finite subsets of E) satisfying the two axioms:

1)∀A ∈ 〈E〉, F (A) is contractible,
2)∀A,B ∈ 〈E〉, A ⊂ B =⇒ F (A) ⊂ F (B).
A subset D of E is said to be H-convex [19] ( or an F -set [12]) if, ∀A ∈

〈D〉, F (A) ⊂ D.
Consider the following four points of C: y1 = (1, 0), y2 = (0, 1), y3 = (−1, 0), y4 =

(0,−1). S(yi) is the half circle containing the points yj , j 6= i.
Suppose that S(yi) is H-convex, ∀i ∈ {1, ..., 4}. Since S(y1) and S(y3) are H-

convex, we shall have F ({y2, y4}) ⊂ S(y1) and F ({y2, y4}) ⊂ S(y3), and then
F ({y2, y4}) ⊂ S(y1) ∩S(y3) = {y2, y4}. It follows the two possibilities:

either F ({y2, y4}) = y2 either F ({y2, y4}) = y4.

The same arguments allow us to obtain

either F ({y1, y3}) = y3 either F ({y1, y3}) = y1.

Since F is monotonic (satisfies 2)), we obtain :

(9) either F ({y2}) = F ({y4}) = y2 either F ({y2}) = F ({y4}) = y4.

and

(10) either F ({y1}) = F ({y3}) = y3 either F ({y1}) = F ({y3}) = y1.

Take one possibility of (9) and (10), for example:

F ({y2}) = F ({y4}) = y2 and F ({y1}) = F ({y3}) = y3.

We obtain: F ({y1, y2, y4}) ⊃ {y2, y3}, and then F ({y1, y2, y4}) * S(y3). This is
an absurdity because S(y3) ⊃ {y1, y2, y4} and it is supposed to be H-convex. The
other possibilities imply analogous absurdities.

We conclude that all the values of S can not be H-convex, at the same time.
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