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Abstract. In this paper, we establish Karush-Kuhn-Tucker (for short, we call
KKT) type necessary and sufficient optimality conditions for an ε-optimal solu-
tion of a nondifferentiable general minimax programming problem. These opti-
mality conditions are then utilized to derive ε-optimality conditions for a gener-
alized fractional programming problem with nondifferentiable convex inequality
constraints, linear equality constraints and abstract constraints, by employing
ε-parametric technique.

1. Introduction and prerequisites

Study for approximate solutions of nonlinear programming problems has gained
momentum in recent years. This is because of the fact that most of the mathematical
models formulated for practical problems are not precise copies of the original prob-
lems, but only approximate ones. Also, from a computational viewpoint, algorithms
developed in the literature to solve nonlinear programming problems compute only
approximate solutions for such problems. Above all, this notion seems to be use-
ful for the problems that otherwise have no optimal solutions. Hence, study for
approximate solutions is of great interest.

Several authors have turned their attention to properties for approximate solu-
tions of nonlinear optimization problems. Notably, Strodiot, Nguyen, and Heukemes
[13] derived ε-optimality conditions of KKT type for points which are within ε of
being optimal, i.e., ε-approximate optimal to the problem of minimizing a nondif-
ferentiable convex objective function subject to nondifferentiable convex inequality
constraints, linear constraints and abstract constraints with Slater’s constraint qual-
ification. Subsequently, they employed these optimality conditions to illustrate the
mechanism of a bundle algorithm. In [10], Loridan discussed some properties of ε-
efficient solutions for vector minimization problems. Later, Liu [8] adapted similar
approach to obtain ε-duality results for nondifferentiable nonconvex multiobjective
programming problems. Using an ε-parametric approach, Liu and Yokoyama [9] es-
tablished necessary and sufficient optimality conditions and ε-duality theorems for
an ε-Pareto optimal solution of a nonlinear multiobjective fractional programming
problem.

In this paper, we wish to extend some of the results of [9] to generalized minimax
programming problems.
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The paper is organized as follows. In Section 2, we obtain necessary and suf-
ficient optimality conditions of KKT type for an ε-optimal solution of a minimax
programming problem, while in Section 3, we concentrate on the generalized frac-
tional programming and employ ε-parametric approach to transform the problem
into a minimax nonlinear parametric programming problem. Results of Section 2
are then utilized to derive ε-optimality conditions for generalized fractional pro-
gramming problem. In Section 4, we show ε-KKT conditions of the generalized
fractional programming and give an example. In Section 5, associated with an
ε-KKT condition, we show a duality result under some restrictive assumption.

Throughout the paper, Rn denote the n-dimensional Euclidean space, and ε > 0
is the permissible error. We first recall the following definitions and results that are
needed in the sequel.

Definition 1.1 ([7]). Let ψ : Rn → R ∪ {+∞} be a convex function, finite at x.
The ε-subdifferential of ψ at x is the set defined by

∂εψ(x) = {ξ ∈ Rn |ψ(y) = ψ(x̄)− ε+ 〈ξ, y − x〉 for any y ∈ Rn} .

Definition 1.2 ([7]). Let C be a nonempty closed convex set in Rn. The ε-normal
cone of C at x is the set defined by

Nε(C;x) = {ξ ∈ Rn | 〈ξ, y − x〉 5 ε for any y ∈ C} .

Lemma 1.1 ([13, Theorem 4.2]). Let Y be a compact topological vector space, and
let φ(x, y) be a real-valued function defined on Rn×Y , convex in x for every y ∈ Y ,
and upper semi-continuous in y for every x ∈ Rn. Set ψ(x) = maxy∈Y φ(x, y), and
let x ∈ Rn. Then, x∗ ∈ ∂εψ(x) if and only if there exist n+1 points y1, . . . , yn+1 ∈ Y ,
scalars αi = 0, εi = 0, 1 5 i 5 n+ 1 such that

(a) x∗ ∈
n+1∑
i=1

∂εi(αiφ(x, yi))

(b) 0 5 ψ(x)−
n+1∑
i=1

αiφ(x, yi) 5 ε−
n+1∑
i=1

εi ,

(c)
n+1∑
i=1

αi = 1.

2. Minimax programming problems

Minimax programming is a growing area of research. Over the years, considerable
attention has been paid to develop the theory and solution methods for minimax
programming problems that arise frequently in practice. These problem area spread
over a wide range of fields from approximate problems to more difficult facility
allocation problems. For more applications and comprehensive theory of minimax
problems, see Danskin [2], Dem’yanov and Malzemov [3], Du and Pardalos [4] and
references cited therein.

In this section, we study the following nondifferentiable general minimax pro-
gramming problem

min
x∈S

f(x)(P)
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where f(x) = max
y∈Y

φ(x, y),

S = {x ∈ Rn |hj(x) 5 0, 1 5 j 5 m ;Ax = b; x ∈ C}, is a nonempty feasible
set; A ∈ Rk×n and b ∈ Rk ; C ⊆ Rn is a nonempty convex set, and Y ⊆ Rm is
a nonempty compact set ; φ : Rn × Y → R ; hj : Rn → R, 1 5 j 5 m ; hj(·),
1 5 j 5 m, are convex on Rn and φ(·, y) is convex on S for any y ∈ Y ; φ(x, ·) is
upper semicontinuous on Y for each x ∈ S. Also, minimization means obtaining an
ε-optimal solution in the sense defined below.

Definition 2.1. x ∈ S is said to be an ε-optimal solution of (P) if

f(x) + ε = f(x̄) for any x ∈ S.

In order to establish necessary and sufficient optimality conditions to obtain an
ε-optimal solution of (P), we have to assume constraint qualification of Slater’s type
for (P).

(CQ) ∃x0 ∈ Rn such that hj(x0) < 0, 1 5 j 5 m; Ax0 = b; x0 ∈ intC ,

where, intC denotes the interior of C in the space Rn.
We now derive the ε-optimality conditions for the problem (P).

Theorem 2.1. Suppose (CQ) holds for (P). x ∈ S is an ε-optimal solution of (P),
if and only if there exist n + 1 points y1, . . . , yn+1 ∈ Y , scalars αi = 0, εi = 0,
1 5 i 5 n+ 1, µj = 0, ε̂j = 0, 1 5 j 5 m, εc = 0 and a vector η ∈ Rk such that

0 ∈
n+1∑
i=1

∂εi(αiφ(x, yi))(x) +
m∑

j=1

∂ε̂j
(µjhj)(x) +AT η +Nεc(C;x),

n+1∑
i=1

εi +
m∑

j=1

ε̂j + εc −
n+1∑
i=1

αiφ(x, yi) + max
y∈Y

φ(x, y)− ε 5
m∑

j=1

µjhj(x) 5 0,

n+1∑
i=1

αi = 1 .

Proof. From [13, Theorem 2.4], it follows that, x ∈ S is an ε-optimal solution of (P)
if and only if there exist scalars ε0 = 0, µj = 0, ε̂j = 0 (1 5 j 5 m), εc = 0, and a
vector η ∈ Rk

0 ∈ ∂ε0f(x) +
m∑

j=1

∂ε̂j
(µjhj)(x) +AT η +Nεc(C;x)

ε0 +
m∑

j=1

ε̂j + εc − ε 5
m∑

j=1

µjhj(x) 5 0 .

Now, using the characterization of ε0-subgradient of max function, stated in
Lemma 1.1, we get that, x ∈ S in an ε-optimal solution of (P) only if there exist
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n+ 1 points y1, . . . , yn+1 ∈ Y , scalars αi = 0, εi = 0, 1 5 i 5 n+ 1, such that

0 ∈
n+1∑
i=1

∂εi(αiφ(x, yi))(x) +
m∑

j=1

∂ε̂j
(µjhj)(x) +AT η +Nεc(C;x),

n+1∑
i=1

εi +
m∑

j=1

ε̂j + εc −
n+1∑
i=1

αiφ(x, yi) + max
y∈Y

φ(x, y)− ε 5
m∑

j=1

µjhj(x) 5 0,

n+1∑
i=1

αi = 1 .

3. Generalized fractional programming problems

A particular case of minimax programming problem is a generalized fractional
programming problem in which the objective is to minimize the largest of the several
ratios. Such problems arise in management applications of goal programming, re-
source allocation problems, financial and economic planning problems and problems
in numerical mathematics. Research surveys by Schaible and Ibaraki [11], Schaible
and Shi [12] contains a large bibliography on generalized fractional programming
problems, its applications and solutions methods. Various algorithms for solving
generalized fractional programs are also reported in [1].

We concentrate on the following generalized fractional programming problem

min
x

max
15i5p

fi(x)
gi(x)

(FP)

subject to x ∈ S

where fi, gi : Rn → R and the feasible set S is the same as defined in Section 2. We
assume the following:

fi(·),−gi(·), 1 5 i 5 p are convex on S, inf
x∈S

gi(x) > 0, 1 5 i 5 p.

Moreover, minimization means obtaining an ε-optimal solution, that is, to find
x ∈ S such that

max
15i5p

fi(x)/gi(x) + ε = max
15i5p

fi(x)/gi(x) for any x ∈ S.

Using the ε-parametric approach, we associate the following minimax nonlinear
parametric programming problem, involving a parameter v ∈ R, with the primal
problem (FP):

min
x

max
15i5p

(fi(x)− vgi(x))(Pv)

subject to x ∈ S.

The next theorem establishes the relationship between the ε-optimal solutions of
(FP) and (Pv), for some parameter v ∈ R.
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Theorem 3.1. Let x ∈ S be an ε-optimal solution of (FP). Then, there exists
v = max15i5p fi(x)/gi(x) − ε such that x is an ε-optimal solution of (Pv) where
ε = ε max15i5p gi(x).

Proof. Since x ∈ S is an ε-optimal solution of (FP), hence

max
15i5p

fi(x)/gi(x) + ε = max
15i5p

fi(x)/gi(x) for any x ∈ S(3.1)

⇒ max
15i5p

fi(x)/gi(x) = v for any x ∈ S

⇒ max
15i5p

(fi(x)− vgi(x)) = 0 for any x ∈ S.

Also, since v = max15i5p fi(x)/gi(x)− ε, hence

fi(x)− vgi(x) 5 ε gi(x) 5 ε max
15i5p

(gi(x)) for any 1 5 i 5 p .

Thus,
fi(x)− vgi(x) 5 ε for any 1 5 i 5 p .

The above inequality along with (3.1) yield

max
15i5p

(fi(x)− vgi(x)) = max
15i5p

(fi(x)− vgi(x))− ε for any x ∈ S.

Therefore, x is an ε-optimal solution of (Pv). �

Remark 3.1. Converse conclusion of the above theorem needs not follow, i.e., if
x ∈ S is an ε-optimal solution of (Pv) where v = max15i5p fi(x)/gi(x)− ε = 0 and
ε = max15i5p gi(x), then x needs not be an ε-optimal soltion of (FP), as illustrated
by the following example.

Example 3.1. Let f1(x) = 2x − 1, f2(x) = 3x2 − 2, g1(x) = x + 1, g2(x) = 6,
h1(x) = x(x− 2), x ∈ R. Then, (FP) is given by

min
x

max
(
(2x− 1)/(x+ 1), (3x2 − 2)/6

)
subject to x ∈ S = [0, 2] .

Let x = 1 and ε = 2. Then, ε = ε max(g1(x), g2(x)) give ε = 1/3 and v =
max(f1(x)/g1(x), f2(x)/g2(x))− ε = 1/6. The parametric minimax problem (Pv) is
given by

min
x∈S

max(f1(x)− vg1(x), f2(x)− vg2(x)) = min
x∈S

max
(
(11x− 7)/6, 3x2 − 3

)
and we have for any x ∈ S,

max(f1(x)− vg1(x), f2(x)− vg2(x)) = −7/6.

so, we have

max(f1(x)− vg1(x), f2(x)− vg2(x)) + ε̄

= max(f1(x)− vg1(x), f2(x)− vg2(x)) for any x ∈ S.

Hence, x = 1 is an ε-optimal solution of (Pv). But, since

max(f1(0)/g1(0), f2(0)/g2(0)) = −1/3
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we have

max(f1(0)/g1(0), f2(0)/g2(0)) + ε = −1/3 + 1/3

� 1/2 = max(f1(x)/g1(x), f2(x)/g2(x)).

Therefore, x = 1 is not an ε-optimal solution of (FP).

4. ε-optimality conditions for fractional programs

Utilizing ε-optimality conditions for minimax programming problem, as devel-
oped in Section 2 of the present paper, we now derive the necessary and sufficient
optimality conditions of KKT type for an ε-optimal solution of a generalized frac-
tional programming problem (FP).

Theorem 4.1 (Necessary Optimality Condition). Suppose that (CQ) holds and
v̄ = max15i5p fi(x̄)/gi(x̄) − ε. Let x ∈ S be an ε-optimal solution of (FP), with
0 < ε < max15i5p fi(x)/gi(x). Then, there exist scalars v = 0, αi = 0, ε1i = 0, ε2i =

0 (1 5 i 5 p), ε3j = 0, µj = 0 (1 5 j 5 m), εc = 0 and a vector η ∈ Rk such that

(4.1) 0 ∈
p∑

i=1

(∂ε1i(αifi)(x) + ∂ε2i(αiv(−gi))(x)) +
m∑

j=1

∂ε3j (µjhj)(x)

+AT η +Nεc(C;x)

(4.2)
p∑

i=1

(ε1i + ε2i) +
m∑

j=1

ε3j + εc − ε max
15i5p

gi(x) + max
15i5p

(fi(x)− vgi(x))

−
p∑

i=1

αi(fi(x)− vgi(x)) 5
m∑

j=1

µjhj(x) 5 0 ,

(4.3)
p∑

i=1

αi = 1.

Proof. Since x ∈ S is an ε-optimal solution of (FP) it follows, from Theorem 3.1,
that x is an ε-optimal solution of (Pv) where ε = ε max15i5p(gi(x)). Rewrite (Pv)
as minx∈S max15i5p φ(x, i) where φ(x, i) = fi(x) − vgi(x) . Now, by Theorem 2.1,
there exist scalars αi = 0, ε0i = 0 (1 5 i 5 p), with

∑p
i=1 αi = 1, ε3j = 0, µj =

0(1 5 j 5 m), εc = 0 and a vector η ∈ Rk such that

0 ∈
p∑

i=1

∂ε0i(αi(fi − vgi))(x) +
m∑

j=1

∂ε3j (µjhj)(x) +AT η +Nεc(C;x),

p∑
i=1

ε0i +
m∑

j=1

ε3j + εc −
p∑

i=1

αi(fi(x)− vgi(x))

+ max
15i5p

(fi(x)− vgi(x))− ε max
15i5p

gi(x) 5
m∑

j=1

µjhj(x) 5 0 ,
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which, on using [7, Theorem 2.1], yield (4.1), (4.2), and (4.3). �

We give an example of ε-KKT conditions of the generalized minimax program-
ming problem (FP) in which (CQ) does not hold necessarily.

Example 4.1.

min
x1, x2

max ((0.5x1 + 4)/g1(x1, x2), f2(x1, x2)/0.1)(FP)

subject to |x1| − x2 − 1 5 0

− x1 + x2 5 0

− x1 + 1/2 5 0

where g1(x1, x2) =


4 if x2 = 2
−(x2 − 2)2 + 4 if 0 5 x2 5 2
4x2 if x2 5 0

f2(x1, x2) =

{
−1.2 if x2 = 2
−x1 + 0.8 if x2 5 2

.

There does not exist an exact solution of (FP).
Let ε = 0.1. Then, we have x̄ = (2, 2) is an ε-solution of (FP) and v̄ =

max15i5p fi(x̄)/gi(x̄)− ε = max((0.52 + 4)/4,−1.2)− 0.1 = 0.96.
From ε-subdifferential calculus, we have that

∂0.0225(9/10 ∗ f1)(2, 2) = ([−0.47, 0], 0),

∂0.0225(9/10 ∗ 0.96 ∗ (−g1))(2, 2) = (0, [−0.31, 0]),

∂0.005(1/10 ∗ f2)(2, 2) = ([−10, 0], 0),

∂0(1/10 ∗ 0.96 ∗ (−g2))(2, 2) = (0, 0),

∂0.05(1 ∗ h1)(2, 2) = ([1− 0.05/2, 1],−1),

∂0(1 ∗ h2)(2, 2) = (−1, 1)

∂0(0 ∗ h3)(2, 2) = (0, 0).

Then, there exist

v̄ = 0.96, α1 = 9/10, α2 = 1/10,
ε11 = ε21 = 0.0225, ε12 = 0.005, ε22 = 0, ε31 = 0.05, ε32 = ε33 = 0
µ1 = µ2 = 1, µ3 = 0

such that

(0, 0) ∈ ∂0.0225(9/10 ∗ f1)(2, 2) + ∂0.0225(9/10 ∗ 0.96 ∗ (−g1))(2, 2)

+ ∂0.005(1/10 ∗ f2)(2, 2) + ∂0(1/10 ∗ 0.96 ∗ (−g2))(2, 2)

+ ∂0.05(1 ∗ h1)(2, 2) + ∂0(1 ∗ h2)(2, 2),

(0.0225 + 0.0225) + (0.005 + 0) + (0.05 + 0)− 0.1 ∗max(4, 0.1)

+ max(0.52 + 4− 0.96 ∗ 4,−1.2− 0.96 ∗ 0.1)
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− (9/10) ∗ (0.52 + 4− 0.96 ∗ 4)− (1/10) ∗ (−1.2− 0.96 ∗ 0.1)

5 0

= 1 ∗ h1(2, 2) + 1 ∗ h2(2, 2) + 0 ∗ h3(2, 2),

9/10 + 1/10 = 1.

Theorem 4.2 (Sufficient Optimality Condition). Let x ∈ S, and let there exist
scalars v = 0, ε = 0, αi = 0, ε1i = 0, ε2i = 0, 1 5 i 5 p, ε3j = 0, µj = 0,
1 5 j 5 m, εc = 0 and a vector η ∈ Rk such that

(4.4) 0 ∈
p∑

i=1

(∂ε1i(αifi)(x) + ∂ε2i(αiv(−gi))(x))

+
m∑

j=1

∂ε3j (µjhj)(x) +AT η +Nc(C;x),

p∑
i=1

(ε1i + ε2i) +
m∑

j=1

ε3j + εc − ε

p∑
i=1

αigi(x) 5
m∑

j=1

µjhj(x) 5 0 ,(4.5)

fi(x)− vgi(x̄) = ε gi(x), 1 5 i 5 p,(4.6)
p∑

i=1

αi = 1 .(4.7)

Then, x is an ε-optimal solution of (FP).

Proof. In view of (4.6), condition (4.5) can be written as

(4.8)
p∑

i=1

(ε1i + ε2i) +
m∑

j=1

ε3j + εc −
p∑

i=1

αi(fi(x)− vgi(x))

+ max
15i5p

(fi(x)− vgi(x))− ε max
15i5p

gi(x) 5
m∑

j=1

µjhj(x) 5 0 .

Also, from (4.4), we get

(4.9)
p∑

i=1

(∂ε1i(αifi)(x) + ∂ε2i(αiv(−gi))(x))

+
m∑

j=1

∂ε3j (µjhj)(x) +AT η +Nεc(C;x)

⊂
p∑

i=1

∂ε0i(αi(fi − vgi))(x) +
m∑

j=1

∂ε3j (µjhj)(x) +AT η +Nεc(C;x)

where ε0i = ε1i + ε2i, as ∂vψ + ∂ωφ ⊂ ∂v+ω(ψ + φ). Letting

(4.10) ε0 =
p∑

i=1

ε0i −
p∑

i=1

αi(fi − vgi)(x) + max
15i5p

(fi(x)− vgi(x))
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in (4.8), we get

(4.11) ε0 +
m∑

j=1

ε3j + εc − ε 5
m∑

j=1

µjhj(x) 5 0 .

From (4.7), (4.9) and (4.10), and on using Lemma 1.1, we get

0 ∈ ∂ε0

(
max
15i5p

(fi − vgi)
)

(x) +
m∑

j=1

∂ε3j (µjhj)(x) +AT η +Nεc(C;x) ,

which, together with (4.11), give that x is an ε-optimal solution of (Pv). Thus,

max
15i5p

(fi(x)− vgi(x)) = max
15i5p

(fi(x)− vgi(x))− ε for any x ∈ S ,

which, in view of (4.6), implies

max
15i5p

fi(x)/gi(x) = max
15i5p

fi(x)/gi(x)− ε for any x ∈ S .

Hence, x is an ε-optimal solution of (FP). �

5. Duality result

From the necessary condition, we are interestd in a dual problem:

(D) Maximize v

subject to 0 ∈
p∑

i=1

(∂ε1i(αifi(x)) + ∂ε2i(αiv(−gi))(x)(5.1)

+
m∑

j=1

∂ε3j (µjhj)(x) +A>η +Nεc(C;x),

fi(x)− vgi(x) = εgi(x) (1 5 i 5 p),(5.2)
p∑

i=1

(ε1i + ε2i) +
m∑

j=1

ε3j + εc − ε max
15i5p

gi(x)(5.3)

+ max
15i5p

(fi(x)− vgi(x))−
p∑

i=1

αi(fi(x)− vgi(x))

5
m∑

j=1

µjhj(x) 5 0,

A>x = b,(5.4)
p∑

i=1

αi = 1,(5.5)

αi = 0, ε1i = 0, ε2i = 0 (1 5 i 5 p), ε3j = 0, µj = 0 (1 5 j 5 m).(5.6)

Let SD be the set of all feasible points (x, v, α1, . . . , αp, ε11, . . . , ε1p, ε21, . . . , ε2p,
ε31, . . . , ε3m, εc, µ1, . . . , µm, η) for the dual problem (D).
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Definition 5.1. We call that (x̄, v̄, ᾱ1, . . . , ᾱp, ε̄11, . . . , ε̄1p, ε̄21, . . . , ε̄2p, ε̄31, . . . , ε̄3m,
ε̄c, µ̄1, . . . , µ̄m, η̄) ∈ SD is an ε-optimal solution of (D) if v̄ = v−ε for all (x, v, α1, . . . ,
αp, ε11, . . . , ε1p, ε21, . . . , ε2p, ε31, . . . , ε3m, εc, µ1, . . . , µm, η) ∈ SD.

We suppose some restrictive assumption and show a duality result.

Theorem 5.1 (Duality Theorem). Let x̄ ∈ S. Suppose that

fi(x̄)/gi(x̄) (1 5 i 5 p) are constant.

If x̄ is an ε-optimal solution of (FP), then there exist scalars v̄ = 0, ᾱi = 0, ε̄1i =
0, ε̄2i = 0 for 1 5 i 5 p, ε̄3j = 0, µ̄j = 0 for 1 5 j 5 m and a vector η̄ ∈ Rk such
that (x̄, v̄, ᾱ1, . . . , ᾱp, ε̄11, . . . , ε̄1p, ε̄21, . . . , ε̄2p, ε̄31, . . . , ε̄3m, ε̄c, µ̄1, . . . , µ̄m, η̄) is an ε-
optimal solution of (D).

Proof. Let v̄ = max15i5p fi(x̄)/gi(x̄)−ε. From the assumption, we have that for any
1 5 i 5 p, fi(x̄)− v̄gi(x̄) = fi(x̄)− (fi(x̄)/gi(x̄)− ε)gi(x̄) = εgi(x̄), i.e., (5.2) holds.
Then we have that from Theorem 4.1 (x̄, v̄, ᾱ1, . . . , ᾱp, ε̄11, . . . , ε̄1p, ε̄21, . . . , ε̄2p,
ε̄31, . . . , ε̄3m, ε̄c, µ̄1, . . . , µ̄m, η̄) ∈ SD.

Let K(x) = Ax− b. From (5.1), for any (x, v, α1, . . . , αp, ε11, . . . , ε1p, ε21, . . . , ε2p,
ε31, . . . , ε3m, εc, µ1, . . . , µm, η) ∈ SD, there exist ξ1i ∈ ∂ε1i(αifi(x)), ξ2i ∈
∂ε2i(αiv(−gi))(x) for 1 5 i 5 p, ξ3j ∈ ∂ε3j (µjhj(x)) for 1 5 j 5 m and ξ ∈ Nεc(C;x)
such that

p∑
i=1

(ξ1i + ξ2i) +
m∑

j=1

ξ3j +∇K>(x)η + ξ = 0.

From the definition of ε-subdifferential, we have that

αifi(x̄) = αifi(x) + 〈ξ1i, x̄− x〉 − ε1i (1 5 i 5 p),

αiv(−gi)(x̄) = αiv(−gi)(x) + 〈ξ2i, x̄− x〉 − ε2i (1 5 i 5 p),

µjhj(x̄) = µjhj(x) + 〈ξ3j , x̄− x〉 − ε3j (1 5 j 5 m),

0 = 〈ξ, x̄− x〉 − εc,

∇>K(x)(x̄− x) = 0.

So, we have that
p∑

i=1

(αifi(x̄) + αiv(−gi)(x̄)) +
m∑

j=1

µjhj(x̄)

=
p∑

i=1

(αifi(x) + αiv(−gi)(x)) +
m∑

j=1

µjhj(x)

+ 〈
p∑

i=1

(ξ1i + ξ2i) +
m∑

j=1

ξ3j + ξ, x̄− x〉 −
p∑

i=1

(ε1i + ε2i)−
m∑

j=1

ε3j − εc

=
p∑

i=1

(ε1i + ε2i) +
m∑

j=1

ε3j + εc − ε max
15i5p

gi(x) + max
15i5p

(fi(x)− vgi(x))

+ 〈−∇>K(x)η, x̄− x〉 −
p∑

i=1

(ε1i + ε2i)−
m∑

j=1

ε3j − εc (from (5.3))
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= −ε max
15i5p

gi(x) + max
15i5p

(fi(x)− vgi(x))

= 0 (since (5.2) holds).

Since x̄ ∈ S, we have
∑p

i=1(αifi(x̄) + αiv(−gi)(x̄)) = 0 that is

(5.7)
p∑

i=1

(αifi)(x̄)/
p∑

i=1

(αigi)(x̄) = v.

We next show that

(5.8) max
15i5p

fi(x̄)/gi(x̄) =
p∑

i=1

(αifi)(x̄)/
p∑

i=1

(αigi)(x̄).

Let max15i5p fi(x̄)/gi(x̄) = fī(x̄)/gī(x̄). So, from the assumption, fī(x̄)/gī(x̄) =
fi(x̄)/gi(x̄) that is fī(x̄)gi(x̄) − fi(x̄)gī(x̄) = 0 for any i = 1, . . . , p. Then, we have∑p

i=1 αi(fīgi − figī)(x̄) = 0 that is fī(x̄)
∑p

i=1(αigi)(x̄) − gī(x̄)
∑p

i=1(αifi)(x̄) = 0.
Thus, (5.8) holds.

Finally, we have that

v̄ + ε = max
15i5p

fi(x̄)/gi(x̄)− ε+ ε (since v̄ = max
15i5p

fi(x̄)/gi(x̄)− ε)

= max
15i5p

fi(x̄)/gi(x̄)

=
p∑

i=1

(αifi)(x̄)/
p∑

i=1

(αigi)(x̄)

= v (from (5.7)).

6. Concluding remarks

Based on Ekeland’s variational principle [5], another approach of characterizing ε-
optimal solutions for nondifferentiable optimization problems has emerged in recent
years. Hamel [6] followed this approach to extend the Lagrange multiplier rule for
an ε-minimal solution of nondifferentiable mathematical programming problem on
a real Banach space. The optimality conditions so obtained yield more information
on ε-optimal solutions. It would be interesting to derive ε-optimality conditions for
minimax programming problems using Ekeland’s variational principle and some of
its new variants. This will be the subject of investigation in the subsequent research
work by the authors.
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