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WOLFE-TYPE DUALITY INVOLVING UNIVEX FUNCTIONS
FOR A MINIMAX PROGRAMMING PROBLEM

SHASHI K. MISHRA* AND NORMA G. RUEDA

Abstract. A sufficient optimality theorem is proved for a certain minimax pro-
gramming problem under the assumptions of proper (b,η,φ)-univex conditions
on the functions involved for such a problem. A dual is defined for this problem
and duality theorems relating the primal and the dual are proved. The results
presented in this paper extend earlier works in the literature to a wider class of
functions.

1. Introduction

The concept of invexity was introduced by Hanson [4] as a generalization of
convexity. Later Bector and Singh [2] defined B-vexity and discussed properties
of functions satisfying this condition. In 1992 Bector et al. [3] introduced the
class of univex functions and obtained sufficient optimality conditions and duality
results. Recently, Bector [1] defined properly (b,η)-invex functions and established a
sufficient optimality theorem and duality results for a class of minimax programming
problems. In this paper we generalize the results given in [1] to a new class of
functions, called properly (b,η,φ)-univex functions.

2. Preliminaries

In this section we give some definitions, the main problem considered in the
paper, and some results needed in the sequel.

We will distinguish between ≤ and 5, and between ≥ and =. For x, y ∈ Rn we
define x 5 y iff xi 5 yi for i = 1, 2, . . . , n; x ≤ y iff x 5 y and x 6= y; x = y iff
xi = yi for i = 1, 2, . . . , n; and x ≥ y iff x = y and x 6= y.

Let X ⊆ Rn be an open set. The next two definitions below are due to Hanson
[4].

Definition 2.1. A differentiable function f : X → R is said to be η-invex if there
exists a function η : X ×X → Rn such that for each x, u ∈ X,

f(x)− f(u) = η(x, u)T∇f(u).

Definition 2.2. A differentiable function f : X → R is said to be strictly η-invex
if there exists a function η : X ×X → Rn such that for each x, u ∈ X,

f(x)− f(u) > η(x, u)T∇f(u).
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The following definition is due to Bector [1].

Definition 2.3. A differentiable function f : X → R is said to be properly (b, η)-
invex if there exist functions η : X ×X → Rnand b : X ×X → R+\{0} such that
for each x, u ∈ X,

b(x, u)[f(x)− f(u)] = η(x, u)T∇f(u).

The concept of univexity was introduced by Bector et al.[3] in 1992.

Definition 2.4. A differentiable function f : X → R is said to be properly (b, η, φ)-
univex if there exist functions η : X×X → Rn, b : X×X → R+\{0}and φ : R → R,
such that for each x, u ∈ X,

b(x, u)φ[f(x)− f(u)] = η(x, u)T∇f(u).

If φ is the identity function, then the above definition reduces to the definition of
(b, η)-invexity [1]. There exist functions that are properly (b, η, φ)-univex, but they
are not properly (b, η)-invex.

Example 2.1. Let f : [1,∞) → R defined by f(x) = −x + 1. This function is
properly (b, η, φ)-univex with respect to η(x, u) = −1/x + u, b = 1, φ(x) = −x at
u =1, but it is not properly (b, η)-invex.

Definition 2.5. A differentiable function f : X → R is said to be properly strictly
(b, η, φ)-univex if there exist functions η : X ×X → Rn, b : X ×X → R+\{0}and
φ : R → R, such that for each x, u ∈ X,

b(x, u)φ[f(x)− f(u)] > η(x, u)T∇f(u).

The following theorem, which we shall use in the sequel, is easy to prove; therefore
we state it without proof. This theorem is an extension of Theorem 2.1 [1].

Theorem 2.1. Let fi and each of hij , j = 1, 2, · · · , m,be properly (bi, η, φ)-univex

on X. If λi = 0 and yij = 0, j = 1, 2, . . . , m,then λifi +
m∑

j=1
yijhij is properly

(bi, η, φ)-univex on X. If fi is properly strictly (bi, η, φ)-univex and λi > 0, or at
least one of hij for which the corresponding yij > 0, is properly strictly (bi, η, φ)-

univex, then λifi +
m∑

j=1
yijhijis properly strictly (bi, η, φ)-univex on X.

Primal problem. In this paper we consider the following generalized minimax
programming problem as the primal problem.

q∗ = min
x∈X

max
1≤i≤p

[fi(x)],

subject to hij(x) 5 0, i = 1, 2, . . . , p,, j = 1, 2, . . . , m.
We assume that fi, i = 1, 2, . . . , p, and hij(x), i = 1, 2, . . . , p; j = 1, 2, . . . , m

are differentiable on X.
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We now consider the following programming problem (E) which is equivalent to
(P) in the sense of the Lemmas 2.1 and 2.2 given below.

min
x,q

q

subject to

fi(x) 5 q, i = 1, 2, . . . , p(1)

hij(x) 5 0, i = 1, 2, . . . , p; j = 1, 2, . . . , m,(2)
x ∈ X.

Lemma 2.1. Let x be (P)-feasible. Then there exists q ∈ R such that (x, q)is
(E)-feasible, and if (x, q)is (E)-feasible, then x is (P)-feasible.

Lemma 2.2. Let x∗ be (P)-optimal. Then there exists q∗ ∈ R such that (x∗, q∗)is
(E)-optimal, and if (x∗, q∗) is (E)-optimal then x∗is (P)-optimal with q∗ as the
optimal value of the (P)-objective.

3. Optimality conditions

The Kuhn-Tucker conditions are necessary in the solution of a nonlinear pro-
gramming problem if a constraint qualification is satisfied. Most of the constraint
qualifications that appear in the literature do not involve the objective function.
See Mangasarian [5] for several examples of constraint qualifications. One of them,
known as Slater’s, requires the set of feasible points to contain an interior point.

Lemma 3.1 (Necessary optimality conditions [1]). Let x∗ be (P)-optimal. Let a
constraint qualification hold for (P). Then there exist q∗ ∈ R, λ∗ ∈ Rp and a matrix
Y ∗ ∈ Rp×m, such that (x∗, q∗, λ∗, Y ∗)satisfies

(3)
p∑

i=1

∇[λ∗
i
fi(x∗) +

m∑
j=1

y∗
ij
hij(x∗)] = 0

(4) λ∗i [fi(x∗)− q∗] = 0, i = 1, 2, . . . , p,

(5) y∗ijhij(x∗) = 0, i = 1, 2, . . . , p; j = 1, 2, . . . , m,

(6) fi(x∗) 5 q∗, i = 1, 2, . . . , p,

(7) hij(x∗) 5 0, i = 1, 2, . . . , p; j = 1, 2, . . . , m,

(8)
p∑

i=1

λ∗
i

= 1,

(9) q∗ ∈ R, λ∗ ∈ Rp, Y ∗ ∈ Rp×m, λ∗ ≥ 0, Y ∗ = 0.
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Theorem 3.1 (Sufficient optimality conditions). If (x∗, q∗, λ∗, Y ∗) satisfies (3)-(9),
φ is a linear mapping, and the following conditions are satisfied: Either (i) Each
fi, i = 1, 2, . . . , p, and hij(x), i = 1, 2, . . . , p, j = 1, 2, . . . , m,is a properly

(bi, η, φ)-univex function on X; or (ii) λifi +
m∑

j=1
yijhij is properly (bi, η, φ)-univex

on X for i = 1, 2, . . . , p, and λi = 0, yij = 0, i = 1, 2, . . . , p; j = 1, 2, . . . , m,
and (iii) φ(a) = 0 ⇒ a = 0, then x∗ is (P)-optimal.

Proof. First we prove that (x∗, q∗) is (E)-optimal. Since (x∗, q∗, λ∗, Y ∗) satisfies (3),
therefore we have

(10) η(x, x∗)T
p∑

i=1

∇[λ∗i fi(x∗) +
m∑

j=1

y∗ijhij(x∗)] = 0

for all (P)-feasible solutions x.

From Theorem 2.1 and either (i) or (ii), λifi +
m∑

j=1
yijhij is properly (bi, η, φ)-

univex on X. Therefore,

(11) bi(x, x∗)φ[(λ∗i fi(x) +
m∑

j=1

y∗ijhij(x))− (λ∗i fi(x∗) +
m∑

j=1

y∗ijhij(x∗))]

= η(x, x∗)T∇[λ∗i fi(x∗) +
m∑

j=1

y∗ijhij(x∗)].

By taking summation over i in (11), we obtain

(12)
p∑

i=1

bi(x, x∗)φ[(λ∗i fi(x) +
m∑

j=1

y∗ijhij(x))− (λ∗i fi(x∗) +
m∑

j=1

y∗ijhij(x∗))]

= η(x, x∗)T
p∑

i=1

∇[λ∗i fi(x∗) +
m∑

j=1

y∗ijhij(x∗)].

Now (10) and (12) yield
p∑

i=1

bi(x, x∗)φ[(λ∗i fi(x) +
m∑

j=1

y∗ijhij(x))− (λ∗i fi(x∗) +
m∑

j=1

y∗ijhij(x∗))] = 0.

From (iii) and the linearity of φ we get

(13)
p∑

i=1

bi(x, x∗)[(λ∗i fi(x) +
m∑

j=1

y∗ijhij(x))− (λ∗i fi(x∗) +
m∑

j=1

y∗ijhij(x∗))] = 0.

Now multiplying both sides of (1) by λ∗i ≥ 0, we obtain

(14) λ∗i fi(x) 5 λ∗i q, i = 1, 2, . . . , p.
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Multiplying both sides of (2) by y∗ij and summing over j = 1, 2, . . . , m, we obtain

(15)
m∑

j=1

y∗ijhij(x) 5 0, i = 1, 2, . . . , p.

Adding (14) and (15) we get

(16) λ∗i fi(x) +
m∑

j=1

y∗ijhij(x) 5 λ∗i q.

Since (x∗, q∗, λ∗, Y ∗)satisfies (4) and (5) we have

(17) λ∗i fi(x∗) +
m∑

j=1

y∗ijhij(x∗) = λ∗i q
∗.

Using (16) and (17) in (13) we obtain

(18) (q − q∗)[
p∑

i=1

bi(x, x∗)λ∗i ] = 0.

Since λ∗i ≥ 0,
p∑

i=1
λ∗i = 1, and bi(x, x∗) > 0, i = 1, 2, . . . , p,

p∑
i=1

bi(x, x∗)λ∗i > 0.

Hence, from (18), we have q ≥ q∗ for (x∗, q∗) and for all (E)-feasible points (x, q).
Thus (x∗, q∗) is (E)-optimal. Hence, by Lemma 2.2, x∗ is (P)-optimal with q∗ as
the optimal value of the (P)-objective. �

The previous theorem is an extension of Theorem 3.2 [1].

4. Duality theorems

We now consider the following dual (D) to (E).

Max v

subject to
p∑

i=1

∇[λifi(u) +
m∑

j=1

yijhij(u)] = 0(19)

λifi(u) +
m∑

j=1

yijhij(u) = λiv, i = 1, 2, . . . , p(20)

p∑
i=1

λi = 1,(21)

u ∈ X, v ∈ R, λ ∈ Rp, Y ∈ Rp×m, λ ≥ 0, Y = 0.(22)

We shall denote the set of (E)-feasible solutions by W and the set of (D)-feasible
solutions by T .

Theorem 4.1 (Weak duality). If (x, q) ∈ W ,(u, v, λ, Y ) ∈ T, φ is a linear mapping,
and φ(a) = 0 ⇒ a = 0, then q = v.
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Proof. If (x, q) ∈ W and (u, v, λ, Y ) ∈ T, we have, from (19),

(23) η(x, u)T
p∑

i=1

∇[λifi(u) +
m∑

j=1

yijhij(u)] = 0.

Using Theorem 2.1 (as in Theorem 3.1) and (23), we obtain for (x, q) ∈ W and
(u, v, λ, Y ) ∈ T,

p∑
i=1

bi(x, u)φ[(λifi(x) +
m∑

j=1

yijhij(x))− (λifi(u) +
m∑

j=1

yijhij(u))] = 0.

From the hypothesis on φ and the linearity of this function we get

(24)
p∑

i=1

bi(x, u)[(λifi(x) +
m∑

j=1

yijhij(x))− (λifi(u) +
m∑

j=1

yijhij(u))] = 0.

Now, using the constraints (1) and (2) of (E), and the constraints (20) and (22) in
(24), we obtain for (x, q) ∈ W and (u, v, λ, Y ) ∈ T,

(q − v)
p∑

i=1

bi(x, u)λi = 0.

Since
p∑

i=1
bi(x, u)λ>

i 0 it follows that q ≥ v for(x, q) ∈ W and (u, v, λ, Y ) ∈ T. �

The previous theorem is an extension of Theorem 4.1 [1].

Corollary 4.1. For (x∗, q∗) ∈ W and (u∗, v∗, λ∗, Y ∗) ∈ T let q∗ = v∗. Then (x∗, q∗)
is (E)-optimal and (u∗, v∗, λ∗, Y ∗) is (D)-optimal.

Theorem 4.2 (Direct duality). Let (x∗, q∗) ∈ W , at which a constraint qualifica-
tion holds, be (E)-optimal. Then there exist λ∗ ∈ Rp and Y ∗ ∈ Rp×m such that
(x∗, q∗, λ∗, Y ∗) ∈ T , the (D)-objective value is equal to the (E)-objective value at
(x∗, q∗, λ∗, Y ∗), and (x∗, q∗, λ∗, Y ∗) is (D)-optimal.

Proof. Since (x∗, q∗) is (E)-optimal, therefore there exist λ∗ ∈ Rp and Y ∗ ∈ Rp×m

such that conditions (3)-(9) are satisfied at (x∗, q∗, λ∗, Y ∗). From (3)-(5), (8), and
(9) it follows that (x∗, q∗, λ∗, Y ∗) is (D)-feasible. The (D)-objective value is equal
to q∗, which is the same as the (E)-objective. Using Corollary 4.1, we get that
(x∗, q∗, λ∗, Y ∗) is (D)-optimal. �

The following theorem is an extension of Theorem 4.3 [1].

Theorem 4.3 (Strict converse duality). Let (x∗, q∗) ∈ W , at which a constraint
qualification holds. Let (x∗, q∗) be (E)-optimal, and let (u∗, v∗, λ∗, Y ∗) ∈ T be (D)-
optimal. Assume that φ is a linear mapping, and for i = 1, 2, . . . , p, and for every
(E)-feasible solution, at least one of the fi, for which the corresponding λi > 0, is
properly strictly (bi, η, φ)-univex, or at least one of the hij, for which the correspond-
ing yij > 0, is properly strictly (bi, η, φ)-univex, then (x∗, q∗) = (u∗, v∗).
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Proof. We assume that (x∗, q∗) 6= (u∗, v∗) and exhibit a contradiction. Since (x∗, q∗)
is (E)-optimal, there exist λ0 ∈ Rp and Y 0 ∈ Rp×m such that (x∗, q∗, λ0, Y 0) ∈ T
and is (D)-optimal. Also (u∗, v∗, λ∗, Y ∗) ∈ T is (D)-optimal, therefore,

(25) q∗ = v∗.

(26) η(x∗, u∗)T
p∑

i=1

∇[λ∗i fi(u∗) +
m∑

j=1

y∗ijhij(u∗)] = 0.

Similar to steps followed in the proof of Theorem 3.1, from (26) and Theorem 2.1,
we get

(27)

p∑
i=1

bi(x∗, u∗)[(λ∗i fi(x∗) +
m∑

j=1
y∗ijhij(x∗))

−(λ∗i fi(u∗) +
m∑

j=1
y∗ijhij(u∗))] > 0.

As in Theorem 3.1, (27) yields (q∗−v∗)
p∑

i=1
bi(x∗, u∗)λ∗i > 0. Since

p∑
i=1

bi(x∗, u∗)λ∗i > 0

then q∗ > v∗, which contradicts (25). Therefore (x∗, q∗) = (u∗, v∗). �
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