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GENERIC CONVERGENCE OF A CONVEX LYAPOUNOV
FUNCTION ALONG TRAJECTORIES OF NONEXPANSIVE

SEMIGROUPS IN HILBERT SPACE

RENU CHOUDHARY

Abstract. We show that while a convex Lyapounov function for a semigroup
of contractions on a Hilbert space may not converge to its minimum along the
trajectories of the semigroup, it converges generically along the trajectories of
the semigroups generated by a class of bounded perturbations of the semigroup
generator.

1. Introduction

Let K be a closed convex subset of a real Hilbert space H and let {S(t)}t≥0 be a
semigroup of contractions on K generated by a maximal monotone operator A on
H. The study of convergence of a trajectory S(t)x as t → ∞ had the attention of
several mathematicians in the past. See, for example, [3], [4], [5], [6], [7], [8], [12],
[13] and [14]. In general S(t)x does not converge strongly or even weakly as t →∞,
and convergence requires additional conditions. Dafermos and Slemrod [8] obtained
strong convergence by assuming that the ω-limit sets are nonempty. Brezis in [5]
and [6] studied strong convergence when F , the set of fixed points of {S(t)}t≥0

has a non empty interior. Bruck [7] and Brezis [6] obtained strong convergence
for the special case A = ∂φ, where φ is a proper l.s.c. convex function from H to
R∪ {∞}, under some restrictions on φ. Brezis [6] proved strong convergence under
the assumption that bounded subsets of level sets of φ are relatively compact, i.e.
for every M , {x : φ(x) ≤ M, ||x|| ≤ M} is compact, which ensures the convergence
for finite dimensional spaces. Also, Bruck [7] used the condition that φ is even to
get strong convergence. Bruck [7] showed the weak convergence of S(t)x under an
additional condition on the generator A, which he called demipositivity. Also, for
the special case A = ∂φ, he showed that S(t)x converges weakly as t → ∞ to a
minimizer of φ. Baillon [3] constructed a proper l.s.c. convex function φ such that
the semigroup generated by ∂φ converges weakly to the minimizer of φ but not
strongly, demonstrating that weak convergence is the best possibility.

The fact that S(t)x does not converge even weakly, in general, as t → ∞, to-
gether with the use of Lyapounov functions to determine the asymptotic behavior
of semigroups, inspired us to consider a l.s.c. Lyapounov function f : H → R∪{∞}
and then study convergence of f(S(t)x) as t → ∞. Since f , being Lyapounov, is
decreasing along the trajectories S(t)x, a natural question is whether

(1) f(S(t)x) → min(f) as t →∞.
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In finite dimensional space even without the nonexpansivity of the semigroup and
convexity of the Lyapounov function, if a strictly Lyapounov function f exists in
the neighbourhood N of an equilibrium point x0 of the semigroup, meaning f is
continuously differentiable on N , f(x) > f(x0) for all x ∈ N \ {x0} and f strictly
decreases on the set N \{x0}, then the trajectories converge to its equilibrium point
and the Lyapounov function converges along the trajectories to its minimum [9]. We
will have a different definition of Lyapounov function and show that this is not the
case, in general, in infinite dimensional spaces. We will show in Proposition 1 that,
in general, f(S(t)x) 6→ min(f) as t →∞, when there is a unique equilibrium point,
even if f strictly decreases along the trajectories of {S(t)}t≥0, by assuming {S(t)}t≥0

to be the semigroup given by Baillon[3] and assuming f : H → R to be given by
f(x) = ||x||2

2 ∀x ∈ H. So the next question is under what condition equation (1)
holds. We note that if f decreases along the trajectory at a particular rate then
convergence occurs. More precisely, if for a semigroup {S(t)}t≥0, f decreases along
the trajectories at a particular rate we call f regularly Lyapounov for the semigroup
{S(t)}t≥0. In Theorem 1 we will show equation (1) holds if f is regularly Lyapounov
for the semigroup {S(t)}t≥0.

Even if f is not converging along S(t)x in the sense of equation (1), can we
find a semigroup close to {S(t)}t≥0 and having the convergence property (1)? The
affirmative answer to this question further poses the question of how large is the
collection of semigroups such that f is decreasing along the trajectories, and having
the convergence property (1). The answer to this question is the main concern
of this paper. So instead of considering the convergence of f(S(t))x for a single
semigroup, we investigate the convergence of f(S1(t)x), where {S1(t)}t≥0 are the
semigroups generated by a class of bounded perturbations of the generator A of
the given semigroup {S(t)}t≥0. In fact, under some mild conditions on A and f ,
we construct a complete metric space (A1, d) of the bounded perturbations of the
generator A such that f is Lyapounov for all the semigroups generated by these
perturbations. We show that there is a very large subset F1 of A1 such that f is
regularly Lyapounov for all the semigroups generated by the maximal monotone
operators in F1. When we say a set is very large we mean the complement of it
in the complete metric space is very small, more precisely, a σ-porous subset of
the metric space. We say a property is a generic property of a complete metric
space or a Baire space if the subset for which the property is not true is of first
category. In particular, the convex Lyapounov function f for {S(t)}t≥0, generated
by A, converges generically along the trajectories of a class of semigroups generated
by bounded perturbations of A.

The generic approach, when a property is investigated for the whole space in-
stead of an element of the space, already has many successful applications see, for
example, [10]. Reich and Zaslavski [17] investigated the convergence of a continuous
convex bounded below function f in the more general setting of a Banach space,
along the trajectories given by vector fields on the Banach space, and obtained
positive results by restricting f under some conditions. For more recent results on
continuous descent methods see [1] and [2]. We study the convergence of a convex
l.s.c. Lyapounov function f in Hilbert space, along the trajectories of the semigroups
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generated by a class of bounded perturbations of a multivalued maximal monotone
operator.

2. Preliminaries and Notation

Throughout this paper H stands for a real Hilbert space. Let A be a maximal
monotone operator on H such that A−1{0} 6= ∅ and let {S(t)}t≥0 be the semigroup
of contractions generated by A on K = D(A). Usually −A is called the generator
of {S(t)}t≥0 but we find it more convenient to say A is the generator of {S(t)}t≥0

in the same sense as Pazy [11].
Since in a Hilbert space there is one to one correspondence between the max-

imal monotone operators and the semigroups of contractions [11] we will switch
frequently between semigroups and the maximal monotone operators generating
them.

Definition 1. Let f be a proper l.s.c. function from H to R ∪ {∞} such that
K ⊆ Dom(f) and suppose there exists x0 ∈ A−1{0} such that f(x0) = min(f) :=
min{f(x) : x ∈ H}. We say f is Lyapounov for {S(t)}t≥0 if

f(S(t)x) ≤ f(x) ∀x ∈ K, t ≥ 0,

and strictly Lyapounov if

f(S(t)x) < f(x) ∀x ∈ D(A) \A−1{0}, t > 0.

Note that the function f(x) = ‖x−x0‖2 is a Lyapounov function for the semigroup
{S(t)}t≥0 generated by a maximal monotone operator A if x0 ∈ A−1{0}.

Let us recall the notion of porosity before proceeding further. Let (X, d) be a
complete metric space and B(x, r) the closed ball centered at x ∈ X and of radius
r > 0. We say a subset E ⊆ X is porous in (X, d) if there exist α ∈ (0, 1) and r0 > 0
such that for each r ∈ (0, r0] and for each x ∈ X, there exists y ∈ X satisfying

B(y, αr) ⊆ B(x, r) \ E.

A subset of the space X is called σ-porous in (X, d) if it is a countable union of
porous subsets in (X, d). Several other notions of porosity are available in the
literature but we use the strong notion used by Reich and Zaslavski [17]. Also, in
the definition of porosity the point x can be assumed to be in E. Since porous sets
are nowhere dense sets, all σ-porous sets are of the first category.

3. Convergence theorem

We begin this section with a counterexample showing that even though a contin-
uous convex function f is strictly decreasing along the trajectories of {S(t)}t≥0, for
some a1 ∈ H, f(S(t)a1) does not converge to min(f).

Example 1. Let H = R, define A : R → R as

Ax =


x− 1 if x ≥ 1
0 if |x| ≤ 1
x + 1 if x ≤ −1.
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Define f : R → R as f(x) = x2. Clearly A is a maximal monotone operator
and A−1{0} = {x : |x| ≤ 1}. The function f is continuous convex function and
f(0) = 0 = min(f), 0 ∈ A−1{0} and f is strictly Lyapounov for the semigroup
{S(t)}t≥0 generated by A. For all a1 > 1, S(t)a1 → 1 so f(S(t)a1) → 1, not
min(f), as t →∞.

For this A, and a different continuous convex f , we would hope to get f(S(t)a1) →
min(f) if f is minimised at all points of A−1{0}, i.e. A−1{0} ⊆ ∂f−1{0}. Because if
S(t)a1 → x1 ∈ A−1{0} then f(x1) = min(f) and by continuity f(S(t)a1) → f(x1).
The next proposition shows that even though A−1{0} ⊆ ∂f−1{0} and f is strictly
decreasing along the trajectories of {S(t)}t≥0 and A−1{0} = {x0}, for some a1 ∈
H, f(S(t)a1) does not converge to min(f).

Proposition 1. There exists a real valued convex continuous function f on H such
that min(f) = f(x0), x0 ∈ H, f(x) > f(x0)∀x 6= x0, and a semigroup {S(t)}t≥0

of contractions on a closed convex subset C of H containing x0 such that {x ∈ C :
S(t)x = x ∀ t ≥ 0} = {x0} and f is strictly Lyapounov for {S(t)}t≥0, and a1 ∈ C
for which f(S(t)a1) 6→ min(f) as t →∞.

Proof. Let H = l2 and let f : l2 → R be given by f(x) = ||x||2
2 ∀x ∈ l2. Let

{Sα(t)}t≥0 be the semigroup on the positive cone C = {x ∈ l2 : x = (xi)i≥1, all xi ≥
0} generated by ∂φα as given by Baillon [3]. To recall the definition of {Sα(t)}t≥0

and φα let us recall a few definitions and results from [3].
The function fλ : R2 → R, for λ > 0, is defined as

fλ(x, y) =

{
[arctan(x

y )]λ(x2 + y2)
1
2 if x ≥ 0, y ≥ 0,

∞ otherwise.

In polar coordinates

fλ(x, y) =


(

π
2 − θ

)λ
ρ if

{
x = ρ cos θ ≥ 0, y = ρ sin θ ≥ 0
i.e.: ρ ≥ 0 and 0 ≤ θ ≤ π/2

∞ otherwise.

For λ ≥ 1, fλ is a convex l.s.c. function with subdifferential ∂fλ. For α = (αi)i≥1,
all αi > 0, and λ = (λi)i≥1, all λi ≥ 1, φα : l2 → R ∪ {∞} is defined as

φα(x) = α1fλ1(x1, x2) + · · ·+ αnfλn(xn, xn+1) + · · · .

For a1 = (1, 0, 0, . . .), andλi = π2

8
b

b−1bi, with b > 1, Baillon [3] has chosen α such
that

(2) lim
t→∞

||Sα(t)a1|| >
1
6
.

Also, 0 is the only fixed point of {Sα(t)}t≥0 as φα(x) ≥ 0 ∀x ∈ l2, and φα(x) =
0 ⇒ fλi

(xi, xi+1) = 0 ∀ i ⇒ xi = 0 ∀ i. To see that f is strictly Lyapounov for
{Sα(t)}t≥0, we note that for all x ∈ D(∂φα) \ {0}

d+

dt
f(Sα(t)x)

]
t=0

= 〈∇f(x),−∂φo
α(x)〉 = 〈x,−∂φo

α(x)〉 ≤ −φα(x) < 0,
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where ∂φo
α(x) denotes the element of minimal norm in ∂φα(x). Hence f(Sα(t)x) is

a strictly decreasing function of t. Also by (2), for a1 ∈ C

f(Sα(t)a1) =
||Sα(t)a1||2

2
6→ 0 = min(f) as t →∞. �

The idea of regularity that we use was essentially already given in [17], page 4,
and it had previously been given in [16], page 1005, in the study of discrete descent
methods.

Definition 2. A Lyapounov function f for a semigroup {S(t)}t≥0 is called regularly
Lyapounov for {S(t)}t≥0 if for each positive integer n there exists a positive number
δ(n) (depending on n) and for every x in Dn, where Dn = {x ∈ D(A) : ||x|| ≤
n, f(x) ≥ min(f) + 1

n}, there exists α(x) > 0 such that

f(x)− f(S(t)x) ≥ tδ(n) ∀ t ∈ [0, α(x)).

Note that a regularly Lyapounov function f for a semigroup {S(t)}t≥0 is also
strictly Lyapounov for {S(t)}t≥0 if f(x) > min(f)∀x ∈ D(A) \A−1{0}.

Theorem 1. Let f be a regularly Lyapounov function for the semigroup {S(t)}t≥0.
Then for every x ∈ D(A)

lim
t→∞

f(S(t)x) = min(f).

Proof. Let if possible, for some x ∈ D(A),

lim
t→∞

f(S(t)x) 6= min(f).

Then there exists some positive integer N such that

f(S(t)x) ≥ min(f) +
1
N

, ∀ t ≥ 0.

Since all the trajectories of the semigroup {S(t)}t≥0 are bounded, ‖S(t)x‖ is bound-
ed, say by M . Let m = max(N,M) then

S(t)x ∈ Dm ∀ t ≥ 0.

Since f is regularly Lyapounov for {S(t)}t≥0 there exists a positive number δ(m)
such that for each x ∈ Dm there exists α > 0 such that

f(x)− f(S(t)x) ≥ tδ(m), ∀ t ∈ [0, α].

Let V = {T : f(x) − f(S(τ)x) ≥ τδ(m) ∀ τ ∈ [0, T ]}. Then V is a nonempty
subinterval of [0,∞). We claim V is open and closed in [0,∞). To see V is open in
[0,∞) let T ∈ V be given. Since S(T )x ∈ Dm there exists α′ > 0 such that

(3) f(S(T )x)− f(S(t)S(T )x) ≥ tδ(m) ∀ t ∈ [0, α′].

Also T ∈ V implies

(4) f(x)− f(S(T )x) ≥ Tδ(m).

Adding the inequalities (3) and (4) we get

(5) f(x)− f(S(t + T )x) ≥ (t + T )δ(m) ∀ t ∈ [0, α′].
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Thus [0, T + α′] ⊆ V , and V is open.
To see V is closed in [0,∞), let 〈tn〉∞n=1 ∈ V and tn ↗ t as n →∞, t > 0. Then for
every n we have

f(x)− f(S(t)x) ≥ f(x)− f(S(tn)x) (as t → f(S(t)x) is decreasing)

≥ tnδ(m) (as tn ∈ V ), giving

f(x)− f(S(t)x) ≥ tδ(m).

Hence t ∈ V . Now V is a nonempty open and closed subinterval of [0,∞), and
therefore V = [0,∞). Hence for every t ∈ [0,∞), f(x)− f(S(t)x) ≥ tδ(m). There-
fore by taking the limit as t → ∞, we get limt→∞ f(S(t)x) = −∞, contradicting
the fact that f is bounded below. �

Remark 1. If f is uniformly continuous on bounded subsets of K then in Theorem
1, f(S(t)x) → min(f) as t →∞ ∀x ∈ K.

Remark 2. It is interesting to note that if we assume f to be bounded below and
A−1{0} 6= ∅ instead of assuming f to be minimized at x0 ∈ A−1{0} in the defi-
nition of Lyapounov function (Definition 1), and by replacing min(f) by inf(f) in
Definition 2, then in Theorem 1 for every x ∈ D(A)

lim
t→∞

f(S(t)x) = inf(f),

and this further gives us f(x0) = inf(f)∀x0 ∈ A−1{0}.

Remark 3. We note that the conclusion of Theorem 1 holds true for a general
ω-semigroup (in the sense of Pazy[11]) if all the trajectories are bounded. The
trajectories will be bounded if level sets of f {x : f(x) ≤ c} are bounded.

Proposition 2. Let f be a Lyapounov function for the semigroup {S(t)}t≥0 gen-
erated by A on K = D(A) and suppose d+

dt f(S(t)x)
]
t=0

exists for every x ∈ D(A).

Then f is regularly Lyapounov for the semigroup {S(t)}t≥0 iff for each positive
integer n there exists hn > 0 such that

d+

dt
f(S(t)x)

]
t=0

≤ −hn, ∀x ∈ Dn.

Proof. =⇒ Let f be regularly Lyapounov for the semigroup {S(t)}t≥0. Let n be
a positive integer and x ∈ Dn. Then by Definition 2 there exist positive numbers
δ(n) and α(x) such that

f(x)− f(S(t)x) ≥ tδ(n) ∀ t ∈ [0, α(x)).

Therefore

lim
t→0+

f(x)− f(S(t)x)
t

= − d+

dt
f(S(t)x)

]
t=0

≥ δ(n).

⇐= Let n be a positive number and x ∈ Dn be given. Then by the given assumption
there exists hn > 0 such that d+

dt f(S(t)x)
]
t=0

≤ −hn. Let δ′ = hn
2 . Then there

exist α′(x) > 0 such that∣∣∣∣ d+

dt
f(S(t)x)

]
t=0

− f(S(t)x)− f(x)
t

∣∣∣∣ < δ′ ∀ t ∈ [0, α′(x)).
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Therefore for all t ∈ [0, α′(x)),

f(S(t)x)− f(x)
t

<
d+

dt
f(S(t)x)

]
t=0

+ δ′ ≤ −hn + δ′ = −hn

2
.

Thus we have positive numbers δ(n) = hn
2 and α′(x) such that for all x ∈ Dn

f(S(t)x)− f(x)
t

< −δ(n) ∀ t ∈ [0, α′(x)). �

Corollary 1. Let f be a proper convex l.s.c. function on H which attains its min-
imum. We take the maximal monotone operator A to be ∂f , and take {S(t)}t≥0 to
be the semigroup generated by ∂f on D(∂f) = K. Then f is regularly Lyapounov
for the semigroup {S(t)}t≥0, and ∀x ∈ K

f(S(t)x) → min(f) as t →∞.

Proof. It is already shown in [5], Theorem 3.2 that

d+

dt
f(S(t)x) = −‖d+

dt
S(t)x‖2 ≤ 0 ∀ t > 0, ∀x ∈ K.

Also for x ∈ D(∂f),

(6)
d+

dt
f(S(t)x)

]
t=0

= −
∥∥∥∥[

d+

dt
S(t)x

]
t=0

∥∥∥∥2

= −‖∂fo(x)‖2.

Let x0 ∈ {x ∈ K : f(x) = min(f)}. Then ∀x ∈ Dn we have

1
n

< f(x)− f(x0) ≤ 〈x− x0, ∂fo(x)〉

≤ ‖x− x0‖‖∂fo(x)‖
≤ (n + ‖x0‖)‖∂fo(x)‖.

Thus

(7) ‖∂fo(x)‖ ≥ 1
n(n + ‖x0‖)

.

Hence by (6) and (7),[
d+

dt
f(S(t)x)

]
t=0

≤ −
(

1
n(n + ‖x0‖)

)2

= −hn ( say ) ∀x ∈ Dn.

Therefore by Proposition 2 and Theorem 1,

f(S(t)x) → min(f) as t →∞ ∀x ∈ D(∂f).

Also by [5] Theorem 3.2, S(t)x ∈ D(∂f) ∀x ∈ K and t > 0. Hence for all x ∈ K,

f(S(t)x) → min(f) as t →∞. �

Remark 4. For Sα(t) and φα as given by Baillon [3] we have
(1) Sα(t)x ⇀ 0 = point of minimum of φα ∀x ∈ C.
(2) Sα(t)x 6→ 0 for x = a1 ∈ C.
(3) φα(Sα(t)x) → φα(0) = 0 ∀x ∈ C.
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4. Generic convergence

In this section we investigate the generic convergence of the convex Lyapounov
function f along the trajectories of a set of semigroups. This set consists of the
semigroups generated by a class of perturbations of the maximal monotone operator
A. Instead of working with these semigroups, we will be dealing more with the
maximal monotone operators generating them.

Under the mild assumption that f(PKx) ≤ f(x) for all x ∈ H, the following
proposition gives many conditions equivalent to f being Lyapounov for {S(t)}t≥0.
Brezis has considered these conditions in [5], Theorem 4.4 and [5], Proposition 4.6.

Proposition 3. Let A be a maximal monotone operator, and {S(t)}t≥0 the semi-
group generated by A on K = D(A). Let f : H → R ∪ {∞} be a convex l.s.c.
function and K ⊆ Int D(f). Consider:

(1) f(S(t)x) ≤ f(x) for all x ∈ K, t ≥ 0.
(2) For all x ∈ D(A) and all z ∈ ∂f(x), 〈z,A◦x〉 ≥ 0.
(3) For all x ∈ D(A) there exists z ∈ ∂f(x) such that 〈z,A◦x〉 ≥ 0.
(4) For all x ∈ D(A) and all y ∈ Ax, there exists z ∈ ∂f(x) such that 〈z, y〉 ≥ 0.

Then 1 ⇒ 2 ⇒ 3 ⇒ 1 and 4 ⇒ 3. Suppose f(PKx) ≤ f(x) for all x ∈ H, where PK

is the nearest point projection on K, then 1 ⇒ 4.

Proof. We only show 1 ⇒ 2 and refer to [5] for the rest of the proof. Let x ∈ D(A)
and z ∈ ∂f(x), then for all y ∈ H

f(y)− f(x) ≥ 〈z, y − x〉.
In particular for all t ≥ 0

f(S(t)x)− f(x) ≥ 〈z, S(t)x− x〉,
which with condition 1 implies

〈z, S(t)x− x〉 ≤ 0.

Dividing by t > 0 and letting t go to 0 we obtain 〈z,−A◦x〉 ≤ 0. �

Proposition 4. Let A be a maximal monotone operator, and {S(t)}t≥0 the semi-
group generated by A on K = D(A). Let f : H → R ∪ {∞} be a convex l.s.c.
function, minimized at a point x0, and K ⊆ Int D(f). Then the following are
equivalent:

(1) For each positive integer n, there exists δ(n) > 0 such that for every x in
Dn, there exists α(x) > 0 such that

f(S(t)x)− f(x) ≤ −tδ(n) ∀ t ∈ [0, α(x)).

(2) For each positive integer n, there exists hn > 0 such that for all x ∈ Dn and
all z ∈ ∂f(x), 〈z,A◦x〉 ≥ hn.

(3) For each positive integer n, there exists hn > 0 such that for each x ∈ Dn

there exists z ∈ ∂f(x) such that 〈z,A◦x〉 ≥ hn.
(4) For each positive integer n, there exists hn > 0 such that for all x ∈ Dn

f ′(x,A◦x) = max
z∈∂f(x)

〈z,A◦x〉 ≥ hn,
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where f ′(x,A◦x) denotes the right hand directional derivative of f at x in
the direction of A◦x.

Proof. To see 1 ⇒ 2, let 1 hold. Let n be a positive integer, and take δ(n) to satisfy
1. Let x ∈ Dn. By 1, we take α(x) > 0 such that

(8) f(S(t)x)− f(x) ≤ −tδ(n) ∀ t ∈ [0, α(x)).

Let z ∈ ∂f(x) i.e.
f(y)− f(x) ≥ 〈z, y − x〉 ∀ y ∈ H.

In particular for all t ≥ 0,

f(S(t)x)− f(x) ≥ 〈z, S(t)x− x〉.
Dividing by t > 0 and using (8) gives for all t ∈ (0, α(x)),

−δ(n) ≥ 〈z,
S(t)x− x

t
〉.

Taking the limit t → 0+ gives

−δ(n) ≥ 〈z,−A◦x〉.
Obviously, 2 ⇒ 3 ⇒ 4. To see 4 ⇒ 1, we follow the proof that (iii) ⇒ (i) in
Proposition 4.6 of [5]. Let 4 hold. Let n be a given positive integer. By 4, take
hn > 0 such that

(9) f ′(x,A◦x) ≥ hn ∀x ∈ D2n.

Let x ∈ Dn. Since f is convex and continuous at x, it is Lipschitz in a neighbourhood
of x. Thus, t 7→ f(S(t)x) is Lipschitz on [0, α1(x)], α1(x) > 0, and there exists L > 1
such that

(10) |f(S(t1)x)− f(S(t2)x)| ≤ L‖S(t1)x− S(t2)x‖ ∀ t1, t2 ∈ [0, α1(x)].

Choose

(11) α(x) = min(α1(x),
1

2nL(‖A◦x‖+ 1)
).

Then we claim S(t)x ∈ D2n, ∀t ∈ [0, α(x)]. Let t ∈ [0, α(x)]. Note that

‖S(t)x‖ ≤ ‖S(t)x− x‖+ ‖x‖(12)

≤ t‖A◦x‖+ ‖x‖

≤ ‖A◦x‖
2nL(‖A◦x‖+ 1)

+ n (using (11) and x ∈ Dn)

≤ 1 + n

≤ 2n.

Also

|f(S(t)x)− f(x)| ≤ L‖S(t)x− x‖ (using (10))(13)

≤ Lt‖A◦x‖

≤ L
1

2nL(‖A◦x‖+ 1)
‖A◦x‖ (using (11))
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≤ 1
2n

.

Therefore,

f(S(t)x)−min(f) = f(S(t)x)− f(x) + f(x)−min(f)(14)

≥ −1
2n

+
1
n

(using (13) and x ∈ Dn)

=
1
2n

.

Since S(t)x ∈ D(A), (12) and (14) establish our claim. Suppose t 7→ S(t)x and
t 7→ f(S(t)x) differentiable at t0 ∈ (0, α(x)). For all z ∈ ∂f(S(t0)x), and all v ∈ H,

f(v)− f(S(t0)x) ≥ 〈z, v − S(t0)x〉.

So taking v = S(t0 − ε)x, ε > 0,

f(S(t0 − ε)x)− f(S(t0)x)
ε

≥ 〈z,
S(t0 − ε)x− S(t0)x

ε
〉.

Let ε ↘ 0,

− d

dt
f(S(t)x)

]
t0

≥ 〈z,A◦S(t0)x〉.

Thus

− d

dt
f(S(t)x)

]
t0

≥ f ′(x,A◦S(t0)x)

≥ hn (using (9) as S(t0)x ∈ D2n).

Then integrating gives

f(S(t)x)− f(x) ≤ −thn ∀ t ∈ [0, α(x)]. �

Note that these equivalent conditions give us the flexibility to use the definition of
Lyapounov and regularly Lyapounov function for the semigroup {S(t)}t≥0 in terms
of its generator A.

5. Assumptions

The following assumptions A(4.1)–A(4.5) will be assumed when specified.
A(4.1) A is a maximal monotone operator on H.
A(4.2) f is a convex Lyapounov function for the semigroup generated by A, X0

a nonempty closed bounded convex subset of A−1{0}, f(x0) = min(f)
for all x0 ∈ X0, and D(A) = K ⊆ Int D(f).

A(4.3) D(A) is a convex subset of H.
A(4.4) For each x ∈ D(A), Ax does not contain a line.
A(4.5) For all x ∈ H, f(PKx) ≤ f(x).

We give examples of a maximal monotone operator A, set X0, and function f ,
for which either all the assumptions A(4.1)–A(4.5) hold or one of the assumptions
does not hold.
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Example 2. We take H = L2[0, 1], where L2[0, 1] denote the set of equivalence
classes of all Lebesgue measurable functions u : [0, 1] → R satisfying

(15)
∫ 1

0
|u(x)|2dx < ∞;

we identify the functions that are equal almost everywhere on [0, 1]. Let D(A) =
{u ∈ L2[0, 1] : u′, u′′ ∈ L2[0, 1], u′(0) = u′(1) = 0}, and A(u) = −u′′ for u ∈ D(A).
Thus A is defined on the set of equivalence classes each containing a function u :
[0, 1] → R which is differentiable, with derivative u′ which is absolutely continuous
on [0, 1] and satisfies u′(0) = u′(1) = 0, and whose derivative, which exists a.e., is
in L2[0, 1], not just L1[0, 1]. Let f : L2[0, 1] → R be given by f(u) = ‖u‖2. Let
X0 = {0}. Then A, X0, and f satisfy assumptions A(4.1)–A(4.5).

Proof. One checks that A is densely defined, linear (giving A0 = 0), and monotone
(since for u ∈ D(A), 〈u, Au〉 = −〈u, u′′〉 = 〈u′, u′〉 ≥ 0). One checks R(I + A) = H.
Therefore, A satisfies A(4.1). The function f is convex and f(0) = 0 = min(f).
Also K = D(A) = H ⊆ Int D(f) = H and f is a Lyapounov function for the
semigroup {S(t)}t≥0 generated by A as for all u ∈ D(A),

d+

dt
f(S(t)u)

]
t=0

= −〈∇f(u), Au〉 = 〈2u, u′′〉 = −2〈u′, u′〉 ≤ 0.

Therefore, f and X0 satisfy A(4.2). Since A is linear and single valued, A(4.3)
and A(4.4) hold. For each u ∈ H, as K = H, PK(u) = u, and therefore A(4.5)
holds. �

Example 3. Let H = R, define A : [0, 1] → R as

Ax =


(−∞, 0] if x = 0
x if 0 < x < 1
[1,∞) if x = 1.

Define f : R → R as f(x) = x2. Let X0 = {0}. Then A, X0 and f satisfy
A(4.1)–A(4.5).

Proof. Clearly A is a maximal monotone operator and satisfies A(4.1), A(4.3) and
A(4.4). f is a convex function and f(0) = 0 = min(f), 0 ∈ A−1{0}. The function
f is Lyapounov for the semigroup {S(t)}t≥0 generated by A as for each x ∈ [0, 1],
noting {S(t)}t≥0 is a semigroup of contractions, f(S(t)x) = ‖S(t)x‖2 ≤ ‖x‖2 =
f(x). Therefore f and X0 satisfy A(4.2). To check A(4.5), we note that

PK(x) =


0 if x ≤ 0
x if 0 ≤ x ≤ 1
1 if x ≥ 1.

Thus f(PK(x)) ≤ f(x) and A(4.1)–A(4.5) all hold. �

In our next example we use the maximal monotone operator A, whose domain is
not a convex set, as given by Simons[18].
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Example 4. Let H = R2, define φ : R2 → R ∪ {∞} as

φ(x1, x2) =

{
|x2| ∨ (1−

√
1− x2

1), if |x1| ∨ |x2| ≤ 1
∞ otherwise.

Let A = ∂φ and define f : R2 → R as f(x) = ‖x‖2
2 . Let X0 = {0}. Then A, X0 and

f satisfy assumptions A(4.1)–A(4.5) except A(4.3).

Proof. Note that φ is a proper convex l.s.c. function on R2. Therefore ∂φ is a
maximal monotone operator. Also (0, 0) ∈ A−1((0, 0)). We note that D(φ) =
{(x1, x2) : |x1| ≤ 1, |x2| ≤ 1}, D(∂φ) = D(φ) \ {(x1, x2) : x1 = ±1, |x2| < 1},
and K = D(∂φ) = D(φ). Clearly A satisfies A(4.1), A(4.4) but not A(4.3). The
function f is convex and f(0) = 0 = min(f). Also K ⊆ Int D(f) = H and f is a
Lyapounov function for the semigroup {S(t)}t≥0 generated by A as for each x ∈ K,

d+

dt
f(S(t)x)

]
t=0

= 〈∇f(x),−A◦x〉 = −〈x,A◦x〉 ≤ 0.

Therefore, f and X0 satisfy A(4.2). To see A(4.5), we note that, for each x ∈ R2,
||PK(x)‖ ≤ ‖x‖ as (0, 0) ∈ K and PK is a contraction. Therefore, for each x ∈ R2,

f(PK(x)) =
‖PK(x)‖2

2
≤ ‖x‖2

2
= f(x).

Therefore, A(4.5) holds. �

Example 5. Let H = R2, K = {(x, 0) : 0 ≤ x ≤ 1}. Let A = ∂IK where, we recall,

IK(x, y) =

{
0 if (x, y) ∈ K

∞ otherwise.

Define f : R2 → R as
f(x, y) = ‖(x, y)‖2.

Let X0 = {0}. Then A(4.4) does not hold but all of A(4.1), A(4.2), A(4.3) and
A(4.5) hold.

Proof. Note that X0 = {0} and A is a maximal monotone operator and (0, 0) ∈
A(x, y)∀ (x, y) ∈ K. Clearly A satisfies A(4.1), A(4.3) but not A(4.4). f is a
convex function and f(0, 0) = 0 = min(f). Also K = D(A) ⊆ Int D(f) = H and
f is a Lyapounov function for the semigroup {S(t)}t≥0 generated by A as for each
(x, y) ∈ K, f(S(t)(x, y)) = f(x, y). Therefore, f and X0 satisfy A(4.2). To see
A(4.5), we note that, for each (x, y) ∈ R2, ||PK(x, y)‖ ≤ ‖(x, y)‖ as (0, 0) ∈ K and
PK is a contraction. Therefore, for each (x, y) ∈ R2,

f(PK(x, y)) = ‖PK(x, y)‖2 ≤ ‖(x, y)‖2 = f(x, y).

Therefore, A(4.5) holds. �

Example 6. Let H = R2, K = {(x, y) : x − 1 ≤ y ≤ x + 1, x ∈ R} and A = ∂IK .
Define f : R2 → R as

f(x, y) = y2.

Let X0 be any nonempty closed bounded convex set of {(x, 0) : |x| ≤ 1}. Then
A(4.5) does not hold but all others, A(4.1)–A(4.4), hold.
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Proof. A is a maximal monotone operator and A(x, y) = {(0, 0)} for all (x, y) ∈
Int K. Clearly A satisfies A(4.1), A(4.3) and A(4.4). f is a convex function and
f(x, 0) = 0 = min(f)∀x : |x| ≤ 1. Also K = D(A) ⊆ Int D(f) = H and f
is a Lyapounov function for the semigroup {S(t)}t≥0 generated by A as for each
(x, y) ∈ K, f(S(t)(x, y)) = f(x, y). Therefore, f and X0 satisfy A(4.2). To see
A(4.5) does not hold, we note that PK(3, 0) = (2, 1) and f(PK(3, 0)) = f(2, 1) =
1 > f(3, 0) = 0. �

The following proposition is a simple perturbation result which will help us to
define the collection of bounded perturbations of A. To prove it we use [5], Theorem
2.4, Lemma 2.5, and the argument used in [5], Proposition 2.10. Let us recall a single
valued operator A : C → H, C a convex subset of H is said to be hemicontinuous
if for each x, y ∈ C, A((1− t)x + ty) ⇀ Ax (weak convergence) as t → 0+.

Proposition 5. Let A be a maximal monotone operator satisfying A(4.3). Let
A′ : D(A′) ⊆ H → H be such that :

(1) D(A) ⊆ D(A′),
(2) A′ is single valued, hemicontinuous and monotone on D(A), and
(3) A′ maps bounded subsets of D(A) to bounded sets.

Then A + A′ is a maximal monotone operator.

Proof. Since A′ is monotone on D(A) there exist a maximal monotone extension Ã′

of A′ |D(A) such that D(Ã′) ⊆ D(A) = K. To show A + A′ is maximal monotone
we show that

(a) A + Ã′ is maximal monotone, and
(b) A + Ã′ = A + A′.

To see (a), let y ∈ H be arbitrary. We write Ã′
λ = I−(I+λÃ′)−1

λ for the Yosida
approximation of Ã′. Since A and Ã′ are maximal monotone, for λ > 0 there is
xλ ∈ D(A) such that y ∈ xλ + Axλ + Ã′

λxλ. Since D(A)
⋂

D(Ã′) 6= ∅, ‖xλ‖ is
bounded by Lemma 2.5 of [5]. Therefore, by condition 3 of this Proposition, ‖A′xλ‖
is bounded as λ → 0. Denoting the element of minimal norm in the closed convex
set Ã′xλ by (Ã′)oxλ we get

‖Ã′
λxλ‖ ≤ ‖(Ã′)oxλ‖ ≤ ‖A′xλ‖.

Therefore ‖Ã′
λxλ‖ is bounded as λ → 0 and by [5], Theorem 2.4, A+ Ã′ is maximal

monotone. To establish (b), we use the argument used in [5], Proposition 2.10.
Clearly, A + A′ ⊆ A + Ã′. For the reverse inclusion we first show that for each
x ∈ D(A), Ã′x ⊆ A′x + ∂IKx. Let x ∈ D(A) and z ∈ Ã′x. Since Ã′ is monotone
we have

〈A′y − z, y − x〉 ≥ 0 ∀ y ∈ D(A).
In particular putting y = yt = (1 − t)x + tu, t ∈ (0, 1), u ∈ D(A) in the above
inequality we get

〈A′yt − z, u− x〉 ≥ 0 ∀u ∈ D(A), t ∈ (0, 1).

Taking the limit as t → 0 and using the hemicontinuity of A′ on D(A) we get

〈A′x− z, u− x〉 ≥ 0 ∀u ∈ D(A),
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which holds true ∀u ∈ K, implying z ∈ A′x+∂IKx. Thus A+Ã′ ⊆ A+(A′+∂IK) =
A′ + (A + ∂IK). Since A + ∂IK is a monotone extension of A, A + ∂IK = A,
establishing (b). �

Definition 3. Let A, X0 and f satisfy A(4.1), A(4.2) and A(4.3). Let A1 be
the set of monotone operators A1 which may be written as A1 = A + A′ where
A′ : D(A) ⊆ H → H satisfy the following:

(1) A′ is single valued, hemicontinuous and monotone on D(A),
(2) A′ maps bounded subsets of D(A) to bounded sets,
(3) (A + A′)x0 3 0 for some x0 (depending on A′) in X0,
(4) for each x ∈ D(A) and z ∈ ∂f(x), 〈z, (A + A′)ox〉 ≥ 0.

Definition 4. Let F1 be the set of monotone operators A1 = A + A′ of A1 such
that for each positive integer n there exist a positive number hn > 0 such that for
each x in Dn, where we recall Dn = {x ∈ D(A) : ‖x‖ ≤ n, f(x) ≥ min(f)+ 1

n}, and
all z ∈ ∂f(x),

〈z, (A + A′)ox〉 ≥ hn.

Proposition 6. If A satisfies A(4.1), A(4.3) and f satisfies A(4.2) then f is Lya-
pounov for each semigroup {S1(t)}t≥0 generated by A1 in A1 and regularly Lya-
pounov for each semigroup {S1(t)}t≥0 generated by A1 in F1.

Proof. Let A1 = A + A′ ∈ A1 be given. Since A satisfies A(4.1), A(4.3) then by
Proposition 5, A1 is a maximal monotone operator. Also A1x0 = Ax0 + A′x0 3 0
for some x0 (depending on A′) in X0. Let {S1(t)}t≥0 be the semigroup generated
by A1. By Proposition 3, 4 of Definition 3 implies

f(S1(t)x) ≤ f(x) ∀x ∈ K = D(A), ∀ t ≥ 0.

Hence f is Lyapounov for the semigroup {S1(t)}t≥0. Now let A1 = A + A′ ∈ F1

and n be a positive integer. Then there exists a positive number hn > 0 such that
for each x in Dn and z ∈ ∂f(x),

〈z, (A + A′)ox〉 ≥ hn.

Hence by Proposition 4, f is regularly Lyapounov for the semigroup {S1(t)}t≥0. �

The next proposition is a simple but interesting geometrical result which will help
us to equip A1 with a metric, so that we can see that the subset F1 of A1 is large.

Proposition 7. Let C be a nonempty convex subset of a linear space X. Then
there exists 0 6= x ∈ X such that C +x = C ⇔ C =

⋃
c∈C L+ c for a nonzero linear

subspace L of X.

Proof. =⇒ Let there exist a nonzero x in X such that C + x = C. Let L = {λx :
λ ∈ R}. Then for each c ∈ C, L + c is an affine set containing c and

C ⊆
⋃
c∈C

L + c.

For the reverse inclusion we show that for each c ∈ C, L + c ⊆ C. For each c ∈ C
and for each integer n, using C + x = C, we get

(16) c + nx ∈ C.
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Let λx+c, for a real number λ, be any arbitrary element of L+c. Choose a positive
integer n such that |λ| ≤ n and let µ = |λ|

n . Then µ ∈ [0, 1] and λ = ±nµ. Then by
(16) and the convexity of C we get

λx + c = ±nµx + c− µc + µc = (1− µ)c + µ(c± nx) ∈ C.

Hence,
C =

⋃
c∈C

L + c.

⇐= Let C =
⋃

c∈C L + c, for a non zero linear subspace L of X. Let x be a non
zero element of L. We have

C + x = (
⋃
c∈C

L + c) + x =
⋃
c∈C

L + c = C. �

Proposition 8. Assume A(4.1) to A(4.5). Let d : A1 ×A1 → R be defined as

d(A1, A2) =
∞∑

n=1

1
2n

.
dn(A1, A2)

1 + dn(A1, A2)

for A1 = A + A′ and A2 = A + A′′ in A1, where for each integer n, dn(A1, A2) is
defined as

dn(A1, A2) = sup{‖A′x−A′′x‖ : ‖x‖ ≤ n , x ∈ D(A)}.

Then (A1, d) is a complete metric space.

Proof. In view of Proposition 7 and A(4.4), note that if A1 ∈ A1 can be represented
as A1 = A + A′ and A1 = A + A′′ then A′ = A′′. It is easy to see that (A1, d) is a
metric space. For completeness, let 〈An = A + A(n)〉∞n=1 be a Cauchy sequence in
(A1, d), where A(n) satisfy 1-4 of Definition 3. Then for each x ∈ D(A), 〈A(n)x〉∞n=1

is a Cauchy sequence in H and hence converges. We define B : D(A) → H as

Bx = lim
n→∞

A(n)x.

In fact A(n) → B uniformly on bounded subsets of D(A) and d(A+A(n), A+B) → 0
as n → ∞. We check B satisfies 1-4 of Definition 3. Note B is a single valued
monotone operator on D(A). To see B is hemicontinuous on D(A), let x, y ∈ D(A).
Let z be an arbitrary nonzero element of H. Then A(n) → B uniformly on the
bounded subset {x + t(y − x) : 0 ≤ t < 1} of D(A), so for ε > 0 there exists a
positive integer p such that

‖A(n)(x + t(y − x))−B(x + t(y − x))‖ <
ε

3‖z‖
∀n ≥ p, 0 ≤ t < 1.

In particular,

(17) ‖A(p)(x + t(y − x))−B(x + t(y − x))‖ <
ε

3‖z‖
for 0 ≤ t < 1.

Also A(p) is hemicontinuous so there exists δ
′
> 0 such that

(18) |〈A(p)(x + t(y − x))−A(p)x, z〉| < ε

3
∀ t : 0 ≤ t < δ

′
.
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Choose δ = min(1, δ
′
), then by (17), (18) we have for all t ∈ [0, δ)

|〈B(x + t(y − x))−Bx, z〉|

= |〈B(x + t(y − x))−A(p)(x + t(y − x))

+ A(p)(x + t(y − x))−A(p)x + A(p)x−Bx, z〉|

≤ ‖B(x + t(y − x))−A(p)(x + t(y − x))‖‖z‖

+ |〈A(p)(x + t(y − x))−A(p)x, z〉|+ ‖A(p)x−Bx‖‖z‖

<
ε

3‖z‖
‖z‖+

ε

3
+

ε

3‖z‖
‖z‖ = ε.

Hence B is hemicontinuous. Also B is monotone, so 1 holds. We check 2. Let S
be a bounded subset of D(A). Then A(n) → B uniformly on S and there exists a
positive integer m such that

(19) ‖A(n)x−Bx‖ < 1 ∀x ∈ S, ∀n ≥ m.

Since A(m)x is bounded on bounded subsets of D(A), there exists M > 0 such that

(20) ‖A(m)x‖ ≤ M ∀x ∈ S.

By (19) and (20), B is bounded on bounded subset of D(A).
We check 3. By 3 of Definition 3, for each n there exists xn ∈ X0 such that

Anxn = (A+A(n))xn 3 0. Since X0 is a bounded set, 〈xn〉 has a weakly convergent
subsequence, say 〈xnk

〉, converging to x0 ∈ X0. Since An = A + A(n) is monotone,
for all x ∈ D(A), y ∈ Ax,

〈0− (y + Bx), x0 − x〉 = lim
n→∞

〈0− (y + A(n)x), xnk
− x〉 ≥ 0.

Thus (A+B)x0 3 0 since A+B is maximal monotone, by Proposition 5. For 4, let
x ∈ D(A) and let (A + B)ox = yo + Bx, for some yo ∈ Ax. In view of Proposition
3 it suffices to show that there exists z ∈ ∂f(x) such that 〈z, (A + B)ox〉 ≥ 0. Also
for each n, A + A(n) = An ∈ A1 ⇒ for all z ∈ ∂f(x), 〈z, (A + A(n))ox〉 ≥ 0. This
implies, by 4 of Proposition 3, for each y◦ + A(n)x ∈ Anx there exists zn ∈ ∂f(x)
such that

〈zn, yo + A(n)x〉 ≥ 0.

Since zn ∈ ∂f(x) and ∂f(x) is bounded, 〈zn〉 has a weakly convergent subsequence,
say 〈znk

〉, converging to z ∈ ∂f(x). Thus

〈z, (A + B)ox〉 = lim
k→∞

〈znk
, yo + A(nk)x〉 ≥ 0.

Hence, A + B ∈ A1 and (A1, d) is a complete metric space. �

We show the significance of the condition that X0 is bounded. Here we give an
example of A, f and X0 satisfying A(4.1) to A(4.5) except that X0 is unbounded,
and show that (A1, d) is not a complete metric space. Let H = R, define A : R → R
as Ax = 0 for every x ∈ R. Let f : R → R be any convex continuous monotone
decreasing function satisfying f(x) = 0 ∀x ∈ [0,∞). We assume X0 = [0,∞).
Let B : R → R be a continuous monotone increasing function such that Bx → 0
as x → ∞. Let A(n) : R → R be given as A(n) = B + 1

nI. Then A + A(n) ∈ A1,
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A + A(n) → A + B as n → ∞, but A + B /∈ A1 as there does not exist any x ∈ R
such that (A + B)x = 0.

Theorem 2. Assume A(4.1) to A(4.5) and let ∂f be bounded on bounded subsets
of D(A). Then A1 \ F1 is a σ-porous subset of the complete metric space (A1, d).

Proof. For each positive integer n, we recall Dn = {x ∈ D(A) : ‖x‖ ≤ n, f(x) ≥
min(f) + 1

n}, and define

Ωn = {A1 = A + A′ ∈ A1 : inf
x∈Dn

z∈∂f(x)

〈z, (A1)ox〉 = 0}.

Then
∞⋃

n=1

Ωn = A1 \ F1.

Therefore, it suffices to show that, for each positive integer n, Ωn is a porous subset
of A1. Let n be given. So we need to show there exists ro > 0 and α ∈ (0, 1) such
that for each r ∈ (0, ro] and for each A1 ∈ Ωn, there exists A1

γ ∈ A1 satisfying

(21) B(A1
γ , αr) ⊆ B(A1, r) \ Ωn

where B(A1
γ , αr) and B(A1, r) are closed balls of the metric space (A1, d). Since ∂f

is bounded on bounded subsets of D(A) choose Mn > 1 such that

(22) ‖z‖ ≤ Mn ∀ z ∈ ∂f(x), x ∈ D(A), ‖x‖ ≤ n.

Let

(23) ‖X0‖ = sup{‖x‖ : x ∈ X0}.

Let S =
∑∞

i=1
i
2i and choose α ∈ (0, 1) such that

(24) 2n+3αMn <
(1− α)(S + ‖X0‖+ 1)−1

n
.

Let r0 = 1 and r ∈ (0, r0] be given. Let

(25) γ =
(1− α)r

2(S + ‖X0‖+ 1)
.

Clearly, γ ∈ (0, 1). Let A1 = A + A′ ∈ Ωn be given. By 3 of Definition 3, there
exists x0 ∈ X0 such that

(26) (A + A′)x0 3 0.

Define A′
γ : D(A) → H as

A′
γx = A′x + γ(x− x0), or A1

γ = A′ + γ(I − x0).

We define A1
γ = A + A′

γ , and show that A1
γ ∈ A1. Clearly, A′

γ is a single valued
hemicontinuous monotone operator on D(A), and is bounded on bounded subsets
of D(A). Also, (26) gives A1

γx0 = (A + A′
γ)x0 = (A + A′ + γ(I − x0))x0 3 0. Thus

A1
γ satisfies 1-3 of Definition 3. Now we check 4 of Definition 3. Let x ∈ D(A)

and (A1
γ)ox = yγ + A′x + γ(x − x0) for yγ ∈ Ax. Since A1 ∈ A1, 〈z, (A1)ox〉 ≥
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0 ∀ x ∈ D(A) and ∀ z ∈ ∂f(x) which in turn implies, by Proposition 3, there exists
z ∈ ∂f(x) such that

〈z, yγ + A′x〉 ≥ 0.

Hence
〈z, (A1

γ)ox〉 = 〈z, yγ + A′x + γ(x− x0)〉 ≥ 〈z, γ(x− x0)〉 ≥ 0.

Hence, by Proposition 3, 4 of Definition 3 holds and A1
γ ∈ A1. To show (21), we

need to show that
(A) B(A1

γ , αr) ⊆ B(A1, r), and
(B) B(A1

γ , αr) ∩ Ωn = ∅.
To see (A), let B1 = A + B′ be an arbitrary element of B(A1

γ , αr). Let us first
estimate the distance between A1 and A1

γ . For each i, i ≥ 1 we have

di(A1
γ , A1) = sup{‖A′

γx−A′x‖ : ‖x‖ ≤ i , x ∈ D(A)}
= sup{‖γ(x− x0)‖ : ‖x‖ ≤ i , x ∈ D(A)} ≤ γ(i + ‖x0‖).

Therefore,

d(A1
γ , A1) =

∞∑
i=1

1
2i

.
di(A1

γ , A1)
1 + di(A1

γ , A1)
≤

∞∑
i=1

1
2i

di(A1
γ , A1)

≤
∞∑
i=1

1
2i

γ(i + ‖x0‖) = γ(S + ‖x0‖)

=
(1− α)r(S + ‖x0‖)
2(S + ‖X0‖+ 1)

(by using (25))

<
(1− α)r

2
(by using (23)).

So using the above estimate we get

d(B1, A1) ≤ d(B1, A1
γ) + d(A1

γ , A1) < αr +
(1− α)r

2
≤ r,

which establishes (A).
To establish (B), let B1 = A + B′ be an arbitrary element of B(A1

γ , αr). Let
x ∈ Dn be given. We show there exists z ∈ ∂f(x) such that 〈z, (B1)ox〉 ≥ γ

2n .
Let (B1)ox = y′ + B′x for y′ ∈ Ax. Since y′ + A′x ∈ A1x and A1 ∈ A1, by 4 of
Proposition 3, there exists z ∈ ∂f(x) such that

(27) 〈z, y′ + A′x〉 ≥ 0.

We can write

(28) 〈z, (B1)ox〉 = 〈z, (B1)ox− (y′ + A′
γx)〉+ 〈z, y′ + A′

γx〉.

Now

〈z, y′ + A′
γx〉 = 〈z, y′ + A′x + γ(x− x0)〉(29)

≥ 〈z, γ(x− x0)〉 by (27)

≥ γ(f(x)− f(x0))
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≥ γ

n
.

Also

(30) ‖(B1)ox− (y′ + A′
γx)‖ = ‖A′

γx−B′x‖
≤ sup{‖A′

γx−B′x‖ : ‖x‖ ≤ n , x ∈ D(A)} = dn(A1
γ , B1).

Since
1
2n

dn(A1
γ , B1)

1 + dn(A1
γ , B1)

≤ d(A1
γ , B1) ≤ αr,

noting 2nαr < 1 by (24) and (25), since Mn > 1, we get

(31) dn(A1
γ , B1) ≤ 2nαr

1− 2nαr
.

Combining (30) and (31) gives

(32) ‖(B1)ox− (y′ + A′
γx)‖ ≤ 2nαr

1− 2nαr
.

Using (22) and (32) we get

(33) |〈z, (B1)ox− (y′ + A′
γx)〉| ≤ Mn

2nαr

1− 2nαr
.

Substituting (29) and (33) in (28) yields

〈z, (B1)ox〉 ≥ −Mn
2nαr

1− 2nαr
+

γ

n

≥ −2Mn2nαr +
γ

n
(as 2nαr < 1

2 by (24), (25))

> − γ

2n
+

γ

n
(by (24), (25))

=
γ

2n
> 0.

Hence, by Proposition 4, there exists hn > 0 such that

〈z, (B1)ox〉 ≥ hn ∀x ∈ Dn, ∀ z ∈ ∂f(x).

Hence B1 /∈ Ωn, which establishes (B). �

Remark 5. Note that, in the definition of Lyapounov function, the assumption that
there exists x0 ∈ A−1{0} such that f(x0) = min(f) has two different roles to play.
In Theorem 1 we use A−1{0} 6= ∅ but f need not be minimized (see Remark 2).
Theorem 2 can be proved assuming f is minimized but not necessarily in A−1{0}.
In fact we can assume A−1{0} = ∅ and can redefine the class A1 by dropping the
condition 3 in Definition 3, and then Theorem 2 holds true for this class A1 too.
Since we wish to use Theorem 1 and Theorem 2 together, we need to assume that
for each of the semigroups generated by the maximal monotone operators in the
class A1, there is an equilibrium point x0 such that f is minimized at this x0.

Another class A2 of bounded perturbations of A can be defined by replacing 4
of Definition 3 by a condition that ∀x ∈ D(A), ∀z ∈ ∂f(x), 〈z,A′x〉 ≥ 0. That
means A2 = {A + A′ : A′ ∈ A′′} where A′ ∈ A′′ satisfies 1-3 of Definition 3 and
∀x ∈ D(A), ∀z ∈ ∂f(x), 〈z,A′x〉 ≥ 0. Correspondingly we can define the subset
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F2 of A2 as F2 = {A + A′ : A′ ∈ F ′′} where F ′′ is the subset of A′′ consisting of
A′ such that for each positive integer n there exist a positive number hn > 0 such
that 〈z,A′x〉 ≥ hn ∀x ∈ Dn, and ∀z ∈ ∂f(x).

Remark 6. Note that if f satisfies A(4.5) then A2 ⊆ A1 and the conclusions of
Proposition 6 and Theorem 2 hold for A2 and F2.

Remark 7. Proposition 8 for A2 holds true even without assumption A(4.5). Also
without A(4.5), A′′ is a convex cone and A′′ \ F ′′ forms a face of the convex cone,
which means if A′ ∈ A′′, A′′ ∈ F ′′ then λA′ + (1− λ)A′′ ∈ F ′′ for all λ ∈ [0, 1).

Remark 8. Under the conditions of Theorem 2, we have (1) holding for all semi-
groups generated by operators in a very large subset of A1, and for all x in K by
Remark 1 after Theorem 1.

Thus, a convex continuous Lyapounov function for a semigroup converges gener-
ically along the trajectories of the semigroups generated by a class of bounded
perturbations of the semigroup generator.

Remark 9. Let us assume Ax = 0 ∀x ∈ H and denote A1 by Ahm and F1 by
Fhm. One can see that Ahm is the collection of single valued everywhere defined
hemicontinuous monotone bounded operators such that f is Lyapounov for all the
semigroups generated by V ∈ Ahm. By Theorem 2, Fhm is a very large subset of
Ahm and (1) holds for all the semigroups generated by operators in this very large
subset. Thus a convex continuous Lyapounov function f for a semigroup generated
by single valued everywhere defined hemicontinuous monotone bounded operator
on a Hilbert space H converges generically along the trajectories of the semigroups
in Ahm.

Remark 10. The results of [17] are not directly comparable with the results of this
paper, although there are common approaches in these two papers. We do not
give the details of a comparison here. If f satisfies A(4.2) then using our notation
and assumptions, the set A given by Reich and Zaslavski [17] is the set of all the
vector fields V : H → H such that V is bounded on bounded subsets of H and
〈z, V x〉 ≥ 0 ∀x ∈ H and ∀ z ∈ ∂f(x). One can see that the metric ρ in [17] is the
same as our metric d and Ahm is a closed subset of the complete metric space (A, d).
By Remark 9, [17] Theorem 2.2 holds true for Ahm. Also V ∈ Ahm ensures the
existence of u : [0, T ] −→ H such that u′(t) = −V (u(t)) a.e. t ∈ [0, T ]. Moreover
[17] Theorem 3.2 holds for Ahm.

The paper [17] has a point of view in which one wishes to minimize the convex
function f , and finds that one can do so by using a very large subset of the vector
fields for which f is a Lyapounov function. In this paper, however, we have started
with the traditional viewpoint of wishing to study stability of an equilibrium point
of a semigroup {S(t)}t≥0, using a Lyapounov function, then proceeding to consider
convergence of f(S(t)x) as a question of interest in its own right. However, the
viewpoint of [17] is appropriate for this paper too.

Remark 11. We would like to draw attention to the monotone operator A1
γ in the

proof of Theorem 2. Note that A1
γ = A + A′ + γ(I − x0) is a strongly maximal

monotone operator. We recall that B is a strongly monotone operator if there
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exists γ > 0 such that for all (xi, yi) ∈ B, i = 1, 2, 〈x1−x2, y1− y2〉 ≥ γ‖x1−x2‖2.
Let {S1

γ(t)}t≥0 be the semigroup generated by A1
γ . By [5] Theorem 3.9, for each

x ∈ K, S1
γ(t)x → x0 and hence f(S1

γ(t)x) → f(x0) = min(f) as t → ∞. One can
easily show that the subset A1

s of A1 containing all strongly monotone operators is a
dense subset of the complete metric space (A1, d) and for each semigroup {S1(t)}t≥0

generated by the operators in A1
s we rather have a stronger result than (1), that is,

for each x ∈ K, S1(t)x → x0 and hence f(S1(t)x) → f(x0) = min(f) as t → ∞.
We found difficulties that did not allow us to show that A1

s is a very large subset of
A1.

5.1. Not So Generic Convergence. We wish to understand the significance of
A(4.3) and in this subsection we drop A(4.3), the assumption that D(A) is convex.
We define A1 and F1 as a replacement for A1 and F1. We obtain some results
which are weaker than those of Theorem 2. We show the density of F1 in A1.

Definition 5. Let A, X0 and f satisfy A(4.1) and A(4.2). Let A1 be the set of
perturbations of A which can be written as A1 = A + V1 where V1 : H → H satisfy
the following:

(1) V1 is a single valued, everywhere defined, hemicontinuous, monotone oper-
ator,

(2) V1 is bounded on bounded subsets of H,
(3) (A + V1)x0 3 0 for some x0 (depending upon V1) in X0, and
(4) for each x ∈ D(A), and ∀ z ∈ ∂f(x), 〈z, (A + V1)ox〉 ≥ 0.

Definition 6. Let F1 be the set of perturbations A1 = A + V1 in A1 such that
for each positive integer n there exist a positive number hn > 0 such that for each
x ∈ Dn and ∀ z ∈ ∂f(x),

〈z, (A + V1)ox〉 ≥ hn.

Recall that the definition of A1 needs assumption A(4.3). Therefore, A1 ⊆ A1

and F1 ⊆ F1 if A satisfies A(4.3).

Proposition 9. f is Lyapounov for each semigroup {S1(t)}t≥0 generated by the
operators in A1 and regularly Lyapounov for each semigroup {S1(t)}t≥0 generated
by the operators in F1.

Proof. Omitted. �

Proposition 10. If A and f satisfy A(4.4) and A(4.5) then (A1, d) is a metric
space and F1 is a dense subset of (A1, d) where

d(A1, A2) =
∞∑

n=1

1
2n

.
dn(A1, A2)

1 + dn(A1, A2)

for A1 = A + V1 and A2 = A + V2 in A1, and for each integer n, dn(A1, A2) is
defined as

dn(A1, A2) = sup{‖V1x− V2x‖ : ‖x‖ ≤ n , x ∈ D(A)}.

Proof. In view of Proposition 7 and A(4.4), note that if A1 ∈ A1 can be represented
as A1 = A + V1 and A1 = A + V2 then V1x = V2x for all x ∈ D(A). It is easy to see
that (A1, d) is a metric space. To see F1 is a dense subset of (A1, d) let A1 = A+V1,
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where V1 satisfies 1-4 of Definition 5, be any arbitrary element of (A1, d). Let ε > 0
be given and let S =

∑∞
i=1

i
2i . Let x0 ∈ X0 be such that (A + V1)x0 3 0. For

γ = ε
(S+‖x0‖+1) > 0 define Vγ : H → H as

Vγx = V1x + γ(x− x0),

and
Aγ = A + Vγ .

Then clearly 1-3 of Definition 5 hold for Vγ . Let x ∈ D(A) be given and let
Ao

γx = yγ + V1x + γ(x− x0) for some yγ ∈ Ax. Since A1 ∈ A1 and A(4.5) holds, by
4 of Proposition 3, there exists z ∈ ∂f(x) such that

〈z, yγ + V1x〉 ≥ 0,

implying
〈z,Ao

γx〉 ≥ 〈z, γ(x− x0)〉 ≥ 0.

Therefore, by Proposition 3, for each z ∈ ∂f(x)

〈z,Ao
γx〉 ≥ 0.

Hence Aγ ∈ A1. Also for each positive integer n and for all x ∈ Dn we have

〈z,Ao
γx〉 ≥ 〈z, γ(x− x0)〉

≥ γ(f(x)− f(x0))

≥ γ

n
> 0.

Therefore, by Proposition 4, there exists hn > 0 such that ∀z ∈ ∂f(x),

〈z,Ao
γx〉 ≥ hn.

Therefore Aγ ∈ F1. Now let us estimate the distance between A1 and Aγ . For each
i ≥ 1 we have

di(A1, Aγ) = sup{‖γ(x− x0)‖ : ‖x‖ ≤ i, x ∈ D(A)} ≤ γ(i + ‖x0‖).
Therefore,

d(A1, Aγ) =
∞∑
i=1

1
2i

.
di(A1, Aγ)

1 + di(A1, Aγ)
≤

∞∑
i=1

1
2i

di(A1, Aγ)

≤
∞∑
i=1

1
2i

γ(i + ‖x0‖) = γ(S + ‖x0‖)

=
ε

(S + ‖x0‖+ 1)
(S + ‖x0‖) (using the value of γ )

< ε.

Hence F1 is a dense subset of (A1, d). �

Note that each element of A1 is a maximal monotone operator by [5], Corollary
2.5 and Corollary 2.7.

Remark 12. Under the conditions of Proposition 10, we have (1) holding for all the
semigroups generated by operators in a dense subset of A1, and for all x in D(A).
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Remark 13. There are two main difficulties in obtaining a complete metric space of
bounded perturbations of A, namely,

(a) the sum of two maximal monotone operators may not be a maximal mono-
tone operator, and

(b) the limit of maximal monotone operators may not be a maximal monotone
operator.

The assumption A(4.3) helps us to overcome these difficulties as in Proposition
5 we obtain rather a strong result, that the sum A + A′ is a maximal monotone
operator, although A′ is not a maximal monotone operator. The properties of A′

are further helpful in defining the class A1 and showing in Proposition 8 that (A1, d)
is a complete metric space. By dropping A(4.3) and defining a new class A1 instead
of A1 we overcame (a). Since an extension of a single valued monotone operator
may not be a single valued maximal monotone operator, we could not show that
(A1, d) is a complete metric space.

Acknowledgment. I thank S. Reich for suggesting this topic. I also thank B.
Calvert for his help and advice.
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