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A PARAMETRIC EQUILIBRIUM PROBLEM WITH
APPLICATIONS TO OPTIMIZATION PROBLEMS UNDER

EQUILIBRIUM CONSTRAINTS

KENJI KIMURA, YEONG-CHENG LIOU, AND JEN-CHIH YAO

Abstract. In this paper, we introduce a type of parametric vector equilibrium
problem with applications to related mathematical programming with equilib-
rium constraint problems (in short, MPEC). The existence and the closedness of
the graph of solution mappings for the parametric vector equilibrium problems
are established. As extensions, we also obtain some existence of MPEC prob-
lems corresponding to the lower-level problem generated by parametric vector
equilibrium problems.

1. Introduction

Let Ω1 and Ω2 be two nonempty subsets of Hausdorff topological vector spaces X
and Y , respectively. Let Z be a Hausdorff topological vector space and int C(x) ⊂ Z
be a domination structure generated by set-valued mapping C : Ω1 → 2Z at x ∈ Ω1

such that C(x) is a pointed convex cone with nonempty interior for each x ∈ Ω1.
Suppose that the constraint map Ω is a set-valued mapping from Ω1 to 2Ω2 \ {∅}.
Let g be a vector-valued function from Ω1×Ω2×Ω2 to Z. We consider the following
parametric vector equilibrium problem (PVEP): for a given x ∈ Ω1,

(PVEP)
find y∗ ∈ Ω(x) such that
g(x, y∗, v) /∈ − intC(x) for all v ∈ Ω(x),

where intC(x) denotes the interior of the set C(x). The solution mapping SE is a
set-valued mapping from Ω1 to 2Ω2 defined by.

(1) SE(x) = {y ∈ Ω(x) : g(x, y, v) /∈ − intC(x), for all v ∈ Ω(x)}.
If Ω, C, and g have a constant value for x ∈ Ω1, respectively, then the problem PVEP
is reduced to an ordinary vector equilibrium problem. Liou et al. [5] introduced a
weak PVVI as follows: for a given x ∈ Ω1,

(PVVI)
find y∗ ∈ Ω(x) such that
∇yϕ(x, y∗)(y∗ − v) /∈ − intC for all v ∈ Ω(x),

where ϕ = (ϕ1, . . . , ϕp) : Ω1 × Ω2 → Rp, ϕ(x, ·) is differentiable in Ω(x) for a given
x ∈ Ω1 and int C ⊂ Z is a domination structure generating a partial ordering on Z;
see Yu [9]. It is clear that weak PVVI is a special case of PVEP.

The purpose of this paper is to establish some existence results for PVEP and
give some applications of PVEP, particularly to the mathematical programs with
vector equilibrium constraints. To this end, we will give some preliminaries which
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will be used for the rest of this paper in Section 2. We will establish some existence
results and closedness of the graph of the solution map for PVEP In Section 3.
Finally we will establish some existence results for the mathematical program with
equilibrium constraints as applications of PVEP.

2. Preliminaries

We recall the cone-convexity of vector-valued functions by Tanaka [7]. Let X
be a vector space, and Z also a vector space with a partial ordering defined by a
pointed convex cone C. Suppose that K is a convex subset of X and that f is a
vector-valued function from K to Z. The mapping f is said to be C-convex on K
if for each x1, x2 ∈ K and λ ∈ [0, 1], we have

λf(x1) + (1− λ)f(x2) ∈ f(λx1 + (1− λ)x2) + C.

As a special case, if Z = R and C = R+ then C-convexity is the same as ordinary
convexity.

Definition 1 (C-quasiconvexity, [2, 6, 7]). Let X be a vector space, and Z also a
vector space with a partial ordering defined by a pointed convex cone C. Suppose
that K is a convex subset of X and that f is a vector-valued function from K to
Z. Then f is said to be C-quasiconvex on K if it satisfies one of the following two
equivalent conditions:

(i) for each x1, x2 ∈ K and λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ∈ z − C, for all z ∈ C(f(x1), f(x2)),

where C(f(x1), f(x2)) is the set of upper bounds of f(x1) and f(x2), i.e.,

C(f(x1), f(x2)) := {z ∈ Z : z ∈ f(x1) + C and z ∈ f(x2) + C}.
(ii) for each z ∈ Z,

A(z) := {x ∈ K : f(x) ∈ z − C}
is convex or empty.

First statement is defined by Luc [6] and the second is by Ferro [2].

Remark 1 (See Tanaka [7]). Some readers recall the following Helbig’s definition
which is stronger than Luc and Ferro definition. When Z is a locally convex space
and C is closed, the definition is equivalent to C-naturally quasiconvex defined by
Tanaka [7].

Definition 2 (Helbig’s C-quasiconvexity, [4, 7]). Let X be a vector space, and
Z also a locally convex space with a partial ordering defined by a closed pointed
convex cone C. Suppose that K is a convex subset of X and that f is a vector-
valued function from K to Z. Then, f is said to be (Helbig’s) C-quasiconvex on
K if for every x1, x2 ∈ X and λ ∈ [0, 1], and each ϕ ∈ C∗, ϕ(f(λx1 + (1 − λ)x2) ≤
max{ϕ(f(x1)), ϕ(f(x2))}, where C∗ stands for the topological dual cone of C.

Example 1. f : R → R2 is defined by f(x) = (x,−|x|) for x ∈ [−1, 1] and C =
{(x, y) ∈ R2 : y ≥ |x|}. Then we can see that f is Luc and Ferro C-quasiconvex,
but not Helbig C-quasiconvex.
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Definition 3 (C-continuity, [6, 8]). Let X be a topological space, and Z a topo-
logical vector space with a partial ordering defined by a solid pointed convex cone
C. Suppose that f is a vector-valued function from X to Z. Then, f is said to be
C-continuous at x ∈ X if it satisfies one of the following two equivalent conditions:

(i) For any neighborhood Vf(x) ⊂ Z of f(x), there exists a neighborhood Ux ⊂
X of x such that f(u) ∈ Vf(x) + C for all u ∈ Ux.

(ii) For any k ∈ intC, there exists a neighborhood Ux ⊂ X of x such that
f(u) ∈ f(x)− k + intC for all u ∈ Ux.

Moreover a vector-valued function f is said to be C-continuous on X if f is C-
continuous at every x on X.

Remark 2. Whenever Z = R and C = R+, C-continuity and (−C)-continuity are the
same as ordinary lower and upper semicontinuity, respectively. In [8, Definition 2.1
(pp.314–315)] corresponding to ordinary functions, C-continuous function is called
C-lower semicontinuous function, and (−C)-continuous function is called C-upper
semicontinuous function.

Definition 4 (see [1]). Let X and Y be two topological spaces, T : X → 2Y a
set-valued mapping.

(i) T is said to be lower semicontinuous (l.s.c. for short) at x ∈ X if for each
open set V with T (x) ∩ V 6= ∅, there is an open set U containing x such
that for each z ∈ U, T (z) ∩ V 6= ∅; T is said to be l.s.c. on X if it is l.s.c.
at all x ∈ X.

(ii) The graph of T , denoted by Gr(T ) is the following set:

{(x, y) ∈ X × Y : y ∈ T (x)}.

Definition 5 (Parameterized cone continuity). Let Ω1 and Ω2 be two nonempty
subsets of Hausdorff topological vector spaces X and Y , respectively. Let Z be also
a Hausdorff topological vector space and C a set-valued mapping from Ω1 to 2Z

such that C(x) is a pointed convex cone with nonempty interior for each x ∈ Ω1.
Suppose that Ω is a set-valued mapping from Ω1 to 2Ω2 \{∅}. Then a vector-valued
function g : Ω1×Ω2×Ω2 → Z is said to be parametarized C-continuous on Ω1×Ω2

with respect to Ω, if for each p ∈ Ω1 and x ∈ Ω(p) such that

g(p, x, y) ∈ intC(p) for some y ∈ Ω(p),

there exists a neighborhood U of (p, x) such that for all (p̃, x̃) ∈ U ∩Gr(Ω)

g(p̃, x̃, ŷ) ∈ intC(p̃) for some ŷ ∈ Ω(p̃).

Proposition 1. Let Ω1 and Ω2 be two nonempty subsets of two normal spaces X
and Y , respectively. Let Z be a normal topological vector space, and C a set-valued
mapping from Ω1 to 2Z such that C(x) is a pointed convex cone with nonempty
interior for each x ∈ Ω1. Suppose that Ω is a set-valued mapping from Ω1 to
2Ω2 \ {∅}, and that g is a vector-valued function from Ω1 × Ω2 × Ω2 to Z. Also
assume the following conditions:

(i) g is −C(p)-continuous on Ω1 × Ω2 × Ω2;
(ii) Ω is l.s.c. on Ω1;
(iii) the set-valued map W (p) = Z \ − intC(p) has closed graph.
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Then g is parametarized −C-continuous on Ω1 × Ω2 with respect to Ω.

Proof. Suppose for each p̂ ∈ Ω1 and x̂ ∈ Ω(p̂) such that g(p̂, x̂, ŷ) ∈ − intC(p̂) for
some ŷ ∈ Ω(p̂). Then there is a ẑ ∈ − intC(p̂) such that ẑ − cl C(p̂) is a closed
neighborhood of g(p̂, x̂, ŷ).

On the other hand {p̂} × (ẑ − cl C(p̂)) is a closed subset of Ω1 × Z such that

Gr(W ) ∩ ({p̂} × (ẑ − cl C(p̂))) = ∅.

Since Ω1 × Z is normal space and, by condition (iii), Gr(W ) is a closed subset of
Ω1 × Z, there exist a neighborhood Vp̂ of p̂ and a neighborhood V of ẑ − cl C(p̂)
such that

Gr(W ) ∩ (Vp̂ × V) = ∅,
and so Gr(W ) ∩ (Vp̂ × (ẑ − intC(p̂))) = ∅. Since ẑ − intC(p̂) is a neighborhood of
g(p̂, x̂, ŷ), by condition (i), we can choose Up̂(⊂ Vp̂), Ux̂, and Uŷ such that for all
(p, x, y) ∈ Up̂ × Ux̂ × Uŷ,

g(p, x, y) ∈ (ẑ − intC(p̂))− intC(p̂) = ẑ − intC(p̂),

where Up̂,Ux̂, and Uŷ stand for neighborhoods of p̂, x̂ and ŷ, respectively.
Next by condition (ii) noting Ω(p̂)∩Uŷ 6= ∅, we can choose a neighborhood U ′

p̂ of
p̂ such that

Ω(p) ∩ Uŷ 6= ∅ for all p ∈ U ′
p̂.

Let U = (Up̂ ∩ U ′
p̂) × Ux̂ which is a neighborhood of (p̂, x̂). Then for each (p′, x′) ∈

U ∩Gr(Ω), since p′ ∈ U ′
p̂, Ω(p′)∩Uŷ 6= ∅, there exists y′ ∈ Ω(p′)∩Uŷ. Therefore for

the (p′, x′, y′), we have
g(p′, x′, y′) ∈ ẑ − intC(p̂),

and hence
(p′, g(p′, x′, y′)) ∈ Vp̂ × V.

Consequently, (p′, g(p′, x′, y′)) /∈ Gr(W ) and hence

g(p′, x′, y′) ∈ − intC(p′). �

Definition 6 (KKM-map). Let X be a Hausdorff topological vector space, and K
a nonempty subset of X. Suppose that F is a multifunction from K to 2X . Then
F is said to be a KKM-map, if

co{x1, . . . , xn} ⊂
n⋃

i=1
F (xi)

for each finite subset {x1, . . . , xn} of X where coA denotes the convex hull of the
set A.

Remark 3. Obviously, if F is a KKM-map, then x ∈ F (x) for each x ∈ X.

Lemma 1 (Fan-KKM; see [3]). Let X be a Hausdorff topological vector space, K
a nonempty subset of X, and F be a multifunction from K to 2X . Suppose that F
is a KKM-map and that F (x) is a closed subset of X for each x ∈ K. If GF (x̂) is
compact for at least one x̂ ∈ K, then

⋂
x∈K

F (x) 6= ∅.



A PARAMETRIC VECTOR EQUILIBRIUM PROBLEM 241

3. Existence results for parametric vector equilibrium problem

Theorem 1. Let Ω1 and Ω2 be two nonempty subsets of Hausdorff topological vector
spaces X and Y , respectively. Let Z be also a Hausdorff topological vector space and
C a set-valued mapping from Ω1 to 2Z such that C(x) is a pointed convex cone with
nonempty interior for each x ∈ Ω1. Suppose that Ω is a set-valued mapping from
Ω1 to 2Ω2 \ {∅} and that g is a vector-valued function from Ω1×Ω2×Ω2 to Z. Also
we assume the following conditions:

(i) Ω has closed convex values for each x ∈ Ω1;
(ii) g(x, ·, v) is −C(x)-continuous on Ω(x) for each x ∈ Ω1, v ∈ Ω(x);
(iii) g(x, y, ·) is C(x)-quasiconvex on Ω(x) for each x ∈ Ω1, y ∈ Ω(x);
(iv) g(x, y, y) /∈ − intC(x) for each x ∈ Ω1, y ∈ Ω(x).
(v) for each x ∈ Ω1 there exist v̂ ∈ Ω(x) and a compact set B ⊂ Y such that

v̂ ∈ B and

g(x, y, v̂) ∈ − intC(x) for all y ∈ Ω(x) \ B.

Then the problem PVEP has at least one solution for each x ∈ Ω1.

Proof. Let

G(v) := {y ∈ Ω(x) : g(x, y, v) /∈ − intC(x)} v ∈ G(v),

for each x ∈ Ω1. First, we show that G(v) is a KKM-map, for each x ∈ Ω1.
Suppose to the contrary that there exists αi ∈ [0, 1], yi ∈ Ω(x) (i = 1, . . . , n) such
that

∑n
i=1 αi = 1 and

n∑
i=1

αiyi = y /∈
n⋃

i=1

G(yi).

Then we have y ∈ Ω(x) because, by condition (i), Ω(x) is convex. Hence

f(x, y, yi) ∈ − intC(x), i = 1, . . . , n.

This means that

f(x, y,

n∑
i=1

αiyi) = f(x, y, y) ∈ − intC(x),

because of condition (iii), and contradicts condition (iv).
Next, from conditions (i) and (ii), for each v ∈ Ω(x), G(v) is a closed set, and by

condition (iv), G(v) 6= ∅, and also from condition (v), G(v̂) is a compact set. Thus
we can apply Lemma 1, to get

SE(x) =
⋂

v∈Ω(x)

G(v) 6= ∅,

for each x ∈ Ω1, where SE denotes the solution mapping defined by (1). �

Remark 4. We can replace condition (ii) by the following condition: For each x ∈
Ω1, y ∈ Ω(x), v ∈ Ω(x) satisfying

g(x, y, v) ∈ − intC(x),

there exists a neighborhood Uy of y such that for all y′ ∈ Uy

g(x, y′, v′) ∈ − intC(x) for some v′ ∈ Ω(x).
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Theorem 2. Let Ω1, Ω2, C, Ω and g be the same as those in Theorem 1. Let SE be
a set-valued mapping from Ω1 to 2Ω2 defined by (1). Also we assume the following
conditions:

(i) Ω1 is a closed set;
(ii) Ω has closed graph;
(iii) g is parametarized (−C)-continuous on Ω1 × Ω2 with respect to Ω;
(iv) SE(x) 6= ∅ for each x ∈ Ω1.

Then the solution set SE(x) of problem PVEP has closed graph.

Proof. Let (xα, yα) ∈ Gr(SE) with (xα, yα) → (x, y). Then by conditions (i) and (ii),
x ∈ Ω1 and y ∈ Ω(x). Suppose on the contrary that y /∈ SE(x). Then there exists
v ∈ Ω(x) such that

g(x, y, v) ∈ − intC(x).
Because of condition (iii), there is a neighborhood U of (x, y) with y ∈ Ω(x) such
that for all (x̃, ỹ) ∈ U , there is ṽ ∈ Ω(x̃) such that g(x̃, ỹ, ṽ) ∈ − intC(x̃). That is,
there exists ᾱ such that for all α ≥ ᾱ, yα /∈ SE(xα). This is a contradiction. �

Theorem 3. Let Ω1, Ω2, C, Ω, g and SE be the same as those in Theorem 2. Also
we assume the following conditions:

(i) Ω1 is a closed set;
(ii) Ω has closed graph;
(iii) g is parametarized (−C)-continuous on Ω1 × Ω2 with respect to Ω;
(iv) g(x, y, ·) is C(x)-quasiconvex on Ω(x) for each x ∈ Ω1 and y ∈ Ω(x), and

g(x, y, y) /∈ − intC(x) for each x ∈ Ω1 and y ∈ Ω2;
(v) for each x ∈ Ω1 there exist v̂ ∈ Ω(x) and a compact set B ⊂ Y such that

v̂ ∈ B and

g(x, y, v̂) ∈ − intC(x) for all y ∈ Ω(x) \ B.

Then the problem PVEP has at least one solution, and SE has closed graph.

Proof. By condition (iii), g satisfies the condition of Remark 4. Then the result
follows from Theorems 1 and 2. �

As an application of closedness result of solutions map for PVEP, we investigate
the existence of solution for a MPEC. Consider the following MPEC:

(MPEC) min{f(x, y) : y ∈ SE(x)},
where f : Ω1 × Ω2 → (−∞,∞) and SE : Ω1 → 2Ω2 is a set-valued mapping such
that for each x ∈ Ω1, SE(x) is the solution set of the following PVEP, consisting in
finding y ∈ Ω such that

g(x, y, v) /∈ − intC(x) for all v ∈ Ω(x),

where g is a vector-valued function from Ω1×Ω2×Ω2 to Z, C(x) ⊂ Z is a domination
structure generated bu set-valued mapping C : Ω1 → 2Z at x ∈ Ω1, and Ω : Ω1 →
2Ω2 \ {∅} stands for a constraint map. We have the following existence of MPEC.

Theorem 4. Let Ω1, Ω2, C, Ω and g be the same as those in Theorem 1. Let S be
a set-valued mapping from Ω1 to 2Ω2 defined by (1). Also we assume the following
conditions:
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(i) f is lower semicontinuous on Gr(SE);
(ii) Ω1 and Ω2 are two compact sets;
(iii) Ω is has closed graph;
(iv) g is parametarized (−C)-continuous on Ω1 × Ω2 with respect to Ω;
(v) g(x, y, ·) is C(x)-quasiconvex on Ω(x) for each x ∈ Ω1 and y ∈ Ω(x), and

g(x, y, y) /∈ − intC(x) for each x ∈ Ω1 and y ∈ Ω2.
Then the MPEC has at least one solution.

Proof. By Theorems 3, we have SE(x) 6= ∅ and Gr(SE) is closed. Moreover by
condition (ii), Gr(SE) is compact. Hence by condition (i), the MPEC has at least
one solution. �
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