Journal of Nonlinear and Convex Analysis Volume 7, Number 2, 2006, 199–209

NONLINEAR ERGODIC THEOREMS FOR NONEXPANSIVE MAPPINGS IN GENERAL BANACH SPACES

HIROMICHI MIYAKE AND WATARU TAKAHASHI

ABSTRACT. We prove nonlinear ergodic theorems for nonexpansive mappings and strongly continuous one-parameter semigroups of nonexpansive mappings in general Banach spaces.

1. INTRODUCTION

Edelstein [6] studied a nonlinear ergodic theorem for nonexpansive mappings on a compact and convex subset in a strictly convex Banach space: Let C be a compact and convex subset of a strictly convex Banach space, let T be a nonexpansive mapping of C into itself and let $\xi \in C$. Then, for each point x of the closure of convex hull of the ω -limit set $\omega(\xi)$ of ξ , the Cesàro means

$$S_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$$

converge to a fixed point of T, where the ω -limit set $\omega(\xi)$ of ξ is the set of cluster points of the sequence $\{T^n\xi : n = 1, 2, ...\}$.

In 1975, Baillon [3] originally proved the first nonlinear ergodic theorem in the framework of Hilbert spaces: Let C be a closed and convex subset of a Hilbert space and let T be a nonexpansive mapping of C into itself. If the set F(T) of fixed points of T is nonempty, then for each $x \in C$, the Cesàro means $1/n \sum_{k=0}^{n-1} T^k x$ converge weakly to some $y \in F(T)$. In this case, putting y = Px for each $x \in C$, P is a nonexpansive retraction of C onto F(T) such that PT = TP = P and Px is contained in the closure of convex hull of $\{T^n x : n = 1, 2, ...\}$ for each $x \in C$. We call such a retraction "an ergodic retraction".

In 1981, Takahashi [12, 14] proved the existence of ergodic retractions for amenable semigroups of nonexpansive mappings on Hilbert spaces. Rodé [10] also found a sequence of means on a semigroup, generalizing the Cesàro means, and extended Baillon's theorem. These results were extended to a uniformly convex Banach space with a Fréchet differentiable norm in the case of commutative semigroups of nonexpansive mappings by Hirano, Kido and Takahashi [8]. Lau, Shioji and Takahashi [9] generalized Takahashi's result and Rodé's result to amenable semigroups of nonexpansive mappings in the Banach spaces.

Recently, using results of Bruck [4, 5], Atsushiba and Takahashi [2] proved a nonlinear ergodic theorem for nonexpansive mappings on a compact and convex subset of a strictly convex Banach space: Let C be a compact and convex subset of a strictly convex Banach space and let T be a nonexpansive mapping of C into itself. Then, for each $x \in C$, the Cesàro means $1/n \sum_{k=0}^{n-1} T^k x$ converge to a fixed point of T. This result was extended to commutative semigroups of nonexpansive mappings

Copyright (C) Yokohama Publishers

by Atsushiba, Lau and Takahashi [1]. On the other hand, Suzuki and Takahashi [11] constructed a nonexpansive mapping of a compact and convex subset C of a Banach space into itself such that for some $x \in C$, the Cesàro means $1/n \sum_{k=0}^{n-1} T^k x$ converge to a point of C, but the limit point is not a fixed point of T.

It is natural to ask whether for a nonexpansive mapping with a compact and convex subset C of a general Banach space and for each $x \in C$, the Cesàro means $1/n \sum_{k=0}^{n-1} T^k x$ converge or not. In this paper, we shall give an affirmative answer to this problem and also show a nonlinear ergodic theorem for one-parameter semigroups of nonexpansive mappings in general Banach spaces.

2. Preliminaries

Throughout this paper, we denote by \mathbb{N} and \mathbb{R}_+ the set of positive integers and the set of non-negative real numbers, respectively. We also denote by E a real Banach space with the topological dual E^* . Then, $\langle \cdot, \cdot \rangle$ denotes the dual pairing between E and E^* . For each $x \in E$ and r > 0, we denote by B(x; r) the open ball with center x and radius r.

Let C be a closed and convex subset of a Banach space E and let T be a mapping of C into itself. Then, T is said to be *nonexpansive* if $||Tx - Ty|| \le ||x - y||$ for each $x, y \in C$. We denote by F(T) the set of fixed points of T. Let $S = \{T(s) : s \in \mathbb{R}_+\}$ be a family of nonexpansive mappings of C into itself. Then, S is said to be a *strongly continuous one-parameter semigroup* of nonexpansive mappings on C if for each $s, t \in \mathbb{R}_+$, T(s)T(t) = T(st) and for each $x \in C$, the mapping $s \mapsto T(s)x$ is continuous in the norm topology. We also denote by F(S) the set of common fixed points of $T(s), s \in \mathbb{R}_+$.

Let f be a function defined on \mathbb{R}_+ with values in a Banach space E. Then, f is said to be *(strongly) measurable* if $f^{-1}(G)$ is a Lebesque measurable subset of \mathbb{R}_+ for each open subset G of E. A measurable function f is also said to be *simple* if the range of f is a finite set. Let F be a Lebesque measurable subset of \mathbb{R}_+ . For a simple function s, we define the Bochner integral $\int_F s(\sigma) d\sigma$ of s by

$$\int_F s(\sigma) \ d\sigma = \sum_{k=1}^n m(F_k \cap F) s_k,$$

where $s_k = s(\sigma)$ on a Lebesque measurable subset F_k of \mathbb{R}_+ (k = 1, ..., n) and m is the Lebesque measure on \mathbb{R}_+ . A measurable function f is *Bochner integrable* if there exists a sequence $\{s_n\}$ of simple functions converging almost everywhere to f such that

$$\lim_{n \to \infty} \int_{\mathbb{R}_+} \|f(\sigma) - s_n(\sigma)\| \, d\sigma = 0.$$

For such a function f, we define the Bochner integral $\int_F f(\sigma) d\sigma$ of f by

$$\int_F f(\sigma) \ d\sigma = \lim_{n \to \infty} \int_F s_n(\sigma) \ d\sigma.$$

We know that for each Bochner integrable function f and $x^* \in E^*$,

$$\left\langle \int_{F} f(\sigma) \ d\sigma, x^* \right\rangle = \int_{F} \langle f(\sigma), x^* \rangle \ d\sigma$$

and

$$\left\| \int_{F} f(\sigma) \ d\sigma \right\| \leq \int_{F} \|f(\sigma)\| \ d\sigma.$$

We also know that a measurable function f is Bochner integrable if and only if ||f|| is Lebesque integrable, that is, $\int_{\mathbb{R}_+} ||f(\sigma)|| d\sigma < \infty$. It follows that every strongly continuous function f defined on \mathbb{R}_+ with values in E is Bochner integrable. For more details, see Hille and Phillips [7].

3. Main Results

First, we prove a nonlinear ergodic theorem, Theorem 1, for nonexpansive mappings on a compact and convex subset of a general Banach space. The following lemma is crucial in the proof of Theorem 1.

Lemma 1. Let C be a compact and convex subset of a Banach space E and let T be a nonexpansive mapping of C into itself. Then, for each $x \in C$,

$$\lim_{n \to \infty} \sup_{h \in \mathbb{N}} \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^{i+h} x - \frac{1}{n} \sum_{i=0}^{n-1} T^{i} x \right\| = 0.$$

Proof. Fix $x \in C$, let $\epsilon > 0$ and let $h \in \mathbb{N}$. Since $\{T^i x : i \in \mathbb{N}\}$ is relatively compact, there exists a finite subset M of \mathbb{N} such that

$$\{T^i x : i \in \mathbb{N}\} \subset \bigcup_{l \in M} B(T^l x; \epsilon/2).$$

Then, there exists a $k \in M$ such that

$$\|T^h x - T^k x\| < \epsilon/2.$$

So, we have

(3.1)
$$\left\| \frac{1}{n} \sum_{i=0}^{n-1} T^{i+h} x - \frac{1}{n} \sum_{i=0}^{n-1} T^{i+k} x \right\| \leq \frac{1}{n} \sum_{i=0}^{n-1} \| T^{i+h} x - T^{i+k} x \|$$
$$\leq \frac{1}{n} \sum_{i=0}^{n-1} \| T^{h} x - T^{k} x \|$$
$$= \| T^{h} x - T^{k} x \| < \epsilon/2.$$

On the other hand, we have

$$\left\|\frac{1}{n}\sum_{i=0}^{n-1}T^{i+k}x - \frac{1}{n}\sum_{i=0}^{n-1}T^{i}x\right\| \le \frac{1}{n}2k\sup_{i\in\mathbb{N}}\|T^{i}x\|$$

and hence

$$\lim_{n \to \infty} \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^{i+k} x - \frac{1}{n} \sum_{i=0}^{n-1} T^{i} x \right\| = 0.$$

Then, there exists an $N \in \mathbb{N}$ such that for each n > N,

(3.2)
$$\left\| \frac{1}{n} \sum_{i=0}^{n-1} T^{i+k} x - \frac{1}{n} \sum_{i=0}^{n-1} T^{i} x \right\| < \frac{\epsilon}{2}.$$

Thus, we have from (3.1) and (3.2) that for each n > N,

$$\begin{aligned} \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^{i+h} x - \frac{1}{n} \sum_{i=0}^{n-1} T^{i} x \right\| &\leq \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^{i+h} x - \frac{1}{n} \sum_{i=0}^{n-1} T^{i+k} x \right\| \\ &+ \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^{i+k} x - \frac{1}{n} \sum_{i=0}^{n-1} T^{i} x \right\| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

Since $\epsilon > 0$ is arbitrary, we have

$$\lim_{n \to \infty} \sup_{h \ge 0} \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^{i+h} x - \frac{1}{n} \sum_{i=0}^{n-1} T^{i} x \right\| = 0.$$

This completes the proof.

Remark. As in the proof of Lemma 1, we obtain the following lemma:

Lemma 2. Let C be a closed and convex subset of a Banach space E and let T be a nonexpansive mapping of C into itself such that for each $x \in C$, $\{T^n x : n \in \mathbb{N}\}$ is relatively compact. Then, for each $x \in C$,

$$\lim_{n \to \infty} \sup_{h \in \mathbb{N}} \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^{i+h} x - \frac{1}{n} \sum_{i=0}^{n-1} T^{i} x \right\| = 0.$$

Theorem 1. Let C be a compact and convex subset of a Banach space E and let T be a nonexpansive mapping of C into itself. Then, for each $x \in C$,

$$\frac{1}{n}\sum_{i=0}^{n-1}T^{i+h}x$$

converges uniformly in $h \in \mathbb{N} \cup \{0\}$.

Proof. Fix $x \in C$ and let $\epsilon > 0$. Then, we have from Lemma 1 that there exists an $N_0 \in \mathbb{N}$ such that for each $h \in \mathbb{N} \cup \{0\}$ and $n > N_0$,

(3.3)
$$\left\|\frac{1}{n}\sum_{i=0}^{n-1}T^{i+h}x - \frac{1}{n}\sum_{i=0}^{n-1}T^{i}x\right\| < \frac{\epsilon}{4}.$$

Since C is compact, there exists a cluster point y of $1/n \sum_{i=0}^{n-1} T^i x$. We can choice an $N > N_0$ such that

(3.4)
$$\left\|\frac{1}{N}\sum_{i=0}^{N-1}T^{i}x-y\right\| < \frac{\epsilon}{4}$$

So, we have from (3.3) and (3.4) that for each $h \in \mathbb{N} \cup \{0\}$,

$$\left\| \frac{1}{N} \sum_{i=0}^{N-1} T^{i+h} x - y \right\| \le \left\| \frac{1}{N} \sum_{i=0}^{N-1} T^{i+h} x - \frac{1}{N} \sum_{i=0}^{N-1} T^{i} x \right\| + \left\| \frac{1}{N} \sum_{i=0}^{N-1} T^{i} x - y \right\|$$
$$< \frac{\epsilon}{4} + \frac{\epsilon}{4} = \frac{\epsilon}{2}$$

202

and hence

(3.5)
$$\left\| \frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{N} \sum_{j=0}^{N-1} T^{i+j} x - y \right\| \leq \frac{1}{n} \sum_{i=0}^{n-1} \left\| \frac{1}{N} \sum_{j=0}^{N-1} T^{i+j} - y \right\|$$
$$\leq \sup_{i \geq 0} \left\| \frac{1}{N} \sum_{j=0}^{N-1} T^{i+j} - y \right\|$$
$$\leq \frac{\epsilon}{2}.$$

Thus, we have from (3.3) and (3.5) that for each $n > N_0$,

$$\begin{split} & \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^{i} x - y \right\| \\ & \leq \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^{i} x - \frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{N} \sum_{j=0}^{N-1} T^{i+j} x \right\| + \left\| \frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{N} \sum_{j=0}^{N-1} T^{i+j} x - y \right\| \\ & \leq \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^{i} x - \frac{1}{N} \sum_{j=0}^{N-1} \frac{1}{n} \sum_{i=0}^{n-1} T^{i+j} x \right\| + \frac{\epsilon}{2} \\ & \leq \frac{1}{N} \sum_{j=0}^{N-1} \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^{i} x - \frac{1}{n} \sum_{i=0}^{n-1} T^{i+j} x \right\| + \frac{\epsilon}{2} \\ & \leq \sup_{j\geq 0} \left\| \frac{1}{n} \sum_{i=0}^{n-1} T^{i} x - \frac{1}{n} \sum_{i=0}^{n-1} T^{i+j} x \right\| + \frac{\epsilon}{2} \\ & \leq \frac{\epsilon}{4} + \frac{\epsilon}{2} < \epsilon. \end{split}$$

Since $\epsilon > 0$ is arbitrary, $1/n \sum_{i=0}^{n-1} T^i x$ converges to the point y of C. It follows from Lemma 1 that $1/n \sum_{i=0}^{n-1} T^{i+h} x$ converges to y uniformly in $h \in \mathbb{N} \cup \{0\}$. This completes the proof.

Remark. In [11], Suzuki and Takahashi constructed a nonexpansive mapping T of a compact subset C of a Banach space into itself such that for some $x \in C$, the Cesàro means $1/n \sum_{k=0}^{n-1} T^k x$ converge, but the limit point is not a fixed point of T.

Next, we also prove a nonlinear ergodic theorem, Theorem 2, for one-parameter semigroups of nonexpansive mappings on a compact and convex subset of a general Banach space. The following lemmas are crucial in the proof of Theorem 2.

Lemma 3. Let C be a compact and convex subset of a Banach space E and let $S = \{T(t) : t \in \mathbb{R}_+\}$ be a strongly continuous one-parameter semigroup of nonexpansive mappings of C into itself. Then, for each $x \in C$,

$$\lim_{t \to \infty} \sup_{h \ge 0} \left\| \frac{1}{t} \int_0^t T(s+h)x \, ds - \frac{1}{t} \int_0^t T(s)x \, ds \right\| = 0.$$

Proof. Fix $x \in C$, let $\epsilon > 0$ and let $h \in \mathbb{R}_+$. Since C is compact, there exists a finite subset M of \mathbb{R}_+ such that

$$\{T(s)x:s\in\mathbb{R}_+\}\subset \bigcup_{w\in M}B(T(w)x;\epsilon/2).$$

Then, there exists a $k\in M$ such that

$$||T(h)x - T(k)x|| < \epsilon/2.$$

So, we have

$$(3.6) \qquad \left\| \frac{1}{t} \int_{0}^{t} T(s+h)x \, ds - \frac{1}{t} \int_{0}^{t} T(s+k)x \, ds \right\| \\ = \sup_{\|x^*\|=1} \left\langle \frac{1}{t} \int_{0}^{t} (T(s+h)x - T(s+k)x) \, ds, x^* \right\rangle \\ = \sup_{\|x^*\|=1} \frac{1}{t} \int_{0}^{t} \langle T(s+h)x - T(s+k)x, x^* \rangle \, ds \\ \le \frac{1}{t} \int_{0}^{t} \|T(s+h)x - T(s+k)x\| \, ds \\ \le \frac{1}{t} \int_{0}^{t} \|T(h)x - T(k)x\| \, ds \\ = \|T(h)x - T(k)x\| < \epsilon/2.$$

On the other hand, since, for each t > k,

$$\begin{split} \left\| \frac{1}{t} \int_{0}^{t} T(s+k)x \, ds - \frac{1}{t} \int_{0}^{t} T(s)x \, ds \right\| \\ &= \sup_{\|x^{*}\|=1} \left| \left\langle \frac{1}{t} \int_{0}^{t} T(s+k)x \, ds - \frac{1}{t} \int_{0}^{t} T(s)x \, ds, x^{*} \right\rangle \right| \\ &= \sup_{\|x^{*}\|=1} \left| \frac{1}{t} \int_{0}^{t} \left\langle T(s+k)x, x^{*} \right\rangle \, ds - \frac{1}{t} \int_{0}^{t} \left\langle T(s)x, x^{*} \right\rangle \, ds \right| \\ &= \sup_{\|x^{*}\|=1} \left| \frac{1}{t} \int_{0}^{k} \left\langle T(s+t)x, x^{*} \right\rangle \, ds - \frac{1}{t} \int_{0}^{k} \left\langle T(s)x, x^{*} \right\rangle \, ds \right| \\ &\leq \sup_{\|x^{*}\|=1} \left| \frac{1}{t} \int_{0}^{k} \left\langle T(s+t)x, x^{*} \right\rangle \, ds \right| + \sup_{\|x^{*}\|=1} \left| \frac{1}{t} \int_{0}^{k} \left\langle T(s)x, x^{*} \right\rangle \, ds \right| \\ &\leq \frac{1}{t} \int_{0}^{k} \|T(s+t)x\| \, ds + \frac{1}{t} \int_{0}^{k} \|T(s)x\| \, ds \\ &\leq \frac{1}{t} 2k \sup_{w \in \mathbb{R}_{+}} \|T(w)x\|, \end{split}$$

we have

$$\lim_{t \to \infty} \left\| \frac{1}{t} \int_0^t T(s+k)x \, ds - \frac{1}{t} \int_0^t T(s)x \, ds \right\| = 0.$$

Then, there exists a $T \in \mathbb{R}_+$ such that for each t > T,

(3.7)
$$\left\|\frac{1}{t}\int_{0}^{t}T(s+k)x\ ds - \frac{1}{t}\int_{0}^{t}T(s)x\ ds\right\| < \frac{\epsilon}{2}.$$

Thus, we have from (3.6) and (3.7) that for each t > T,

$$\begin{split} & \left\| \frac{1}{t} \int_0^t T(s+h)x \ ds - \frac{1}{t} \int_0^t T(s)x \ ds \right\| \\ & \leq \left\| \frac{1}{t} \int_0^t T(s+h)x \ ds - \frac{1}{t} \int_0^t T(s+k)x \ ds \right\| \\ & + \left\| \frac{1}{t} \int_0^t T(s+k)x \ ds - \frac{1}{t} \int_0^t T(s)x \ ds \right\| \\ & < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

Since $\epsilon > 0$ is arbitrary, we have

$$\lim_{t \to \infty} \sup_{h \ge 0} \left\| \frac{1}{t} \int_0^t T(s+h)x \, ds - \frac{1}{t} \int_0^t T(s)x \, ds \right\| = 0.$$

This completes the proof.

Remark. As in the proof of Lemma 3, we obtain the following lemma:

Lemma 4. Let C be a closed and convex subset of a Banach space E and let $S = \{T(t) : t \in \mathbb{R}_+\}$ be a strongly continuous one-parameter semigroup of nonexpansive mappings of C into itself such that for each $x \in C$, $\{T(s)x : s \in \mathbb{R}_+\}$ is relatively compact. Then, for each $x \in C$,

$$\lim_{t \to \infty} \sup_{h \ge 0} \left\| \frac{1}{t} \int_0^t T(s+h)x \, ds - \frac{1}{t} \int_0^t T(s)x \, ds \right\| = 0.$$

Lemma 5. Let C be a compact and convex subset of a Banach space E and let $S = \{T(t) : t \in \mathbb{R}_+\}$ be a strongly continuous one-parameter semigroup of nonexpansive mappings of C into itself. Fix $k \in \mathbb{R}_+$. Then, for each t > 0 and $x \in C$,

$$\frac{1}{t} \int_0^t T(s+k)x \, ds = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} T(it/n+k)x.$$

Proof. Since, for each $x \in C$, the function $s \mapsto T(s+k)x$ is strongly continuous, we have that for each $x^* \in E^*$, the real-valued function $s \mapsto \langle T(s+k)x, x^* \rangle$ is continuous. So, we have that for each $x^* \in E^*$,

$$\left\langle \frac{1}{t} \int_0^t T(s+k)x \ ds, x^* \right\rangle = \frac{1}{t} \int_0^t \langle T(s+k)x, x^* \rangle \ ds$$
$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \langle T(it/n+k)x, x^* \rangle$$
$$= \lim_{n \to \infty} \langle S_n(x), x^* \rangle,$$

where $S_n(x) = 1/n \sum_{i=0}^{n-1} T(it/n + k)x$. Since C is compact, there exists a subsequence $\{S_{n_j}(x)\}$ of $\{S_n(x)\}$ converging to a point y of C. Then, we have that for each $x^* \in E^*$,

$$\langle y, x^* \rangle = \lim_{j \to \infty} \left\langle S_{n_j}(x), x^* \right\rangle = \lim_{n \to \infty} \left\langle S_n(x), x^* \right\rangle$$
$$= \left\langle \frac{1}{t} \int_0^t T(s+k)x \ ds, x^* \right\rangle$$

and hence $y = 1/t \int_0^t T(s+k)x \, ds$. So, $1/n \sum_{i=0}^{n-1} T(it/n+k)x$ converges to $1/t \int_0^t T(s+k)x \, ds$. This completes the proof.

Theorem 2. Let C be a compact and convex subset of a Banach space E and let $S = \{T(t) : t \in \mathbb{R}_+\}$ be a strongly continuous one-parameter semigroup of nonexpansive mappings of C into itself. Then, for each $x \in C$,

$$\frac{1}{t} \int_0^t T(s+h)x \, ds$$

converges uniformly in $h \in \mathbb{R}_+$.

Proof. Let $\epsilon > 0$ and let $x \in C$. Then, we have from Lemma 3 that there exists a $T_0 \in \mathbb{R}_+$ such that for each $h \in \mathbb{R}_+$ and $t > T_0$,

(3.8)
$$\left\|\frac{1}{t}\int_0^t T(s+h)x \ ds - \frac{1}{t}\int_0^t T(s)x \ ds\right\| < \frac{\epsilon}{8}$$

Since C is compact, there exists a cluster point y of $1/t \int_0^t T(s) x \, ds$. We can choice a $T > T_0$ such that

(3.9)
$$\left\|\frac{1}{T}\int_0^T T(s)x \ ds - y\right\| < \frac{\epsilon}{8}.$$

On the other hand, let $h \in \mathbb{R}_+$. Since $\{T(s)x : s \in \mathbb{R}_+\}$ is relatively compact, there exists a finite subset M of \mathbb{R}_+ such that

$$\{T(s)x:s\in\mathbb{R}_+\}\subset\bigcup_{w\in M}B(T(w)x;\epsilon/16).$$

Then, there exists a $k \in M$ such that

(3.10)
$$||T(h)x - T(k)x|| < \epsilon/16.$$

Since, from Lemma 5, there exists an $N \in \mathbb{N}$ such that

(3.11)
$$\left\| \frac{1}{T} \int_0^T T(s+k)x \ ds - \frac{1}{N} \sum_{i=0}^{N-1} T(t_i+k)x \right\| < \frac{\epsilon}{8},$$

where $t_i = it/N$ for each i = 0, ..., N - 1, we have from (3.10) and (3.11) that

$$\begin{split} \left\| \frac{1}{T} \int_0^T T(s+h)x \, ds - \frac{1}{N} \sum_{i=0}^{N-1} T(t_i+h)x \right\| \\ &\leq \left\| \frac{1}{T} \int_0^T T(s+h)x \, ds - \frac{1}{T} \int_0^T T(s+k)x \, ds \right\| \\ &+ \left\| \frac{1}{T} \int_0^T T(s+k)x \, ds - \frac{1}{N} \sum_{i=0}^{N-1} T(t_i+k)x \right\| \\ &+ \left\| \frac{1}{N} \sum_{i=0}^{N-1} T(t_i+k)x - \frac{1}{N} \sum_{i=0}^{N-1} T(t_i+h)x \right\| \\ &\leq \frac{1}{T} \int_0^T \|T(s+h)x - T(s+k)x\| \, ds \\ &+ \frac{1}{N} \sum_{i=0}^{N-1} \|T(t_i+k)x - T(t_i+h)x\| + \frac{\epsilon}{8} \\ &\leq \frac{1}{T} \int_0^T \|T(h)x - T(k)x\| \, ds + \frac{1}{N} \sum_{i=0}^{N-1} \|T(k)x - T(h)x\| + \frac{\epsilon}{8} \\ &\leq \frac{2\epsilon}{16} + \frac{\epsilon}{8} = \frac{\epsilon}{4}. \end{split}$$

So, we have that for each $h \in \mathbb{R}_+$,

(3.12)
$$\left\| \frac{1}{T} \int_0^T T(s+h)x \, ds - \frac{1}{N} \sum_{i=0}^{N-1} T(t_i+h)x \right\| < \frac{\epsilon}{4}.$$

Then, we have from (3.8), (3.9) and (3.12) that for each $h \in \mathbb{R}_+$,

$$\begin{split} \left\| \frac{1}{N} \sum_{i=0}^{N-1} T(t_i + h) x - y \right\| &\leq \left\| \frac{1}{N} \sum_{i=0}^{N-1} T(t_i + h) x - \frac{1}{T} \int_0^T T(s + h) x \, ds \right\| \\ &+ \left\| \frac{1}{T} \int_0^T T(s + h) x \, ds - \frac{1}{T} \int_0^T T(s) x \, ds \right\| \\ &+ \left\| \frac{1}{T} \int_0^T T(s) x \, ds - y \right\| \\ &< \frac{\epsilon}{4} + \frac{\epsilon}{8} + \frac{\epsilon}{8} = \frac{\epsilon}{2}, \end{split}$$

 $\frac{\epsilon}{8}$

and hence

$$(3.13) \qquad \left\| \frac{1}{t} \int_0^t \frac{1}{N} \sum_{i=0}^{N-1} T(t_i + s) x \, ds - y \right\|$$
$$\leq \frac{1}{t} \int_0^t \left\| \frac{1}{N} \sum_{i=0}^{N-1} T(t_i + s) x - y \right\| \, ds$$
$$\leq \sup_{s \in \mathbb{R}_+} \left\| \frac{1}{N} \sum_{i=0}^{N-1} T(t_i + s) x - y \right\|$$
$$\leq \epsilon/2.$$

Thus, we have from (3.8) and (3.13) that for each $t > T_0$,

$$\begin{split} \left\| \frac{1}{t} \int_{0}^{t} T(s)x \, ds - y \right\| \\ &\leq \left\| \frac{1}{t} \int_{0}^{t} T(s)x \, ds - \frac{1}{t} \int_{0}^{t} \frac{1}{N} \sum_{i=0}^{N-1} T(t_{i} + s)x \, ds \right\| \\ &+ \left\| \frac{1}{t} \int_{0}^{t} \frac{1}{N} \sum_{i=0}^{N-1} T(t_{i} + s)x \, ds - y \right\| \\ &\leq \left\| \frac{1}{t} \int_{0}^{t} T(s)x \, ds - \frac{1}{N} \sum_{i=0}^{N-1} \frac{1}{t} \int_{0}^{t} T(t_{i} + s)x \, ds \right\| + \frac{\epsilon}{2} \\ &\leq \frac{1}{N} \sum_{i=1}^{N} \left\| \frac{1}{t} \int_{0}^{t} T(s)x \, ds - \frac{1}{t} \int_{0}^{t} T(t_{i} + s)x \, ds \right\| + \frac{\epsilon}{2} \\ &\leq \sup_{h \in \mathbb{R}_{+}} \left\| \frac{1}{t} \int_{0}^{t} T(s)x \, ds - \frac{1}{t} \int_{0}^{t} T(h + s)x \, ds \right\| + \frac{\epsilon}{2} \\ &\leq \frac{\epsilon}{8} + \frac{\epsilon}{2} < \epsilon. \end{split}$$

Since $\epsilon > 0$ is arbitrary, $1/t \int_0^t T(s)x \, ds$ converges to the point y of C. It follows from Lemma 3 that $1/t \int_0^t T(s+h)x \, ds$ converges to y uniformly in $h \in \mathbb{R}_+$. This completes the proof.

References

- S. Atsushiba, A. T. Lau and W. Takahashi, Nonlinear strong ergodic theorems for commutative nonexpansive semigroups on strictly convex Banach spaces, J. Nonlinear Convex Anal., 2 (2000), 213-231.
- [2] S. Atsushiba and W. Takahashi, A nonlinear strong ergodic theorem for nonexpansive mappings with compact domain, Math. Japonica, 52 (2000), 183-195.
- [3] J. B. Baillon, Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris Sér. A-B, 280 (1975), 1511-1514.
- [4] R. E. Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math., 32 (1979), 107-116.
- [5] R. E. Bruck, On the convex approximation property and the asymptotic behaviour of nonlinear contractions in Banach spaces, Israel J. Math., 38 (1981), 304-312.

- [6] M. Edelstein, On non-expansive mappings of Banach spaces, Proc. Camb. Phil. Soc., 60 (1964), 439-447.
- [7] E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc., Providence, 1957.
- [8] N. Hirano, K. Kido and W. Takahashi, Nonexpansive retractions and nonlinear ergodic theorems in Banach spaces, Nonlinear Anal., 12 (1988), 1269-1281.
- [9] A. T. Lau, N. Shioji and W. Takahashi, Existence of nonexpansive retractions for amenable semigroups of nonexpansive mappings and nonlinear ergodic theorems in Banach spaces, J. Funct. Anal., 161 (1999), 62-75.
- [10] G. Rodé, An ergodic theorem for semigroups of nonexpansive mappings in a Hilbert space, J. Math. Anal. Appl., 85 (1982), 172-178.
- [11] T. Suzuki and W. Takahashi, Weak and strong convergenc theorems for nonexpansive mappings in Banach spaces, Nonlinear Anal., 47 (2001), 2805-2815.
- [12] W. Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc., 81 (1981), 253-256.
- [13] W. Takahashi, A nonlinear ergodic theorem for a reversible semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc., 97 (1986), 55-58.
- [14] W. Takahashi, Fixed point theorem and nonlinear ergodic theorem for nonexpansive semigroups without convexity, Canad. J. Math., 44 (1992), 880-887.
- [15] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

Manuscript received November 30, 2005 revised April 3, 2006

HIROMICHI MIYAKE

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo 152, Japan

E-mail address: miyake@is.titech.ac.jp

Wataru Takahashi

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo 152, Japan

E-mail address: wataru@is.titech.ac.jp