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NONLINEAR ERGODIC THEOREMS FOR NONEXPANSIVE
MAPPINGS IN GENERAL BANACH SPACES

HIROMICHI MIYAKE AND WATARU TAKAHASHI

Abstract. We prove nonlinear ergodic theorems for nonexpansive mappings
and strongly continuous one-parameter semigroups of nonexpansive mappings in
general Banach spaces.

1. Introduction

Edelstein [6] studied a nonlinear ergodic theorem for nonexpansive mappings on a
compact and convex subset in a strictly convex Banach space: Let C be a compact
and convex subset of a strictly convex Banach space, let T be a nonexpansive
mapping of C into itself and let ξ ∈ C. Then, for each point x of the closure of
convex hull of the ω-limit set ω(ξ) of ξ, the Cesàro means

Sn(x) =
1
n

n−1∑
k=0

T kx

converge to a fixed point of T , where the ω-limit set ω(ξ) of ξ is the set of cluster
points of the sequence {Tnξ : n = 1, 2, . . . }.

In 1975, Baillon [3] originally proved the first nonlinear ergodic theorem in the
framework of Hilbert spaces: Let C be a closed and convex subset of a Hilbert
space and let T be a nonexpansive mapping of C into itself. If the set F (T ) of fixed
points of T is nonempty, then for each x ∈ C, the Cesàro means 1/n

∑n−1
k=0 T kx

converge weakly to some y ∈ F (T ). In this case, putting y = Px for each x ∈ C,
P is a nonexpansive retraction of C onto F (T ) such that PT = TP = P and Px is
contained in the closure of convex hull of {Tnx : n = 1, 2, . . . } for each x ∈ C. We
call such a retraction “an ergodic retraction”.

In 1981, Takahashi [12, 14] proved the existence of ergodic retractions for
amenable semigroups of nonexpansive mappings on Hilbert spaces. Rodé [10] also
found a sequence of means on a semigroup, generalizing the Cesàro means, and
extended Baillon’s theorem. These results were extended to a uniformly convex
Banach space with a Fréchet differentiable norm in the case of commutative semi-
groups of nonexpansive mappings by Hirano, Kido and Takahashi [8]. Lau, Shioji
and Takahashi [9] generalized Takahashi’s result and Rodé’s result to amenable
semigroups of nonexpansive mappings in the Banach spaces.

Recently, using results of Bruck [4, 5], Atsushiba and Takahashi [2] proved a
nonlinear ergodic theorem for nonexpansive mappings on a compact and convex
subset of a strictly convex Banach space: Let C be a compact and convex subset of
a strictly convex Banach space and let T be a nonexpansive mapping of C into itself.
Then, for each x ∈ C, the Cesàro means 1/n

∑n−1
k=0 T kx converge to a fixed point of

T . This result was extended to commutative semigroups of nonexpansive mappings
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by Atsushiba, Lau and Takahashi [1]. On the other hand, Suzuki and Takahashi [11]
constructed a nonexpansive mapping of a compact and convex subset C of a Banach
space into itself such that for some x ∈ C, the Cesàro means 1/n

∑n−1
k=0 T kx converge

to a point of C, but the limit point is not a fixed point of T .
It is natural to ask whether for a nonexpansive mapping with a compact and

convex subset C of a general Banach space and for each x ∈ C, the Cesàro means
1/n

∑n−1
k=0 T kx converge or not. In this paper, we shall give an affirmative answer

to this problem and also show a nonlinear ergodic theorem for one-parameter semi-
groups of nonexpansive mappings in general Banach spaces.

2. Preliminaries

Throughout this paper, we denote by N and R+ the set of positive integers and
the set of non-negative real numbers, respectively. We also denote by E a real
Banach space with the topological dual E∗. Then, 〈·, ·〉 denotes the dual pairing
between E and E∗. For each x ∈ E and r > 0, we denote by B(x; r) the open ball
with center x and radius r.

Let C be a closed and convex subset of a Banach space E and let T be a mapping
of C into itself. Then, T is said to be nonexpansive if ‖Tx−Ty‖ ≤ ‖x− y‖ for each
x, y ∈ C. We denote by F (T ) the set of fixed points of T . Let S = {T (s) : s ∈ R+}
be a family of nonexpansive mappings of C into itself. Then, S is said to be a
strongly continuous one-parameter semigroup of nonexpansive mappings on C if for
each s, t ∈ R+, T (s)T (t) = T (st) and for each x ∈ C, the mapping s 7→ T (s)x is
continuous in the norm topology. We also denote by F (S) the set of common fixed
points of T (s), s ∈ R+.

Let f be a function defined on R+ with values in a Banach space E. Then, f is
said to be (strongly) measurable if f−1(G) is a Lebesque measurable subset of R+

for each open subset G of E. A measurable function f is also said to be simple if
the range of f is a finite set. Let F be a Lebesque measurable subset of R+. For a
simple function s, we define the Bochner integral

∫
F s(σ) dσ of s by∫

F
s(σ) dσ =

n∑
k=1

m(Fk ∩ F )sk,

where sk = s(σ) on a Lebesque measurable subset Fk of R+ (k = 1, . . . , n) and m
is the Lebesque measure on R+. A measurable function f is Bochner integrable if
there exists a sequence {sn} of simple functions converging almost everywhere to f
such that

lim
n→∞

∫
R+

‖f(σ)− sn(σ)‖ dσ = 0.

For such a function f , we define the Bochner integral
∫
F f(σ) dσ of f by∫

F
f(σ) dσ = lim

n→∞

∫
F

sn(σ) dσ.

We know that for each Bochner integrable function f and x∗ ∈ E∗,〈∫
F

f(σ) dσ, x∗
〉

=
∫

F
〈f(σ), x∗〉 dσ
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and ∥∥∥∥∫
F

f(σ) dσ

∥∥∥∥ ≤ ∫
F
‖f(σ)‖ dσ.

We also know that a measurable function f is Bochner integrable if and only if ‖f‖
is Lebesque integrable, that is,

∫
R+

‖f(σ)‖ dσ < ∞. It follows that every strongly
continuous function f defined on R+ with values in E is Bochner integrable. For
more details, see Hille and Phillips [7].

3. Main Results

First, we prove a nonlinear ergodic theorem, Theorem 1, for nonexpansive map-
pings on a compact and convex subset of a general Banach space. The following
lemma is crucial in the proof of Theorem 1.

Lemma 1. Let C be a compact and convex subset of a Banach space E and let T
be a nonexpansive mapping of C into itself. Then, for each x ∈ C,

lim
n→∞

sup
h∈N

∥∥∥∥∥ 1
n

n−1∑
i=0

T i+hx− 1
n

n−1∑
i=0

T ix

∥∥∥∥∥ = 0.

Proof. Fix x ∈ C, let ε > 0 and let h ∈ N. Since {T ix : i ∈ N} is relatively compact,
there exists a finite subset M of N such that

{T ix : i ∈ N} ⊂
⋃
l∈M

B(T lx; ε/2).

Then, there exists a k ∈ M such that

‖T hx− T kx‖ < ε/2.

So, we have

(3.1)

∥∥∥∥∥ 1
n

n−1∑
i=0

T i+hx− 1
n

n−1∑
i=0

T i+kx

∥∥∥∥∥ ≤ 1
n

n−1∑
i=0

‖T i+hx− T i+kx‖

≤ 1
n

n−1∑
i=0

‖T hx− T kx‖

= ‖T hx− T kx‖ < ε/2.

On the other hand, we have∥∥∥∥∥ 1
n

n−1∑
i=0

T i+kx− 1
n

n−1∑
i=0

T ix

∥∥∥∥∥ ≤ 1
n

2k sup
i∈N

‖T ix‖

and hence

lim
n→∞

∥∥∥∥∥ 1
n

n−1∑
i=0

T i+kx− 1
n

n−1∑
i=0

T ix

∥∥∥∥∥ = 0.

Then, there exists an N ∈ N such that for each n > N ,

(3.2)

∥∥∥∥∥ 1
n

n−1∑
i=0

T i+kx− 1
n

n−1∑
i=0

T ix

∥∥∥∥∥ <
ε

2
.
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Thus, we have from (3.1) and (3.2) that for each n > N ,∥∥∥∥∥ 1
n

n−1∑
i=0

T i+hx− 1
n

n−1∑
i=0

T ix

∥∥∥∥∥ ≤
∥∥∥∥∥ 1
n

n−1∑
i=0

T i+hx− 1
n

n−1∑
i=0

T i+kx

∥∥∥∥∥
+

∥∥∥∥∥ 1
n

n−1∑
i=0

T i+kx− 1
n

n−1∑
i=0

T ix

∥∥∥∥∥
<

ε

2
+

ε

2
= ε.

Since ε > 0 is arbitrary, we have

lim
n→∞

sup
h≥0

∥∥∥∥∥ 1
n

n−1∑
i=0

T i+hx− 1
n

n−1∑
i=0

T ix

∥∥∥∥∥ = 0.

This completes the proof. �

Remark. As in the proof of Lemma 1, we obtain the following lemma:

Lemma 2. Let C be a closed and convex subset of a Banach space E and let T be
a nonexpansive mapping of C into itself such that for each x ∈ C, {Tnx : n ∈ N} is
relatively compact. Then, for each x ∈ C,

lim
n→∞

sup
h∈N

∥∥∥∥∥ 1
n

n−1∑
i=0

T i+hx− 1
n

n−1∑
i=0

T ix

∥∥∥∥∥ = 0.

Theorem 1. Let C be a compact and convex subset of a Banach space E and let
T be a nonexpansive mapping of C into itself. Then, for each x ∈ C,

1
n

n−1∑
i=0

T i+hx

converges uniformly in h ∈ N ∪ {0}.

Proof. Fix x ∈ C and let ε > 0. Then, we have from Lemma 1 that there exists an
N0 ∈ N such that for each h ∈ N ∪ {0} and n > N0,

(3.3)

∥∥∥∥∥ 1
n

n−1∑
i=0

T i+hx− 1
n

n−1∑
i=0

T ix

∥∥∥∥∥ <
ε

4
.

Since C is compact, there exists a cluster point y of 1/n
∑n−1

i=0 T ix. We can choice
an N > N0 such that

(3.4)

∥∥∥∥∥ 1
N

N−1∑
i=0

T ix− y

∥∥∥∥∥ <
ε

4
.

So, we have from (3.3) and (3.4) that for each h ∈ N ∪ {0},∥∥∥∥∥ 1
N

N−1∑
i=0

T i+hx− y

∥∥∥∥∥ ≤
∥∥∥∥∥ 1
N

N−1∑
i=0

T i+hx− 1
N

N−1∑
i=0

T ix

∥∥∥∥∥ +

∥∥∥∥∥ 1
N

N−1∑
i=0

T ix− y

∥∥∥∥∥
<

ε

4
+

ε

4
=

ε

2
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and hence

(3.5)

∥∥∥∥∥∥ 1
n

n−1∑
i=0

1
N

N−1∑
j=0

T i+jx− y

∥∥∥∥∥∥ ≤ 1
n

n−1∑
i=0

∥∥∥∥∥∥ 1
N

N−1∑
j=0

T i+j − y

∥∥∥∥∥∥
≤ sup

i≥0

∥∥∥∥∥∥ 1
N

N−1∑
j=0

T i+j − y

∥∥∥∥∥∥
≤ ε

2
.

Thus, we have from (3.3) and (3.5) that for each n > N0,∥∥∥∥∥ 1
n

n−1∑
i=0

T ix− y

∥∥∥∥∥
≤

∥∥∥∥∥∥ 1
n

n−1∑
i=0

T ix− 1
n

n−1∑
i=0

1
N

N−1∑
j=0

T i+jx

∥∥∥∥∥∥ +

∥∥∥∥∥∥ 1
n

n−1∑
i=0

1
N

N−1∑
j=0

T i+jx− y

∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1
n

n−1∑
i=0

T ix− 1
N

N−1∑
j=0

1
n

n−1∑
i=0

T i+jx

∥∥∥∥∥∥ +
ε

2

≤ 1
N

N−1∑
j=0

∥∥∥∥∥ 1
n

n−1∑
i=0

T ix− 1
n

n−1∑
i=0

T i+jx

∥∥∥∥∥ +
ε

2

≤ sup
j≥0

∥∥∥∥∥ 1
n

n−1∑
i=0

T ix− 1
n

n−1∑
i=0

T i+jx

∥∥∥∥∥ +
ε

2

≤ ε

4
+

ε

2
< ε.

Since ε > 0 is arbitrary, 1/n
∑n−1

i=0 T ix converges to the point y of C. It follows
from Lemma 1 that 1/n

∑n−1
i=0 T i+hx converges to y uniformly in h ∈ N∪{0}. This

completes the proof. �

Remark. In [11], Suzuki and Takahashi constructed a nonexpansive mapping T of
a compact subset C of a Banach space into itself such that for some x ∈ C, the
Cesàro means 1/n

∑n−1
k=0 T kx converge, but the limit point is not a fixed point of T .

Next, we also prove a nonlinear ergodic theorem, Theorem 2, for one-parameter
semigroups of nonexpansive mappings on a compact and convex subset of a general
Banach space. The following lemmas are crucial in the proof of Theorem 2.

Lemma 3. Let C be a compact and convex subset of a Banach space E and let S =
{T (t) : t ∈ R+} be a strongly continuous one-parameter semigroup of nonexpansive
mappings of C into itself. Then, for each x ∈ C,

lim
t→∞

sup
h≥0

∥∥∥∥1
t

∫ t

0
T (s + h)x ds− 1

t

∫ t

0
T (s)x ds

∥∥∥∥ = 0.
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Proof. Fix x ∈ C, let ε > 0 and let h ∈ R+. Since C is compact, there exists a finite
subset M of R+ such that

{T (s)x : s ∈ R+} ⊂
⋃

w∈M

B(T (w)x; ε/2).

Then, there exists a k ∈ M such that

‖T (h)x− T (k)x‖ < ε/2.

So, we have

(3.6)
∥∥∥∥1

t

∫ t

0
T (s + h)x ds− 1

t

∫ t

0
T (s + k)x ds

∥∥∥∥
= sup
‖x∗‖=1

〈
1
t

∫ t

0
(T (s + h)x− T (s + k)x) ds, x∗

〉
= sup
‖x∗‖=1

1
t

∫ t

0
〈T (s + h)x− T (s + k)x, x∗〉 ds

≤ 1
t

∫ t

0
‖T (s + h)x− T (s + k)x‖ ds

≤ 1
t

∫ t

0
‖T (h)x− T (k)x‖ ds

= ‖T (h)x− T (k)x‖ < ε/2.

On the other hand, since, for each t > k,∥∥∥∥1
t

∫ t

0
T (s + k)x ds− 1

t

∫ t

0
T (s)x ds

∥∥∥∥
= sup
‖x∗‖=1

∣∣∣∣〈1
t

∫ t

0
T (s + k)x ds− 1

t

∫ t

0
T (s)x ds, x∗

〉∣∣∣∣
= sup
‖x∗‖=1

∣∣∣∣1t
∫ t

0
〈T (s + k)x, x∗〉 ds− 1

t

∫ t

0
〈T (s)x, x∗〉 ds

∣∣∣∣
= sup
‖x∗‖=1

∣∣∣∣1t
∫ k

0
〈T (s + t)x, x∗〉 ds− 1

t

∫ k

0
〈T (s)x, x∗〉 ds

∣∣∣∣
≤ sup
‖x∗‖=1

∣∣∣∣1t
∫ k

0
〈T (s + t)x, x∗〉 ds

∣∣∣∣ + sup
‖x∗‖=1

∣∣∣∣1t
∫ k

0
〈T (s)x, x∗〉 ds

∣∣∣∣
≤ 1

t

∫ k

0
‖T (s + t)x‖ ds +

1
t

∫ k

0
‖T (s)x‖ ds

≤ 1
t
2k sup

w∈R+

‖T (w)x‖,

we have

lim
t→∞

∥∥∥∥1
t

∫ t

0
T (s + k)x ds− 1

t

∫ t

0
T (s)x ds

∥∥∥∥ = 0.
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Then, there exists a T ∈ R+ such that for each t > T ,

(3.7)
∥∥∥∥1

t

∫ t

0
T (s + k)x ds− 1

t

∫ t

0
T (s)x ds

∥∥∥∥ <
ε

2
.

Thus, we have from (3.6) and (3.7) that for each t > T ,∥∥∥∥1
t

∫ t

0
T (s + h)x ds− 1

t

∫ t

0
T (s)x ds

∥∥∥∥
≤

∥∥∥∥1
t

∫ t

0
T (s + h)x ds− 1

t

∫ t

0
T (s + k)x ds

∥∥∥∥
+

∥∥∥∥1
t

∫ t

0
T (s + k)x ds− 1

t

∫ t

0
T (s)x ds

∥∥∥∥
<

ε

2
+

ε

2
= ε.

Since ε > 0 is arbitrary, we have

lim
t→∞

sup
h≥0

∥∥∥∥1
t

∫ t

0
T (s + h)x ds− 1

t

∫ t

0
T (s)x ds

∥∥∥∥ = 0.

This completes the proof. �

Remark. As in the proof of Lemma 3, we obtain the following lemma:

Lemma 4. Let C be a closed and convex subset of a Banach space E and let S =
{T (t) : t ∈ R+} be a strongly continuous one-parameter semigroup of nonexpansive
mappings of C into itself such that for each x ∈ C, {T (s)x : s ∈ R+} is relatively
compact. Then, for each x ∈ C,

lim
t→∞

sup
h≥0

∥∥∥∥1
t

∫ t

0
T (s + h)x ds− 1

t

∫ t

0
T (s)x ds

∥∥∥∥ = 0.

Lemma 5. Let C be a compact and convex subset of a Banach space E and let S =
{T (t) : t ∈ R+} be a strongly continuous one-parameter semigroup of nonexpansive
mappings of C into itself. Fix k ∈ R+. Then, for each t > 0 and x ∈ C,

1
t

∫ t

0
T (s + k)x ds = lim

n→∞

1
n

n−1∑
i=0

T (it/n + k)x.

Proof. Since, for each x ∈ C, the function s 7→ T (s + k)x is strongly continuous,
we have that for each x∗ ∈ E∗, the real-valued function s 7→ 〈T (s + k)x, x∗〉 is
continuous. So, we have that for each x∗ ∈ E∗,〈

1
t

∫ t

0
T (s + k)x ds, x∗

〉
=

1
t

∫ t

0
〈T (s + k)x, x∗〉 ds

= lim
n→∞

1
n

n−1∑
i=0

〈T (it/n + k)x, x∗〉

= lim
n→∞

〈Sn(x), x∗〉,
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where Sn(x) = 1/n
∑n−1

i=0 T (it/n + k)x. Since C is compact, there exists a subse-
quence {Snj (x)} of {Sn(x)} converging to a point y of C. Then, we have that for
each x∗ ∈ E∗,

〈y, x∗〉 = lim
j→∞

〈
Snj (x), x∗

〉
= lim

n→∞
〈Sn(x), x∗〉

=
〈

1
t

∫ t

0
T (s + k)x ds, x∗

〉
and hence y = 1/t

∫ t
0 T (s + k)x ds. So, 1/n

∑n−1
i=0 T (it/n + k)x converges to

1/t
∫ t
0 T (s + k)x ds. This completes the proof. �

Theorem 2. Let C be a compact and convex subset of a Banach space E and
let S = {T (t) : t ∈ R+} be a strongly continuous one-parameter semigroup of
nonexpansive mappings of C into itself. Then, for each x ∈ C,

1
t

∫ t

0
T (s + h)x ds

converges uniformly in h ∈ R+.

Proof. Let ε > 0 and let x ∈ C. Then, we have from Lemma 3 that there exists a
T0 ∈ R+ such that for each h ∈ R+ and t > T0,

(3.8)
∥∥∥∥1

t

∫ t

0
T (s + h)x ds− 1

t

∫ t

0
T (s)x ds

∥∥∥∥ <
ε

8
.

Since C is compact, there exists a cluster point y of 1/t
∫ t
0 T (s)x ds. We can choice

a T > T0 such that

(3.9)
∥∥∥∥ 1
T

∫ T

0
T (s)x ds− y

∥∥∥∥ <
ε

8
.

On the other hand, let h ∈ R+. Since {T (s)x : s ∈ R+} is relatively compact,
there exists a finite subset M of R+ such that

{T (s)x : s ∈ R+} ⊂
⋃

w∈M

B(T (w)x; ε/16).

Then, there exists a k ∈ M such that

(3.10) ‖T (h)x− T (k)x‖ < ε/16.

Since, from Lemma 5, there exists an N ∈ N such that

(3.11)

∥∥∥∥∥ 1
T

∫ T

0
T (s + k)x ds− 1

N

N−1∑
i=0

T (ti + k)x

∥∥∥∥∥ <
ε

8
,
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where ti = it/N for each i = 0, . . . , N − 1, we have from (3.10) and (3.11) that

∥∥∥∥∥ 1
T

∫ T

0
T (s + h)x ds− 1

N

N−1∑
i=0

T (ti + h)x

∥∥∥∥∥
≤

∥∥∥∥ 1
T

∫ T

0
T (s + h)x ds− 1

T

∫ T

0
T (s + k)x ds

∥∥∥∥
+

∥∥∥∥∥ 1
T

∫ T

0
T (s + k)x ds− 1

N

N−1∑
i=0

T (ti + k)x

∥∥∥∥∥
+

∥∥∥∥∥ 1
N

N−1∑
i=0

T (ti + k)x− 1
N

N−1∑
i=0

T (ti + h)x

∥∥∥∥∥
≤ 1

T

∫ T

0
‖T (s + h)x− T (s + k)x‖ ds

+
1
N

N−1∑
i=0

‖T (ti + k)x− T (ti + h)x‖+
ε

8

≤ 1
T

∫ T

0
‖T (h)x− T (k)x‖ ds +

1
N

N−1∑
i=0

‖T (k)x− T (h)x‖+
ε

8

= 2‖T (k)x− T (h)x‖+
ε

8

<
2ε

16
+

ε

8
=

ε

4
.

So, we have that for each h ∈ R+,

(3.12)

∥∥∥∥∥ 1
T

∫ T

0
T (s + h)x ds− 1

N

N−1∑
i=0

T (ti + h)x

∥∥∥∥∥ <
ε

4
.

Then, we have from (3.8), (3.9) and (3.12) that for each h ∈ R+,

∥∥∥∥∥ 1
N

N−1∑
i=0

T (ti + h)x− y

∥∥∥∥∥ ≤
∥∥∥∥∥ 1
N

N−1∑
i=0

T (ti + h)x− 1
T

∫ T

0
T (s + h)x ds

∥∥∥∥∥
+

∥∥∥∥ 1
T

∫ T

0
T (s + h)x ds− 1

T

∫ T

0
T (s)x ds

∥∥∥∥
+

∥∥∥∥ 1
T

∫ T

0
T (s)x ds− y

∥∥∥∥
<

ε

4
+

ε

8
+

ε

8
=

ε

2
,
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and hence

(3.13)

∥∥∥∥∥1
t

∫ t

0

1
N

N−1∑
i=0

T (ti + s)x ds− y

∥∥∥∥∥
≤ 1

t

∫ t

0

∥∥∥∥∥ 1
N

N−1∑
i=0

T (ti + s)x− y

∥∥∥∥∥ ds

≤ sup
s∈R+

∥∥∥∥∥ 1
N

N−1∑
i=0

T (ti + s)x− y

∥∥∥∥∥
≤ ε/2.

Thus, we have from (3.8) and (3.13) that for each t > T0,∥∥∥∥1
t

∫ t

0
T (s)x ds− y

∥∥∥∥
≤

∥∥∥∥∥1
t

∫ t

0
T (s)x ds− 1

t

∫ t

0

1
N

N−1∑
i=0

T (ti + s)x ds

∥∥∥∥∥
+

∥∥∥∥∥1
t

∫ t

0

1
N

N−1∑
i=0

T (ti + s)x ds− y

∥∥∥∥∥
≤

∥∥∥∥∥1
t

∫ t

0
T (s)x ds− 1

N

N−1∑
i=0

1
t

∫ t

0
T (ti + s)x ds

∥∥∥∥∥ +
ε

2

≤ 1
N

N∑
i=1

∥∥∥∥1
t

∫ t

0
T (s)x ds− 1

t

∫ t

0
T (ti + s)x ds

∥∥∥∥ +
ε

2

≤ sup
h∈R+

∥∥∥∥1
t

∫ t

0
T (s)x ds− 1

t

∫ t

0
T (h + s)x ds

∥∥∥∥ +
ε

2

≤ ε

8
+

ε

2
< ε.

Since ε > 0 is arbitrary, 1/t
∫ t
0 T (s)x ds converges to the point y of C. It follows

from Lemma 3 that 1/t
∫ t
0 T (s + h)x ds converges to y uniformly in h ∈ R+. This

completes the proof. �
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