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DENSELY RELATIVE PSEUDOMONOTONE VARIATIONAL
INEQUALITIES OVER PRODUCT OF SETS

QAMRUL HASAN ANSARI AND ZUBAIR KHAN

Abstract. In this paper, we consider variational inequality problem over prod-
uct of sets, which is equivalent to the system of variational inequalities. By
introducing the concept of densely relative pseudomonotone operators, we estab-
lish the existence of a solution of our problem. As an application of our results, we
prove the existence of a coincidence point of two families of nonlinear operators.

1. Introduction

In the recent past, variational inequality problem over product of sets, which is
equivalent to the problem of system of variational inequalities, is used as a tool
to solve various equilibrium-type problems from operations research, economics,
game theory, mathematical physics amd other fields, see for example [1–3, 5, 10–
11, 14–17] and references therein. Pang [16] uniformly modeled traffic equilibrium
problem, spatial equilibrium problem, Nash equilibrium problem and general equi-
librium programming problem in the form of a variational inequality defined on a
product of sets. He decomposed the original variational inequality into a system of
variational inequalities, which are easy to solve, to establish some solution methods
for finding the approximate solutions of above mentioned equilibrium problems. He
also studied the convergence of such solutions. The decomposition method is also
used by many other authors, see for example [3, 5, 10, 11, 14, 17] and references
therein.

Recently, Konnov [12] noticed that the solution sets of variational inequality
problem over product of sets are invariant with respect to certain affine transfor-
mations of cost mappings. Taking these as a basis, he introduced new concept of
(pseudo) monotonicity, called relatively (pseudo) monotonicity, which are adjusted
for a decomposable structure of the initial problem. By using the famous Fan-KKM
lemma [4], he proved some existence results for a solution of variational inequality
problem over product of sets under these relatively monotonicities.

Inspired by the work of Luc [13], in this paper, we introduce the concept of
relative quasimonotonicity and densely relative pseudomonotonicity, which are much
weaker than the relatively pseudomonotonicity, considered by Konnov [12]. Under
these assumptions, we establish some existence results for a solution of variational
inequality problem over product of sets. As an application of our results, we derive
the existence of a coincidence point of two families of nonlinear operators.
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2. Formulations and preliminaries

Let I be a finite index set, that is, I = {1, 2, . . . , n}. For each i ∈ I, let Xi be a
Hausdorff topological vector space with its dual X∗

i , Ki a nonempty convex subset
of Xi, K =

∏
i∈I Ki, X =

∏
i∈I Xi, and X∗ =

∏
i∈I X∗

i . For each i ∈ I, when Xi

is a normed space, its norm is denoted by || · ||i and the product norm on X will
be denoted by || · ||. We denote by 〈·, ·〉 the pairing between X∗

i and Xi. For each
x ∈ X, we write x = (xi)i∈I , where xi ∈ Xi, that is, for each x ∈ X, xi ∈ Xi

denotes the ith component of x. For each i ∈ I, let Fi : K → X∗
i be a nonlinear

operator. We consider the following variational inequality problem over product of
sets (for short, VIPPS): Find x̄ ∈ K such that

(1)
∑
i∈I

〈Fi(x̄), yi − x̄i〉 ≥ 0, for all yi ∈ Ki, i ∈ I.

Of course, if we define the mapping F : K → X∗ by

(2) F (x) =
(
Fi(x)

)
i∈I

,

then (VIPPS) can be equivalently re-written as the usual variational inequality
problem of finding x̄ ∈ K such that

〈F (x̄), y − x̄〉 ≥ 0, for all y ∈ K.

The (VIPPS) was first considered and studied by Konnov [12]. By introducing
the concept of relatively pseudomonotonicity and strongly relatively pseudomono-
tonicity, he proved some existence results for a solution of (VIPPS) in the setting of
Banach spaces. It is easy to see that (VIPPS) is equivalent to the following problem
of system of variational inequalities, which is the model of various equilibrium-type
problems from operations research, economics, game theory, mathematical physics
and other areas, see for example, [1, 15, 16, 5] and references therein:

(SVI)
{

Find x̄ ∈ X such that for each i ∈ I,
〈Fi(x̄), yi − x̄i〉 ≥ 0, for all yi ∈ Ki,

For every nonempty set A, we denote by 2A the family of all subsets of A. If A
is a nonempty subset of a vector space, then coA denotes the convex hull of A.

We shall use the following Fan-KKM lemma (see [4, 6]).

Theorem 2.1. Let K be a compact and convex subset of a Hausdorff topological
vector space X and K0 ⊆ K be nonempty. Assume that G : K0 → 2K \ {∅} be a
multivalued mapping satisfying the following conditions:

(i) For each x ∈ K0, G(x) is closed;
(ii) For every finite set {x1, . . . , xm} of K0 one has co{x1, . . . , xm}⊆

⋃m
k=1G(xk).

Then
⋂

x∈K0 G(x) 6= ∅.

3. Existence results

Definition 3.1. The map F : K → X∗, defined by (2), is said to be
(i) relative pseudomonotone at y ∈ K [12] if for all x ∈ K, we have∑

i∈I

〈Fi(x), yi − xi〉 ≥ 0 ⇒
∑
i∈I

〈Fi(y), yi − xi〉 ≥ 0,
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and relative strictly pseudomonotone at y ∈ K if the second inequality is
strict for all x 6= y;

(ii) relative quasimonotone at y ∈ K if for all x ∈ K, we have∑
i∈I

〈Fi(x), yi − xi〉 > 0 ⇒
∑
i∈I

〈Fi(y), yi − xi〉 ≥ 0.

If F is relative pseudomonotone (respectively, relative strictly pseudomonotone
and relative quasimonotone) at each y ∈ K, then we say that it is relative pe-
sudomonotone (respectively, relative strictly pseudomonotone and relative quasi-
monotone) on K.

Of course, if I is a singleton set, then Definition 3.1 (ii) reduces to the usual
definition of quasimonotonicity, see for example, [8, 7].

Definition 3.2. The map F : K → X∗, defined by (2), is said to be hemicontinuous
if for all x, y ∈ K and λ ∈ [0, 1], the mapping λ 7→ 〈F (x + λ(y − x)), y − x〉 is
continuous.

Lemma 3.1. Let F , defined by (2), be hemicontinuous and relative quasimonotone
on K. Then for every x, y ∈ K with

∑
i∈I〈Fi(x), yi − xi〉 ≥ 0 we have either∑

i∈I

〈Fi(y), yi − xi〉 ≥ 0 or
∑
i∈I

〈Fi(x), zi − xi〉 ≤ 0 for all zi ∈ Ki i ∈ I.

Proof. It is sufficient to show that if for all zi ∈ Ki, i ∈ I,∑
i∈I

〈Fi(x), zi − xi〉 > 0,

then we will have ∑
i∈I

〈Fi(y), yi − xi〉 ≥ 0.

Let us set yt = tz + (1− t)y for 0 < t ≤ 1. Then, obviously, yt ∈ K and∑
i∈I

〈Fi(x), yt
i − xi〉 > 0.

By relative quasimonotonicity of F , we get∑
i∈I

〈Fi(yt), yt
i − xi〉 ≥ 0.

Now let t → 0. Since yt → y along a line segment, and by hemicontinuity of F , we
have ∑

i∈I

〈Fi(y), yi − xi〉 ≥ 0.

This completes the proof. �

Remark 3.1. If the index set I is singleton, then Lemma 3.1 reduces to Lemma 3.1
(ii) in [7].

Definition 3.3. [13] A subset K0 of K is said to be segment-dense in K if for
all x ∈ K, there can be found x0 ∈ K0 such that x is a cluster point of the set
[x, x0] ∩K0, where [x, x0] denotes the line segment joining x and x0 including end
points.
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Definition 3.4. [13] For each i ∈ I, let Ki be a nonempty convex subset of Xi.
For each i ∈ I, we set

K⊥
i := {ξi ∈ X∗

i : 〈ξi, yi − xi〉 = 0 for all xi, yi ∈ Ki}
and call it the orthogonal complement of Ki. Then

K⊥ :=
∏
i∈I

K⊥
i =

∏
i∈I

{ξi ∈ X∗
i : 〈ξi, yi − xi〉 = 0 for all xi, yi ∈ Ki}

= {ξ := (ξi)i∈I ∈ X∗ : for each i ∈ I, 〈ξi, yi − xi〉 = 0 for all xi, yi ∈ Ki}

Remark 3.2. For a given ξi ∈ X∗
i , the following two statements are equivalent:

(a) For each i ∈ I, 〈ξi, yi − xi〉 = 0 for all xi, yi ∈ Ki;
(b)

∑
i∈I〈ξi, yi − xi〉 = 0 for all xi, yi ∈ Ki, i ∈ I.

Indeed, (a) implies (b) is obvious. For (b) implies (a), let yj = xj for j 6= i, in
(b) then we obtain (a).

In view of above remark, we have

K⊥ = {ξ = (ξi)i∈I ∈ X∗ :
∑
i∈I

〈ξi, yi − xi〉 = 0 for all xi, yi ∈ Ki, i ∈ I}

and we call it the orthogonal complement of K.

Definition 3.5. Let F be a map from K to X∗ defined by (2). We say that x0 ∈ K
is a positive point of F on K if for all x ∈ K one has either F (x) ∈ K⊥, that is, for
each i ∈ I, Fi(x) ∈ K⊥

i or there exists y ∈ K such that∑
i∈I

〈Fi(x), yi − x0
i 〉 > 0.

The set of all positive points of F on K is denoted by KF .

We denote by F (K) the image of K under F , that is, F (K) = {F (x) : x ∈ K}.

Proposition 3.1. Let F , defined by (2), be hemicontinuous and relative quasi-
monotone on K such that F (K)∩K⊥ = ∅, that is, for each i ∈ I, Fi(K)∩K⊥

i = ∅.
Then F is relative pseudomonotone at every positive point.

Proof. Let y ∈ KF and x ∈ K be any point such that
∑

i∈I〈Fi(x), yi − xi〉 ≥ 0.
Then by Lemma 3.1, we have either

(3)
∑
i∈I

〈Fi(y), yi − xi〉 ≥ 0 or
∑
i∈I

〈Fi(x), zi − xi〉 ≤ 0 for all zi ∈ Ki, i ∈ I.

To complete the proof, it is sufficient to show that the second inequality in (3) is
impossible.

Indeed, since y ∈ KF and for each i ∈ I, Fi(x) /∈ K⊥
i , then there exists z ∈ K

such that ∑
i∈I

〈Fi(x), zi − yi〉 > 0.

Then ∑
i∈I

〈Fi(x), zi − xi〉 =
∑
i∈I

〈Fi(x), zi − yi〉+
∑
i∈I

〈Fi(x), yi − xi〉 > 0
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which shows that the second inequality in (3) is impossible, and the proof is com-
pleted. �

Proposition 3.2. Let K be closed and convex subset of X and K0 a segment-dense
subset of K. If F , defined by (2), is relative quasimonotone at every point of K0

and hemicontinuous on K, then it is relative quasimonotone on K.

Proof. Let x, y ∈ K with

(4)
∑
i∈I

〈Fi(x), yi − xi〉 > 0.

Since K0 is a segment-dense subset of K, we can find y0 ∈ K0 and ym ∈ [y, y0]∩K0,
for all m ∈ N such that lim ym = y. Then from (4), we obtain∑

i∈I

〈Fi(x), ym
i − xi〉 > 0, for all m ∈ N.

Since F is relative quasimonotone at ym, we get∑
i∈I

〈Fi(ym), ym
i − xi〉 ≥ 0.

Since lim ym = y and by hemicontinuity of F , we have∑
i∈I

〈Fi(y), yi − xi〉 ≥ 0.

Hence F is relative quasimonotone on K. �

Now we are ready to define a new concept of densely relative pseudomonotonicity,
which generalize the notion of densely pseudomonotonicity considered by Luc [13].

Definition 3.6. The map F : K → X∗, defined by (2), is said to be densely rela-
tive pseudomonotone (respectively, densely relative strict pseudomonotone) on K if
there exists a segment-dense subset K0 ⊆ K such that F is relative pseudomonotone
(respectively, relative strict pseudomonotone) on K0.

The following lemma can be treated as a generalization of Minty lemma (see, [9],
Chapter 3, Lemma 1.5) to (VIPPS).

Lemma 3.2. Let K be a nonempty convex subset of X and K0 be the same as
in the definition of densely relative pseudomonotone map. If F , defined by (2), is
hemicontinuous and densely relative pseudomonotone, then the following problem is
equivalent to (VIPPS):

(DVIPPS)0
{

Find x̄ ∈ K such that∑
i∈I〈Fi(y), yi − x̄i〉 ≥ 0, for all yi ∈ K0

i , i ∈ I.

The solution sets of (VIPPS) and (DVIPPS)0 are denoted by Ks and K0
sd, re-

spectively.

Proof. By the densely relative pseudomonotonicity of F , we have Ks ⊆ K0
sd.

Conversely, let x̄ ∈ K be a solution of (DVIPPS)0. Then

(5)
∑
i∈I

〈Fi(y), yi − x̄i〉 ≥ 0, for all yi ∈ K0
i , i ∈ I.
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Since K0 is segment-dense, for all z ∈ K, we can find z0 ∈ K0 and zm ∈ [z, z0]∩K0

for all m ∈ N such that lim zm = z. Then from (5), we get∑
i∈I

〈Fi(zm), zm
i − x̄i〉 ≥ 0, for all m ∈ N.

Since lim zm = z and F is hemicontinuous, we obtain∑
i∈I

〈Fi(z), zi − x̄i〉 ≥ 0, for all zi ∈ Ki, i ∈ I.

Again by hemicontinuity of F (see the proof of Lemma 2 in [12]), we have∑
i∈I

〈Fi(x̄), zi − x̄i〉 ≥ 0, for all zi ∈ Ki, i ∈ I.

Hence x̄ ∈ Ks and thus Ks = K0
sd. �

Theorem 3.1. For each i ∈ I, let Ki be a nonempty, compact and convex subset of
Xi, and F , defined by (2), be hemicontinuous and densely relative pseudomonotone
on K. Then (VIPPS) has a solution.

Proof. Let K0 be the same as in the definition of a densely relative pseudomonotone
map. For each y ∈ K0, define two multivalued maps S, T : K0 → 2K by

S(y) = {x ∈ K :
∑
i∈I

〈Fi(x), yi − xi〉 ≥ 0}

and
T (y) = {x ∈ K :

∑
i∈I

〈Fi(y), yi − xi〉 ≥ 0}.

Then for each y ∈ K0, T (y) is closed, and also by relative pseudomonotonicity of F
on K0, we have S(y) ⊆ T (y). By using the standard argument, it is easy to see that
for every finite set {y1, . . . , ym} of K0 one has co{y1, . . . , ym} ⊆

⋃m
k=1 S(yk) (see

for example, the proof of Theorem 1 in [12]). Since for all y ∈ K0, S(y) ⊆ T (y),
we also have, co{y1, . . . , ym} ⊆

⋃m
k=1 T (yk). By applying Theorem 2.1, we have⋂

y∈K0 T (y) 6= ∅, that is, there exists x̄ ∈ K such that∑
i∈I

〈Fi(y), yi − xi〉 ≥ 0, for all yi ∈ K0
i , i ∈ I.

By Lemma 3.1, x̄ ∈ K is a solution of (VIPPS). �

Corollary 3.1. For each i ∈ I, let Ki be a nonempty, compact and convex subset
of Xi, and F , defined by (2), be hemicontinuous and relative quasimonotone on K
such that KF is segment-dense in K. Then (VIPPS) has a solution.

Proof. Let x̄ ∈ K such that F (x̄) ∈ K⊥, then
∑

i∈I〈Fi(x), yi − x̄i〉 = 0 for all yi ∈
Ki, i ∈ I. Hence x̄ ∈ K is a solution of (VIPPS). Therefore, we may assume that
F (K) ∩K⊥ = ∅. Then by Proposition 3.1, F is relative pseudomonotone at every
point of KF . Since KF is segment-dense in K, F is densely relative pseudomonotone
on K. Thus by Theorem 3.1, (VIPPS) has a solution. �
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Corollary 3.2. For each i ∈ I, let Ki be a nonempty, compact and convex subset
of Xi, and F , defined by (2), be hemicontinuous and densely relative strict pseu-
domonotone on K. Then (VIPPS) has a solution x̄ ∈ K, and it is unique if x̄ ∈ K0,
where K0 is the same as in the definition of a densely relative pseudomonotone map.

Proof. In view of Theorem 3.1, it is sufficient to show that (VIPPS) has at most
one solution. Assume to the contrary that x′, x′′ ∈ K0 are two solutions of (VIPPS)
such that x′ 6= x′′. Then ∑

i∈I

〈Fi(x′), x′′i − x′〉 ≥ 0,

By densely relative strict pseudomonotonicity of F on K0, we have∑
i∈I

〈Fi(x′′), x′′i − x′〉 > 0, i.e.
∑
i∈I

〈Fi(x′′), x′i − x′′〉 < 0.

Thus x′′ is not a solution of (VIPPS), which is a contradiction of our assumption.
This completes the proof. �

Corollary 3.3. For each i ∈ I, let Xi be a real reflexive Banach space and Ki a
nonempty, closed and convex subset of Xi. Let F , defined by (2), be hemicontinu-
ous and densely relative pseudomonotone on K. Then under each of the following
conditions, (VIPPS) has a solution.

For each sequence {xm} ⊆ K with ||xm|| → ∞ as m →∞,
(h1) there exists m0 > 0 such that

∑
i∈I〈Fi(xm0), xm0

i 〉 ≥ 0;
(h2) there exist m0 > 0 and y ∈ K with ||y|| < ||xm0 || such that

∑
i∈I〈Fi(xm0),

yi − xm0
i 〉 ≤ 0;

(h3) there exist m0 > 0 and y ∈ K such that
∑

i∈I〈Fi(y), xm
i − yi〉 > 0, for all

m ≥ m0.

Proof. For each i ∈ I, we denote by Bi(m) = {xi ∈ Ki : ||xi||i ≤ m} the closed ball
with center at 0 and radius m ∈ N in Ki, and B(m) =

∏
i∈I Bi(m) for all m ∈ N.

Then for each i ∈ I and for all m ∈ N, Bi(m) is nonempty, weakly compact and
convex. By Theorem 3.1, there exists xm

i ∈ Ki for each i ∈ I such that

(6)
∑
i∈I

〈Fi(xm), yi − xm
i 〉 ≥ 0, for all yi ∈ Bi(m), i ∈ I and for every m ∈ N.

Set
g(y) =

∑
i∈I

〈Fi(xm), yi〉, for all y ∈ K.

Then, clearly g is linear and hence convex. If ||xm|| < m for some m, then by (6),
we have

g(xm) ≤ g(y), for all y ∈ B(m).
Thus xm is a local minimum of a convex function g, hence it is a global minimum,
that is,

g(xm) ≤ g(y), for all y ∈ K,

that is, ∑
i∈I

〈Fi(xm), yi − xm
i 〉 ≥ 0, for all y ∈ K,
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which means that xm is a solution of (VIPPS).
If ||xm|| = m for all m ∈ N. Assume that condition (h1) holds. Then we show

that xm0 is a solution of (VIPPS).
Indeed, for all yi ∈ Ki, there is a t ∈ (0, 1] for each i ∈ I such that tyi ∈ Bi(m0).

From (6), we get

0 ≤
∑
i∈I

〈Fi(xm0), tyi − xm0
i 〉

≤ t
∑
i∈I

〈Fi(xm0), yi − xm0
i 〉 − (1− t)

∑
i∈I

〈Fi(xm0), xm0
i 〉

By condition (h1), we obtain∑
i∈I

〈Fi(xm0), yi − xm0
i 〉 ≥ 0, for all yi ∈ Ki, i ∈ I.

Hence xm0 is a solution of (VIPPS).
Under condition (h2) and by using (6), we obtain∑

i∈I

〈Fi(xm0), yi〉 =
∑
i∈I

〈Fi(xm0), xm0
i 〉,

that is,
g(y) = g(xm0), for all xm0 with m0 = ||xm0 || > ||y||.

It follows that y is a local minimum of g on B(m0). Consequently, it is a global
minimum of g and we obtain g(y) ≤ g(z) for all z ∈ K, that is,∑

i∈I

〈Fi(xm0), zi〉 ≥
∑
i∈I

〈Fi(xm0), yi〉 =
∑
i∈I

〈Fi(xm0), xm0
i 〉.

This implies that∑
i∈I

〈Fi(xm0), zi − xm0
i 〉 ≥ 0, for all zi ∈ Ki, i ∈ I.

Hence xm0 is a solution of (VIPS).
Finally, condition (h3) and the relative quasimonotonicity of F (in view of Propo-

sition 3.2) imply ∑
i∈I

〈Fi(xm), yi − xm
i 〉 ≤ 0, for all m ≥ m0.

For m sufficiently large, we have ||y|| < ||xm||, that is, condition (h2) holds. Hence
(VIPPS) has a solution. �

4. A coincidence theorem

As an application of Corollary 3.3, we derive the following existence result for a
coincidence point of two families of nonlinear operators.

Theorem 4.1. For each i ∈ I, let Xi be a real reflexive Banach space. Let F ,
defined by (2), and G = (Gi)i∈I be two nonlinear operators from X to X∗ such
that (F −G) is hemicontinuous and densely relative pseudomonotone on X, where
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for each i ∈ I, Gi : X → Xi is a nonlinear map. Assume that at least one of the
following conditions holds:

For each sequence {xm} ⊆ X with ||xm|| → ∞ as m →∞,
(h11) there exists m0 > 0 such that∑

i∈I

〈Fi(xm0), xm0
i 〉 ≥

∑
i∈I

〈Gi(xm0), xm0
i 〉;

(h22) there exist m0 > 0 and y ∈ K with ||y|| < ||xm0 || such that∑
i∈I

〈Fi(xm0), yi − xm0
i 〉 ≤

∑
i∈I

〈Gi(xm0), yi − xm0
i 〉;

(h33) there exist m0 > 0 and y ∈ K such that∑
i∈I

〈Fi(y), xm
i − yi〉 >

∑
i∈I

〈Gi(y), xm
i − yi〉, for all m ≥ m0, i ∈ I.

Then there exists x̄ ∈ K such that Fi(x̄) = Gi(x̄) for each i ∈ I.

Proof. From Corollary 3.3, there exists x̄ ∈ X such that for each i ∈ I,

〈Fi(x̄), yi − x̄i〉 ≥ 〈Gi(x̄), yi − x̄i〉, for all yi ∈ Xi.

Therefore we have, Fi(x̄) = Gi(x̄) for each i ∈ I. �
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101 (1991), 1-18.
[7] N. Hadjisavvas and S. Schaible, Quasimonotone variational inequalities in Banach spaces, J.

Optim. Theory Appl. 90 (1996), 95-111.
[8] S. Karamardian and S. Schaible, Seven kinds of monotone maps, J. Optim. Theory Appl. 66

(1990), 37-46.
[9] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their

Applications, Academic Press, New York, (1980).
[10] I. V. Konnov, Combined relaxation methods for variational inequalities over product sets,

Lobachevskii J. Math. 2 (1999), 3-9.
[11] I. V. Konnov, Combined relaxation methods for decomposable variational inequalities, Optim.

Methods and Software 10 (1999), 711-728.
[12] I. V. Konnov, Relatively monotone variational inequalities over product sets, Oper. Res. Lett.

28 (2001), 21-26.
[13] D. T. Luc, Existence results for densely pseudomonotone variational inequalities, J. Math.

Anal. Appl. 254 (2001), 291-308.
[14] S. Makler-Scheimberg, V. H. Nguyen, and J. J. Strodiot, Family of perturbation methods for

variational inequalities, J. Optim. Theory Appl. 89 (1996), 423-452.
[15] A. Nagurney, Network Economics: A Variational Inequality Approach, Kluwer Academic Pub-

lishers, Dordrecht/Boston/London, (1993).



188 QAMRUL HASAN ANSARI AND ZUBAIR KHAN

[16] J.-S. Pang, Asymmetric variational inequality problems over product sets: Applications and
iterative methods, Math. Prog. 31 (1985), 206-219.

[17] D. L. Zhu and P. Marcotte, Co-coercivity and its role in the convergence of iterative schemes
for solving variational inequalities, SIAM J. Optim. 6 (1996), 714-726.

Manuscript received October 1, 2002

revised March 8, 2006

Qamrul Hasan Ansari
Department of Mathematical Sciences, King Fahd University of Petroleum & Minerals, Dhahran,
Saudi Arabia; and
Department of Mathematics, Aligarh Muslim University, Aligarh 202 002, India.

E-mail address: qhansari@kfupm.edu.sa and qhansari@sancharnet.in

Zubair Khan
Department of Mathematics, Aligarh Muslim University, Aligarh 202 002, India.


