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ATOMIC/COATOMIC OPERATORS AND APPLICATIONS
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AND EUGENE STEPANOV

Dedicated to Isaak Veniaminovich Shragin

Abstract. In this paper we strudy the so-called atomic and coatomic operators
introduced in [7] and generalizing the classical notion of a local operator between
ideal function spaces. In particular, we discover characteristic properties of such
operators, which can serve as their new definitions. These properties are intrin-
sic in the sense that they are independent of a particular σ-homomorphism of
the underlying σ-algebrae and are based on purely measure-theoretic notions of
memory and comemory of an operator, which are also studied in details in the
paper. We also prove some new results on analytic properties of atomic, coatomic
and local operators. For the reader’s convenience some of the known results re-
garding such operators that are exploited in the present paper are also provided
without proofs. In the last section, we show that the study of strong periodic (in
distribution) solutions to a stochastic functional differential equation can be put,
under rather general assumptions, into the framework of atomic operators. This
result can serve as an additional strong motivation for introducing and studying
atomic and coatomic operators in their most general form.

1. Introduction

Ordinary and partial differential equations from the point of view of operator the-
ory are just functional equations involving only two types of operators: differential
operators and Nemytskǐı (composition) operators. Defined correctly over specific
function spaces (say, Sobolev spaces for differential operators and Lebesgue or other
ideal function spaces for Nemytskǐı operators), they possess a common property of
locality . Roughly speaking, an operator is local, if an image of a function near each
point is determined by the values of this function near the same point (see [11]
and [20] for the precise definitions). In fact, it is well-known that many proper-
ties of, say, ordinary differential equations (see e.g. [11]) stem just from locality of
operators involved.

In his paper [17] I. Shragin proposed another, extended definition of locality,
where he replaced neighborhoods of points by generic measurable sets. It can easily
be shown that this definition covers the cases studied in [11] and [20] related to
differential equations. On the other hand, Shragin’s general concept of locality can
also be applied in a variety of other cases, like stochastic analysis (see e.g. [15])
generalized Orlicz spaces [17] and some others.
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There is however a lot of physical models which cannot be reduced to ODEs or
PDEs being inherently nonlocal. Many of them can still be considered in a sense “al-
most local” since they have many similar features. Among such models one should
mention first of all retarded differential equations or in general functional-differential
equations (FDEs) with deviating argument [3]. Such models, except local operators
(usually just differential and Nemytskǐı ones) involve also some other objects with
similar properties, like, for instance, linear inner superposition (shift) operators. In
order to include such operators together with local ones in the framework of some
general theory which would explain the respective similarities, many generaliza-
tions of local operators have been introduced. Here we study, following the recent
paper [7], two such extensions of the notion of a local operator in ideal function
spaces. Both classes of operators we deal with include, of course, local operators
and are closed with respect to compositions. The first class of operators, called
atomic, contains also all the linear shifts. The second one, in certain sense dual to
the first one, called coatomic, includes in particular operators of conditional expec-
tation. The study of atomic operators, besides obvious applications to FDEs with
deviating argument, was also inspired by stochastic applications. For instance, fol-
lowing the idea of [4] it has been shown in [7] that atomic operators arise naturally
in the problem of finding periodic (in distribution) solutions to stochastic differen-
tial equations. Moreover, many problems for stochastic dynamical systems can be
reduced to the study of atomic operators (see e.g. [2] and references therein).

Both classes of operators dealt in this paper are defined on the basis of the notion
of the memory of an operator introduced in [7]. Roughly speaking, a memory is a
piece of information about the preimages the operator is able to “remember” given
a piece of information about images. This notion most naturally arises just from
the definition of a local operator [17]. In fact, a local operator “remembers” the
behaviour of a preimage near each point and “reconstructs” using this information
the image “near” the same point. Most of the common properties of local, atomic
and coatomic operators come from just measure-theoretic structure of their memory.
In this paper, upon describing the notion of the memory, we also study some its basic
generic properties. Further, we give a survey of some analytic properties of atomic
and coatomic operators comparing them with those of local operators, and put a
particular attention on representation results for atomic operators which can be
useful in stochastic analysis. Finally, we show, generalizing some results in [4], that
finding a periodic (in distribution) solution to a stochastic functional differential
equation is equivalent to a fixed point problem for a certain atomic operator.

2. Notation and preliminaries

Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be two measure spaces, and Σ0
1 ⊂ Σ1, Σ0

2 ⊂ Σ2

be the σ-ideals of µ1- and µ2-nullsets respectively. We denote by Σ̃i := Σi/Σ0
i ,

i = 1, 2 the respective measure algebrae (see § 42 of [18]). The elements of Σ̃i (i.e.
the equivalence classes of sets) will be denoted ẽi or [ei], i = 1, 2. Further on we
will however frequently abuse the notation and identify the elements of the measure
algebrae Σ̃i with the elements of the respective original σ-algebrae of sets Σi. Also,
in the sequel all the equalities will be understood up to a nullset, i.e. in the almost
everywhere sense.
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A measure space (Ω,Σ, µ) will be called standard, when Ω is a Polish space, µ
is a finite Borel measure and Σ is either the Borel σ-algebra or its completion with
respect to µ. A map F : Σ̃1 → Σ̃2 is called a σ-homomorphism, if F (Ω1) = Ω2,
F (Ω1\e) = Ω2\F (e) whenever e ∈ Σ̃1 and

F

( ∞⊔
i=1

ei

)
=

∞⊔
i=1

F (ei),

for any pairwise disjoint collection of {ei}∞i=1 ⊂ Σ̃1, where t stands for the disjoint
union. Every (Σ2,Σ1)-measurable map g: Ω2 → Ω1 satisfying

(1) µ2(g−1(e1)) = 0 when µ1(e1) = 0

generates a σ-homomorphism according to the formula F (ẽ1) := [g−1(e1)].
All the measure spaces we will be dealing with in the sequel are assumed to

be complete, and, for the sake of simplicity, the measures will be supposed finite.
Further, the notation Lp(Ω,Σ, µ;X ), where X is a separable Banach space, will
stand, as usual, for the classical Lebesgue space of X -valued functions measurable
with respect to Σ and µ-summable with power p (if p ∈ (0,+∞)) or µ-essentially
bounded (if p = +∞). These spaces are silently assumed to be equipped with their
strong topologies. If X is a separable metric space, then L0(Ω,Σ, µ;X ) stands for
the metric space of X -valued functions measurable with respect to Σ equipped with
the topology of convergence in measure.

3. Memory and comemory of an operator

Let Xi := Lpi(Ωi,Σi, µi;Xi), pi ≥ 0, i = 1, 2. Consider an operator T : X1 → X2.
We recall now the following crucial concept of memory and the related concept of
comemory introduced in [7].

Definition 3.1. We call the memory of an operator T : X1 → X2 on a set e2 ∈ Σ2

the family of all possible ẽ1 ∈ Σ̃1 such that for any x, y ∈ X1 satisfying x |e1 = y |e1
it follows that T (x) |e2 = T (y) |e2 . In other words,

MemT (ẽ2) :=
{
ẽ1 ∈ Σ̃1 : x |e1 = y |e1 ⇒ T (x) |e2 = T (y) |e2

}
,

Similarly, the comemory of the operator T on a set e1 ∈ Σ1 is the family

ComemT (ẽ1) :=
{
ẽ2 ∈ Σ̃2 : x |e1 = y |e1 ⇒ T (x) |e2 = T (y) |e2

}
.

Recall that according to our convention all the equalities in the above definition
should be understood in almost everywhere sense.

It is clear from the definitions that

ẽ1 ∈ MemT (ẽ2), if and only if ẽ2 ∈ ComemT (ẽ1).

Example 3.1. Let X = X1 = X2. Define a shift (inner superposition) operator Tg:
L0(Ω1,Σ1, µ1;X ) → L0(Ω2,Σ2, µ2;X ) by the formula

(2) (Tgx)(ω2) := x(g(ω2))
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where g: Ω2 → Ω1 is a given (Σ2,Σ1)-measurable function. For this operator to be
well-defined on the classes of measurable functions we require

(3) e1 ∈ Σ1, µ1(e1) = 0 ⇒ µ2(g−1(e1)) = 0.

Then
MemTg(ẽ2) = {ẽ1 ∈ Σ̃1 : e1 ⊃ g(e2)}.

Example 3.2. Let Ω ⊂ Rn be a compact set supplied with the n-dimensional
Lebesgue measure µ, Sigma being the respective σ-algebra of measurable subsets
of Ω. We define an operator T : L1(Ω) → L1(Ω) by the formula

(Tx)(ω) :=
∫

Ω
x(s) ds · 1(ω).

Then

MemT (Ẽ) =

{
{Ω̃}, µ(E) 6= 0,
Σ̃, µ(E) = 0,

Below we enlist some obvious properties of memory and comemory.

Proposition 3.1. For every operator T : X1 → X2 and for all e1 ∈ Σ1 the following
holds:

(i) if ẽ2 ∈ ComemT (ẽ1) and e′2 ⊂ e2, e′2 ∈ Σ2, then ẽ′2 ∈ ComemT (ẽ1). In
particular, ∅̃ ∈ ComemT (ẽ1);

(ii) ComemT (Ω̃1) = Ω̃2;
(iii) ComemT (ẽ1) is closed under at most countable unions of its elements;
(iv) e1 ⊂ e′1 implies ComemT (ẽ1) ⊂ ComemT (ẽ′1);
(v) the family ComemT (ẽ1) contains a maximum element (called “the maximum

comemory”) with respect to the inclusion.

Remark. In other terms (see § 3 of [18]), the conditions (i) and (ii) mean that for
all e1 ∈ Σ1 the family ComemT (ẽ1) is a σ-ideal.

Proof. Since (i)-(iv) are immediate, we concentrate only on the proof of (v). Let

q := sup{µ2(e2) : ẽ2 ∈ ComemT (ẽ1)}.
There is a sequence {ẽν2} ⊂ ComemT (ẽ1) such that µ2(eν2) → q as ν →∞. Define

E2 :=
⋃
ν

eν2

and observe that Ẽ2 ∈ ComemT (ẽ1) according to (iii). Suppose now that there is a
Ẽ′2 ∈ ComemT (ẽ1) such that µ2(E′2\E2) 6= 0. Then D2 := E′2 ∪ E2 ∈ ComemT (ẽ1),
while

µ2(D2) = µ2(E2) + µ2(E′2\E2) > q,

and this contradiction shows the statement. �

Below we enlist some similar properties of memory.

Proposition 3.2. For every operator T : X1 → X2 and for all e2 ∈ Σ2 the following
holds:
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(i) if ẽ1 ∈ MemT (ẽ2) and e1 ⊂ e′1, e
′
1 ∈ Σ1, then ẽ′1 ∈ MemT (ẽ2). In particular,

Ω̃1 ∈ MemT (ẽ2);
(ii) MemT (ẽ2) is closed under finite intersections of its elements.

Proof. (i) is straightforward. To prove (ii), assume ẽ1 ∈ MemT (ẽ2), ẽ′1 ∈ MemT (ẽ2),
and let {u, v} ⊂ X1 be an arbitrary pair of functions satisfying

u
∣∣∣e1∩e′1 = v

∣∣∣
e1∩e′1

.

Define now z ∈ X1 by the formula

z(ω) :

{
v(ω), ω ∈ e1,
u(ω), ω ∈ Ω1 \ e1.

Then Tz |e2 = Tu|e2 and Tz |e2 = Tv|e2 , hence Tu |e2 = Tv|e2 , or, in other words,
ẽ1 ∩ ẽ′1 ∈ MemT (ẽ2), which concludes the proof. �

Remark. Similarly to the case of comemory, the above statement asserts (see § 3
of [18]), that the for all e2 ∈ Σ2 the family MemT (ẽ2) is a filter.

Note that MemT (ẽ2) needs not to be closed under countable intersection of its
elements and to contain a minimum element with respect to the inclusion (i.e. it
is, generally speaking, not a σ-filter), as the example below shows.

Example 3.3. Let (Ω,Σ, µ) be as in the example 3.2. We define an operator T :
L∞(Ω) → L∞(Ω) by the formula

(Tx)(ω) := lim sup
r→0+

1
µ(Br(x0))

∫
Br(x0)

x(s) ds · 1(ω),

where Br(x0) ⊂ Rn stands for the ball with radius r > 0 centered at x0 ∈ intΩ. This
operator is nonlinear, bounded, but discontinuous. One has, obviously, B̃r(x0) ∈
MemT (Ω̃) for all r > 0 small enough, but

[{x0}] = ∅̃ 6∈ MemT (Ω̃).

Note that the above example was only possible because the operator was taken to
be discontinuous in measure. On the other hand, the following statement is valid.

Proposition 3.3. For every continuous operator

T : L0(Ω1,Σ1, µ1;X1) → L0(Ω2,Σ2, µ2;X2)

and for all e2 ∈ Σ2 the following holds:
(i) MemT (ẽ2) is closed under at most countable intersections of its elements

(and therefore, is a σ-filter);
(ii) MemT (ẽ2) contains a minimum element (called the minimum memory) with

respect to the inclusion.

Proof. To prove (i), consider a sequence {eν1} ⊂ Σ1 with ẽν1 ∈ MemT (ẽ2). According
to (ii) of proposition 3.2, one may suppose without loss of generality that eν+1

1 ⊂ eν1
for all ν ∈ N. Let e1 := ∩νeν1 and assume that

x1 |e1 = x2|e1 .
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Construct a sequence {xν2} in L0(Ω1,Σ1, µ1;X1) so that

xν2
∣∣
eν
1

= x1

∣∣
eν
1

and xν2
∣∣∣Ω1\eν

1
= x2

∣∣∣
Ω1\eν

1

.

One has then xν2 → x2 in measure and therefore T (xν2) → T (x2) in measure. This
together with (Txν2) |e2 = (Tx1)|e2 implies

(Tx2) |e2 = (Tx1)|e2
when µ2(e2) 6= 0. If e2 is a nullset, the assertion is trivial.

To prove (ii) we adapt the main idea of the proof of existence of the maximum
comemory (see proposition 3.1). Set

q := inf{µ1(e1) : ẽ1 ∈ MemT ((ẽ2)}
and choose a sequence {ẽν1} ⊂ MemT (ẽ2) such that µ1(eν1) → q as ν →∞. Then

e1 :=
⋂
ν

eν1 ∈ MemT (ẽ2)

due to (i). Supposing the existence of a ẽ′1 ∈ MemT (ẽ2) with µ1(e1\e′1) 6= 0 we
would have d1 := e′1 ∩ e1 ∈ MemT (ẽ2), while

µ1(d1) = µ1(e1)− µ1(e1\e′1) < q,

leading to a contradiction. �

Example 3.4. The minimum memory, i.e. the minimum element of the set

MemTg(ẽ2) = {ẽ1 ∈ Σ̃1 : e1 ⊃ g(e2)}

in the example 3.1 is given by the unique element Ẽ ∈ Σ̃2 such that E ⊃ g(e2) and
µ2(E) is equal to the outer measure of the (not necessarily measurable) set g(e2).

4. Local operators

We are able to observe now that the classical definition of a local operator due to
I. Shragin [17] can easily be translated in terms of the above introduced concepts of
memory (or of comemory). In fact, with the notation Xi = L0(Ω,Σ, µ;Xi), i = 1, 2
we get the following definition.

Definition 4.1. An operator T : X1 → X2 is called local, if

ẽ ∈ MemT (ẽ)

for all e ∈ Σ, that is, if from x |e = y |e for x, y ∈ X1 follows T (x) |e = T (y) |e .

Obviously, the class of local operators is closed under compositions.
The most well-known example of a local operator is a Nemystkǐı operator.

Example 4.1. Let X1 and X2 be separable metric spaces, f : Ω × X1 → X2

be a sup-measurable function (i.e. f(·, x(·)) is µ-measurable whenever x(·) is µ-
measurable). Then the Nemytskǐı operator N : L0(Ω,Σ, µ;X1) → L0(Ω,Σ, µ;X2)
(commonly known also under the name of the superposition operator [1]), defined
by

(Nx)(ω) := f(ω, x(ω))
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is local. If f : Ω×X1 → X2 is a Carathéodory function (i.e. f(ω, ·) is continuous for
µ-almost every ω ∈ Ω and f(·, x) is µ-measurable for all x ∈ R), then the Nemytskǐı
operator N becomes continuous in measure (i.e. as an operator in L0).

5. Atomic and coatomic operators

Let Xi := L0(Ωi,Σi;Xi), i = 1, 2. Consider an arbitrary operator T : X1 → X2.
We introduce now, following [7], the notion of an atomic operator between spaces
of measurable functions.

Definition 5.1. An operator T : X1 → X2 is called atomic with respect to a
σ-homomorphism F : Σ̃1 → Σ̃2, if

F (ẽ1) ∈ ComemT (ẽ1)

for all ẽ1 ∈ Σ̃1.

Normally the reference to the particular σ-homomorphism will be omitted further
on, if it is unnecessary.

We would like to emphasize that although the above definition has been given
for a rather general case of possilbly even discontinuous operators, in applications
one deals almost exclusively with continuous operators. It is this latter case that in
the sequel we therefore will be mostly interested in.

We first try to study the structure of the memory of atomic operators. For this
purpose for every ẽ1 ∈ Σ̃1 define

FT (ẽ1) := max ComemT (ẽ1) \max ComemT (∅̃).
The following proposition is valid.

Proposition 5.1. For every operator T : X1 → X2 one has
(i) ẽ11 ∩ ẽ21 = ∅ implies FT (ẽ11) ∩ FT (ẽ21) = ∅, i.e. FT is disjointness preserving;
(ii) ∪FT (ẽi1) ⊂ FT (∪ẽi1) whenever {ẽi1} ⊂ Σ̃1.

Proof. Since (ii) is immediate from the definition of maximum comemory, we con-
centrate on showing (i). Consider arbitrary couple of functions {x1

1, x
2
1} ⊂ X1.

Define
x12

1 := x1
1 · 1e11 + x2

1 · 1Ω1\e11 .

Since x12
1 = x1

1 over e11, one has Tx12
1 = Tx1

1 over FT (ẽ11). At the same time since
x12

1 = x2
1 over e21, one has Tx12

1 = Tx2
1 over FT (ẽ21). Now, if there is a ẽ2 6= ∅,

ẽ2 ⊂ FT (ẽ11) ∩ FT (ẽ21), then one would have Tx1
1 = Tx2

1 over e2, which in view of
arbitrariness of x1

1 and x2
1 means that Tx1 is independent of x1 ∈ X1 over e2, and

hence ẽ2 ⊂ ComemT (∅̃), which contradicts the definition of FT . �

We may claim now the following assertion which can serve as an intrinsic defini-
tion of an atomic operator in terms of the structure of its comemory.

Proposition 5.2. Suppose that for a continuous operator T : X1 → X2 one has
FT (Σ̃1) 6= ∅̃. Then the following statements are equivalent:

(i) for every {ẽ11, ẽ21} ⊂ Σ̃1, ẽ11 ∩ ẽ21 = ∅, one has

FT (ẽ11 t ẽ21)FT (ẽ11) t FT (ẽ21);
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(ii) FT (Σ̃1) is a σ-algebra, while FT : Σ̃1 → FT (Σ̃1) is a σ-homomorphism;
(iii) the operator T is atomic.

Remark. If FT (Σ̃1) = ∅̃, then for all ẽ1 ∈ Σ̃1 one has

max ComemT (ẽ1) maxComemT (∅̃).
In this case the operator T is atomic, if and only if

max ComemT (∅̃) = Ω̃2,

that is, when T is a constant operator (i.e. maps all X1 just to one function).

Proof. The implications (i) ⇐ (ii) ⇒ (iii) are obvious. To show (i) ⇒ (ii), it is
enough to prove

(4)
⊔
i∈N

FT (ẽi1) = FT

(⊔
i∈N

ẽi1

)
.

But according to proposition 5.1, one clearly has

(5)
⊔
i∈N

FT (ẽi1) ⊂ FT

(⊔
i∈N

ẽi1

)
.

To verify the reverse inclusion, we observe that due to the validity of (i) one has

FT

(⊔
i∈N

ẽi1

)⊔
i≤k

FT (ẽi1)

 t FT

(⊔
i>k

ẽi1

)
for every k ∈ N. Hence, setting

ẽ02 := FT

(⊔
i∈N

ẽi1

)
\
⊔
i∈N

FT (ẽi1),

we obtain

ẽ02 ⊂ FT

(⊔
i>k

ẽi1

)
for every k ∈ N. This means that for each k ∈ N one has⊔

i>k

ẽi1 ∈ MemT (ẽ02),

and hence in view of continuity of T according to the proposition 3.3(i) one has

∅ =
⋂
k∈N

⊔
i>k

ẽi1 ∈ MemT (ẽ02).

The latter relationship means in other words that

ẽ02 ⊂ max ComemT (∅̃)
which would contradict the definition of ẽ02 unless ẽ02 = ∅. Therefore,

FT

(⊔
i∈N

ẽi1

)
\
⊔
i∈N

FT (ẽi1) = ∅
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which together with (5) completes the proof of (4) and hence shows (i) ⇒ (ii).
It remains to show (iii) ⇒ (i). For this purpose suppose that (iii) is valid, while (i)

is not, namely, that

ẽ2 : FT (ẽ11 t ẽ21) \
(
FT (ẽ11) t FT (ẽ21)

)
6= ∅

for some {ẽ11, ẽ21} ⊂ Σ̃1. Denote

F ′(ẽ1) := F (ẽ1) \max ComemT (∅̃),

Ω̃′1 := Ω̃1 \max ComemT (∅̃).

One has clearly

F ′(ẽ11) ⊂ FT (ẽ11),

F ′(ẽ21) ⊂ FT (ẽ21),

F ′(Ω̃1 \ (ẽ11 t ẽ21)) ⊂ FT (Ω̃1 \ (ẽ11 t ẽ21)).

Minding that

Ω̃′1 = F ′(Ω̃1)F ′(ẽ11) t F ′(ẽ21) t F ′(Ω̃1 \ (ẽ11 t ẽ21)),

together with the proposition 5.1, one arrives at the relationship

Ω̃′1 ⊂ FT (ẽ11) t FT (ẽ21) t FT (Ω̃1 \ (ẽ11 t ẽ21)).

Since FT (ẽ1) ⊂ Ω̃′1 for all ẽ1 ∈ Σ̃1, then the latter inclusion is in fact an equality,
namely,

Ω̃′1 = FT (ẽ11) t FT (ẽ21) t FT (Ω̃1 \ (ẽ11 t ẽ21)).
Therefore, one must have ẽ2 ⊂ FT (Ω̃1 \ (ẽ11 t ẽ21)) but on the other hand

FT (Ω̃1 \ (ẽ11 t ẽ21)) ∩ FT (ẽ11 t ẽ21) = ∅

according to proposition 5.1(i), which implies ẽ2 6⊂ FT (Ω̃1 \ (ẽ11 t ẽ21)) since ẽ2 6= ∅.
The latter contradiction concludes the proof. �

We introduce now another interesting class of operators also pointed out in [7].
For this purpose consider the following definition.

Definition 5.2. An operator T : X1 → X2 is called coatomic with respect to a
σ-homomorphism Φ: Σ̃2 → Σ̃1, if

Φ(ẽ2) ∈ MemT (ẽ2)

for all ẽ2 ∈ Σ̃2.

As in the case of atomic operators, we will usually omit the reference to the
particular σ-homomorphism, if it is unnecessary.

The proposition below gives an intrinsic characterization of coatomic operators
in terms of the structure of its comemory.

Proposition 5.3. For every operator T : X1 → X2 the following statements are
equivalent:
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(i) there is a σ-homomorphism Φ: Σ̃2 → Σ̃1, such that for every ẽ2 ∈ Σ̃2

satisfying ẽ2 ∩max ComemT (∅̃) = ∅ one has

ẽ2 ⊂ FT (Φ(ẽ2));

(ii) the operator T is coatomic.

Proof. To show (ii) ⇒ (i), let ẽ2 ∈ Σ̃2 satisfy ẽ2 ∩ max ComemT (∅̃) = ∅. Then
Φ(ẽ2) ∈ MemT (ẽ2) means ẽ2 ∈ ComemT (Φ(ẽ2)), and therefore

ẽ2 ⊂ max ComemT (Φ(ẽ2)).

The latter implies ẽ2 ⊂ FT (Φ(ẽ2)) according to the choice of ẽ2, thus proving that
(ii) ⇒ (i).

Assume now (i) be valid and consider an arbitrary ẽ2 ∈ Σ̃2. One has then

ẽ2 \max ComemT (∅̃) ⊂ FT (Φ(ẽ2 \max ComemT (∅̃))),
which implies

ẽ2 \max ComemT (∅̃) ∈ ComemT (Φ(ẽ2 \max ComemT (∅̃))),
or, in other words,

Φ(ẽ2 \max ComemT (∅̃)) ∈ MemT (ẽ2 \max ComemT (∅̃)).

But since over maxComemT (∅̃) the function Tx1 is independent of x1 ∈ X1, then
the latter relationship implies

Φ(ẽ2 \max ComemT (∅̃)) ∈ MemT (ẽ2).

Minding now that
Φ(ẽ2 \max ComemT (∅̃)) ⊂ Φ(ẽ2),

together with proposition 3.2(i), one gets

Φ(ẽ2) ∈ MemT (ẽ2),

which proves (i) ⇒ (ii). �

It is worth emphasizing that the definitions of atomic and coatomic operators
provided in [7] are formally slightly different from those above. Namely, the re-
spective notions were defined based on the requirements on the existence of certain
nullset preserving σ-homomorphisms between the original σ-algebrae rather than
between the respective measure algebrae. We recall that a σ-homomorphism F :
Σ1 → Σ2 is called nullset preserving, if µ2(F (e1)) = 0 whenever µ1(e1) = 0. In
particular, in [7] the operator T : X1 → X2 was called atomic with respect to
the nullset preserving σ-homomorphism F : Σ1 → Σ2, if [F (e1)] ∈ ComemT (ẽ1).
However, this definition is obviously equivalent to the above one. In fact, every
nullset-preserving σ-homomorphism F : Σ1 → Σ2 between the original σ-algebrae
generates a σ-homomorphism F̃ of the respective measure algebrae accorging to the
formula F̃ (ẽ1) := [F (e1)]. On the other hand, if F̃ : Σ̃1 → Σ̃2 is a σ-homomorphism
between the respective measure algebrae, then the formula F (e1) := π(F̃ (ẽ1)),
where π: Σ̃2 → Σ2 is the lifting map satisfying [π(ẽ2)] = ẽ2, defines a nullset-
preserving σ-homomorphism F : Σ1 → Σ2 between the original σ-algebrae satisfying
[F (e1)] := F̃ (ẽ1). The lifting map π having the announced property exists due to
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the von Neumann-Maharam lifting theorem (theorem 4.4 in [10]) once the measure
space (Ω2,Σ2, µ2) is complete. The same remark refers also to the definition of a
coatomic operator.

It is also worth mentioning that completely analogous definitions can be given for
operators defined only over some space Lp(Ω1,Σ1;X1) (rather than over the whole
L0(Ω1,Σ1;X1)).

Both of the above introduced classes clearly contain that of local operators. In
fact, the local operator is just the operator atomic (or coatomic) with respect to
the identity σ-homomorphism. However, both classes are strictly wider than the
class of local operators. For instance, every shift operator Tg (see example 3.1) is
in fact atomic with respect to the σ-homomorphism generated by the function g.
Moreover, since all the introduced classes are closed under compositions, then every
composition of a Nemytskǐı operator and a shift is atomic.

Observe now that a notion of a coatomic operator is in certain sense dual to the
notion of an atomic operator. This assertion can be made precise by the following
proposition from [7].

Proposition 5.4. Let X1 and X2 be reflexive separable Banach spaces. A linear
bounded operator T : Lp(Ω1;X1) → Lq(Ω2;X2), 1 ≤ p, q < +∞, is coatomic (resp.
atomic), if and only if its adjoint T ′: Lq

′
(Ω2;X ′

2) → Lp
′
(Ω1;X ′

1) is atomic (resp.
coatomic).

The above statement shows in fact that the class of coatomic operators is also
strictly wider than that of local operators. In particular, it shows that this class
contains all the linear conditional expectation operators (see e.g. chapter XI of [5]):
the latter are dual to the natural inclusion operators which are clearly atomic.

We also think it worth mentioning that the classes of atomic and coatomic oper-
ators cannot coincide. In fact, it is an easy corollary of J. von Neumann-R. Sikorski
theorem on representation of σ-homomorphisms (theorem 32.3 in [18]) that when
(Ω2,Σ2, µ2) is a standard measure space, then a shift operator Tg, which is auto-
matically atomic, can be coatomic only if the function g: Ω2 → Ω1 is µ2-equivalent
to a bijection.

Analytic properties of atomic and coatomic operators have been studied in a
detailed manner in [7]. Here we only enlist the most important of them.

Theorem 5.1 (Boundedness and continuity). Assume X1 and X2 be separable Ba-
nach spaces, while 1 ≤ p, q < ∞. If a continuous in measure atomic operator
T : L0(Ω1;X1) → L0(Ω2;X2) continuously maps Lp(Ω1;X1) into Lq(Ω2;X2), then
T sends bounded sets of Lp into bounded sets of Lq, provided µ2 is a nonatomic
measure.

If a coatomic operator T : Lp(Ω1;X1) → Lq(Ω2;X2), where 1 ≤ p, q < ∞, maps
Lp-convergent sequences into measure convergent ones, then it is continuous as an
operator between these two spaces, provided that both µ1 and µ2 are nonatomic
measures.

Moreover, it has been shown that in general no better relationships between
acting, boundedness and continuity properties of atomic and coatomic operators
between Lebesgue spaces hold.
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The properties of noncompactness and weak continuity are very similar both to
those of Nemytskǐı operators [1] and to those of inner superposition (shift) opera-
tors [8].

Theorem 5.2 (Noncompactness). Assume 0 ≤ p, q ≤ ∞ and Xi, i = 1, 2 to be
separable Banach spaces. Then a nonconstant atomic (resp. coatomic) operator T :
Lp(Ω1;X1) → Lq(Ω2;X2) is not compact, provided µ1 (resp. µ2) is a nonatomic
measure.

Theorem 5.3 (Weak continuity). Let 1 ≤ p, q <∞ and Xi, i = 1, 2 be separable Ba-
nach spaces. Then an atomic (resp. coatomic) operator T : Lp(Ω1;X1) → Lq(Ω2;X2)
is weakly continuous, if and only if T is affine, i.e. T (·)− T (0) is a linear bounded
operator, provided µ1 (resp. µ2) is a nonatomic measure.

We mention also a nice convergence property of atomic operators.

Theorem 5.4 (Convergence). Assume that 0 < p <∞, 0 ≤ q ≤ ∞, Σ1 is countably
generated and Xi, i = 1, 2, are separable Banach spaces. Let a sequence of atomic
operators Tν : Lp(Ω1;X1) → Lq(Ω2;X2), converge strongly (pointwise) to an operator
T , which maps Lp-convergent sequences into measure convergent ones. Then T is
atomic.

It is worth also remarking that for local operators a much better convergence
property holds. Namely, one has the following simple assertion.

Proposition 5.5. Let 1 ≤ p, q <∞, Xi, i = 1, 2, be separable Banach spaces while
the local operators Tν : Lp(Ω;X1) → Lq(Ω;X2) converge weakly to an operator T :
Lp(Ω;X1) → Lq(Ω;X2) in the sense that

Tνu ⇀ Tu weakly in Lq(Ω;X2)

for every u ∈ Lp(Ω;X1). Then T is a local operator.

Proof. Consider arbitrary functions u1, u2 ∈ Lp(Ω;X1) such that u1(ω) = u2(ω) for
µ-a. e. ω ∈ e. for some set e ∈ Σ with µ(e) > 0. Then for every u′2 ∈ Lq

′
(e;X ′

2) ⊂
(Lq(e;X2))

′ one has

0 =
∫

Ω
〈(Tν(u1)(ω)− Tν(u2)(ω)), u′2(ω)〉 dµ(ω)

→
∫

Ω
〈(T (u1)(ω)− T (u2)(ω)), u′2(ω)〉 dµ(ω),

where 〈·, ·〉 stands for the pairing between X2 and X ′
2. This means

(6)
∫

Ω
〈(T (u1)(ω)− T (u2)(ω)), u′2(ω)〉 dµ(ω) = 0,

and hence T (u1)(ω) = T (u2)(ω) for µ-a.e. ω ∈ e. In fact, otherwise there would
exist such an e′ ⊂ e such that

|T (u1)(ω)− T (u2)(ω)| ≥ α > 0

for some α > 0 and for µ-a.e. ω ∈ e′, where | · | stands for the norm in X2. Then
according to lemma 5.1 below there is a v′2 ∈ Lq

′
(e;X ′

2) such that

〈(Tν(u1)(ω)− Tν(u2)(ω)), v′2(ω)〉 > 0
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for µ-a.e. ω ∈ e′. Taking then u′2 := 1e′v′2, we obtain thus the contradiction
with (6). �

Lemma 5.1. Let 1 ≤ q < +∞ and X be a separable Banach space. If f ∈
Lq(Ω, µ;X ) is such that

|f(ω)| ≥ α > 0 for µ-a.e. ω ∈ e ⊂ Ω,

then there is a u′ ∈ Lq′(Ω, µ;X ′) such that

〈f(ω), u′(ω)〉 > 0 for µ-a.e. ω ∈ e,
where | · | stands for the norm in X and 〈·, ·〉 stands for the pairing between X and
X ′.

Proof. By the Hahn-Banach theorem for every x ∈ X there is a x′ ∈ X ′ such that
〈x, x′〉 = |x| and |x′|X ′ = 1, | · |X ′ standing for the norm in X ′. Therefore, if
z ∈ Lq(Ω, µ;X ) takes countable number of values, such that

(7) |z(ω)| ≥ 2α/3 > 0 for µ-a.e. ω ∈ e
then there is a measurable X ′-valued function z′ with countable number of values
such that

〈z(ω), z′(ω)〉 ≥ |z(ω)| ≥ 2α/3 > 0 for µ-a.e. ω ∈ e,
while |z(ω)| = 1e(ω) (and hence, z′ ∈ Lq

′
(Ω, µ;X ′)). Now, for a given f ∈

Lq(Ω, µ;X ) we find a z ∈ Lq(Ω, µ;X ) which takes countable number of values and
satisfies

|f(ω)− z(ω)| ≤ α/3
µ-a.e. in Ω (the existence of such a z follows from separability of X ). For such a z
the relationship (7) holds and therefore taking u′ := z′ one has

〈f(ω), u′(ω〉 = 〈z(ω), z′(ω)〉+ 〈f(ω)− z(ω), z′(ω)〉 ≥ 2α/3− α/3 = α/3 > 0

for µ-a.e. ω ∈ e. �

Note that such a nice property cannot hold for general atomic operators. In fact,
the following example from [9] shows that a weak limit of a sequence of shifts not
necessarily is an atomic operator.

Example 5.1. Let the functions gν : (0, 1) → (0, 1), ν ∈ N, be defined by the
relationship

gν(t) :=



νt, 0 ≤ t < 1/ν,
· · ·

νt− k, k/ν ≤ t < (k + 1)/ν,
· · ·

νt− ν + 1, (ν − 1)/ν ≤ t ≤ 1,

k = 1, . . . , ν − 1.

Then it is easy to observe that the respective inner superposition operators Tgν :
Lp(0, 1) → Lp(0, 1), 1 < p < +∞, converge weakly to a limit operator T : Lp → Lp

given by the formula

T : u 7→
∫ 1

0
u(t) dt.
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This operator is obviously not atomic.

Furthermore, it has been shown in [7] that unlike atomicity, in general coatomicity
is not preserved even under uniform operator limits. An exception is the linear op-
erator case, namely, the limit of a uniformly convergent sequence of linear coatomic
operators between Lebesgue spaces is still coatomic.

Linear atomic and coatomic operators also posess rather particular properties as
the following statement shows.

Theorem 5.5. Let X1 and X2 be reflexive separable Banach spaces, and 1 ≤ p, q <
∞, while both µ1 and µ2 are nonatomic measures. Then for a continuous linear
operator T : Lp(Ω;X1) → Lq(Ω;X2) which is either atomic or coatomic the following
assertions are equivalent:

(i) T is Fredholm (of arbitrary index);
(ii) T is continuously invertible.

Proof. Clearly, it sufficies to show (i)⇒ (ii). We recall that in view of proposition 4.2
from [7], if T is atomic (resp. coatomic), then its dual T ′: Lq

′
(Ω;X ′

1) → Lp
′
(Ω;X ′

2) is
coatomic (resp. atomic). Therefore, the proof will be concluded once we show that
if T is a linear continuous atomic or coatomic operator, then KerT 6= {0} implies
KerT is infinite-dimensional.

For this purpose assume first that T is a linear continuous operator atomic with
respect to a σ-homomorphism F : Σ̃1 → Σ̃2 and satisfying

KerT 3 u 6= 0.

Since T1e1u = 1F (e1)Tu, then 1e1u ∈ KerT for all e1 ∈ Σ̃1. Observing now that
the set {1e1 : e1 ∈ Σ̃1 ∩ {u 6= 0}} contains in view of nonatomicity of µ1. infinitely
many linearly independent elements, and hence KerT is infinite-dimensional.

If T is a linear continuous operator coatomic with respect to a σ-homomorphism
Φ: Σ̃2 → Σ̃1 and satisfying

KerT 3 u 6= 0,
then one makes a similar reasoning. In fact, T1Φ(e2)u = 1e2Tu, then 1Φ(e2)u ∈ KerT
for all e2 ∈ Σ̃2. Denote now Ψ(e2) := Φ(e2) ∩ {u 6= 0}. Clearly,

Ψ : Σ̃2 → Σ̃1 ∩ {u 6= 0}
is still a σ-homomorphism. Let µΨ stand for the measure over Σ̃2 defined by
µΨ(ẽ2) := µ1(Ψ(ẽ2)). Since µΨ << µ2 and µ2 is assumed to be a nonatomic
measure, then µΨ is also nonatomic. Therefore for every k ∈ N one can find n = 2k

disjoint nonempty sets {e12, . . . , en2} ⊂ Σ̃2 such that
n⊔
i=1

Ψ(ei2) = {u 6= 0} and µΨ(ei2) = µ1(Ψ(ei2)) = µ1({u 6= 0})/n.

Since the set {1Φ(ei
2)}ni=1 is linearly independent, then KerT is again infinite-dimen-

sional, which finishes the proof. �

We remark that the equivalence of Fredholm property and continuous invertibility
was proven in [6] for weighted shift operators (which are a particular case of atomic
operators), but only under a rather restrictive condition on the shift.
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The above theorem 5.5 has a curious corollary for nonlinear atomic operators. To
formulate it, recall, that a nonlinear operator between two Banach spaces is called
Fredholm, if it is everywhere continuously Fréchet differentiable, and its Fréchet
derivative is a Fredholm operator. Further, we need to keep in mind the following
simple statement.

Lemma 5.2. Let Σ1 be countably generated, Xi, i = 1, 2, be separable Banach
spaces and an atomic operator T : Lp(Ω;X1) → Lq(Ω;X2), where 1 ≤ p, q < +∞,
be Fréchet differentiable. Then the Fréchet derivative DTu at every u ∈ Lp(Ω;X1)
of the operator T is an atomic operator.

Proof. One has

DTu(v) = lim
ν→∞

Fν(v), where Fν(v) :=
T (u+ v/ν)− T (u)

1/ν
.

Since the operators Fν : Lp(Ω;X1) → Lq(Ω;X2) are obviously atomic in view of the
atomicity of T , then applying the theorem 5.4 suffices to finish the proof. �

With the help of the above lemma we may announce now the following easy
corollary of theorem 5.5.

Proposition 5.6. Let X1 and X2 be separable reflexive Banach spaces, Σ1 be count-
ably generated and 1 ≤ p, q < ∞, while both µ1 and µ2 are nonatomic measures.
Then every atomic Fredholm operator T : Lp(Ω;X1)) → Lq(Ω;X2) is locally in-
vertible in the sense for every u ∈ Lp(Ω;X1) there exist an open neighborhood
U ⊂ Lp(Ω;X1) of u and V ⊂ Lq(Ω;X2) of Tu such that T is a diffeomorphism
between U and V .

Proof. By lemma 5.2 the Fréchet derivative DTu: Lp(Ω;X1) → Lq(Ω;X2) of the
operator T is a linear continuous atomic operator. Since it is supposed to be Fred-
holm, then, by theorem 5.5 it is continuously invertible. It suffices to refer now to
the classical implicit function theorem to conclude the proof of the claim. �

6. Representation of atomic operators

It has been already mentioned that every composition of a Nemytskǐı operator
and a shift is atomic. In [7] it is shown that in a sense a converse is true, namely,
that every atomic operator between spaces of measurable functions is a composition
of a local operator and a shift, and under some additional set-theoretic assumptions
(e.g. the continuum hypothesis) even of a Nemytskǐı operator and a shift. This
justifies the introduced terminology: in fact, atomic operators can be regarded as
nonlinear integral operators generated by a random atomic measure.

Such a representation however does not serve any practical purposes since the
respective function generating the Nemytskǐı operator is obtained in a nonconstruc-
tive way and can be nonmeasurable, even if the operator itself is continuous in
measure.

We show now an example of a continuous in measure atomic operator arising
from a stochastic application, which cannot be represented as a composition of a
Nemytskǐı operator generated by a Carathéodory function, and a shift operator.



154 M. E. DRAKHLIN, E. LITSYN, A. PONOSOV, AND E. STEPANOV

Example 6.1. Consider a probability space (Ω,Σ,P), the standard Wiener pro-
cess Wt, the Wiener shift g := θ−1: Ω → Ω inducing the isomorphism of the
σ-subalgebrae Σ0 and Σ1 := g−1(Σ0). Letting X := L2(0, 1), define the operator T :
L0(Ω,Σ1,P;X ) → L0(Ω,Σ1,P;X ) as the stochastic integration with respect to the
Wiener process

(Tx)(ω) :=
∫ (·)

0
x(s, g(ω))dWs(ω).

Note that we shifted the Σ1-measurable integrand x(t, ω) with the help of g. In this
way the stochastic process x(s, g(ω)) becomes Σ0-measurable, so that the stochastic
integral is well-defined. The operator T is atomic since it is a composition of the
stochastic integral (which is local) and the shift Tg. However, the stochastic integral
cannot be represented by a Nemytskǐı operator generated by a Carathéodory func-
tion. Otherwise, the stochastic integral could have been, by the Riesz representation
theorem, reduced to the ordinary Lebesgue-Stieltjes integral, which is impossible.

Remark 6.1. We demonstrate in the next section that stochastic analysis provides
more examples of nontrivial atomic operators. We show, for instance, that to find a
periodic (in distribution) solution to a stochastic functional differential equation one
needs to solve a fixed point problem for a certain atomic operator (see also [4] for
a similar discussion in the case of linear ordinary stochastic differential equations).

It is important to know when atomic operators can be represented as a compo-
sition of a Nemytskǐı operator generated by a Carathéodory function, and a shift.
This knowledge would help, for instance, to prove existence of invariant measures
of such operators in a much easier way.

To formulate the corresponding representation result we need the following aux-
iliary notion from [13].

Definition 6.1. Let Σ1 ⊂ Σ′1 be σ-algebrae of subsets of Ω1. Then Σ̃1 is said to
satisfy Ω-condition with respect to Σ̃′1 (written Σ̃1 ∈ Ω(Σ̃′1)), if there is an at most
countable cover of Ω1 by pairwise disjoint sets Ω1 = tjΩj

1, Ωj
1 ∈ Σ′1, such that for

each j ∈ N one has
Σ1 ∩ Ωj

1/Σ
0
1Σ

′
1 ∩ Ωj

1/Σ
0
1

(recall that Σ0
1 stands for the σ-ideal of µ1-nullsets).

Now we can state the following result, the proof of which will be contained in the
forthcoming paper [19].

Theorem 6.1. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be standard measure spaces and
F : Σ̃1 → Σ̃2 be a σ-homomorphism. Then any continuous operator T : X1 → X2

atomic with respect to F can be represented as

(Tu)(x) = f(x, u(g(x))) for µ2-a.e. x ∈ Ω2

for some Carathéodory function f : Ω2 × X1 → X2, a measurable function g: Ω2 →
Ω1 satisfying (1) and every u ∈ X1, if and only if F (Σ̃1) ∈ Ω(Σ2).

For the particular case of local operators the analogous result has been proven
in [13].
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In view of the above theorem it is tempting to characterize the Ω-condition in
some more convenient way. This can be done for standard measure spaces. For this
purpose we need to recall the following definition from [6].

Definition 6.2. We say that a measurable function g: Ω2 → Ω1 is said to satisfy
the ω-condition, if it satisfies (1), while there exists a disjoint at most countable
covering of Ω2 by measurable sets Ω2 = tjΩj

2 such that over each Ωj
2 the function

is injective and the respective inverses γj : g(Ω
j
2) → Ωj

2, γj ◦ g|Ωj
2

= id, satisfy (1).

Then the following assertion is valid (see [19] for the proof and the detailed
discussion).

Proposition 6.1. Let (Ω,Σ′, µ) be a standard measure space with nonatomic mea-
sure and Σ ⊂ Σ′. Then Σ̃ ∈ Ω(Σ̃′), if and only if there is a function h: Ω → Ω satis-
fying the ω-condition, such that Σ̃ = h−1(Σ̃′). Moreover, every measurable function
h: Ω → Ω satisfying (1) such that Σ̃ = h−1(Σ̃′) satisfies also the ω-condition.

7. Atomic operators and periodic solutions of stochastic
differential equations with time lags

In this section we prove that periodic (in distribution) solutions to a stochastic
functional differential equation are in one-to-one correspondence with fixed points
of certain atomic operators which are naturally related to the equation. We use the
following notation: C := C([−r, 0],Rd), xt(s) := x(t+s) while s ∈ [−r, 0] and t ≥ 0.
We are also supposed given a complete probability space (Ω,Σ,P). Throughout this
section we only use one fixed probability measure P, so that we omit the letter P
when we describe function spaces.

We study the stochastic functional differential equation (see [12] for the detailed
definitions)

(8) dx(t) = H(t, xt)dt+G(t, xt)dW (t),

where t > 0, with the initial condition

(9) x0 = ϕ ∈ C.
Here W (t), t ≥ 0 is the m-dimensional Brownian motion, and H : [0,∞)×C → Rd,
G : [0,∞)×C → Rd×m are two jointly continuous, α-periodic and globally Lipschitz
in the second variable functionals, i.e.

|H(t, y1)−H(t, y2)|+ |G(t, y1)−G(t, y2)| ≤ L‖y1 − y2‖C
for all t ∈ [0,∞) and y1, y2 ∈ C, so that existence and uniqueness of solutions
holds for any initial function ϕ ∈ C (see [12]) and each solution satisfies the usual
measurability property (called adaptedness) with respect to the natural filtration
Σt := σ{W (u)} : 0 ≤ u ≤ t.

This gives rise to a two-parameter family of mappings

Uστ : L2(Ω,Σσ;C) → L2(Ω,Στ ;C), τ ≥ σ,

defined by

(10) Uστ (ϕ) := ϕxστ , ϕ ∈ L2(Ω,Σσ;C),
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where ϕxσ(t) satisfies

(11) ϕxσ(t) =

ϕ(0) +
∫ t

σ
H(u, ϕxσu)du+

∫ t

σ
G(u, ϕxσu)dW (u), t > σ

ϕ(t− σ), σ − r ≤ t ≤ σ.

Clearly,

(12) Uστ ◦ U0
σ = U0

τ , σ ≤ τ

(see theorem II(2.2) from [12, p. 40] for details).
Our first result in this section justifies the property of locality for the operator

Uστ .

Theorem 7.1. Assume that H : [0,∞) × C → Rd, G : [0,∞) × C → Rd×m are
jointly continuous and globally Lipschitz in the second variable functionals. Then
the solution flow Uστ , defined in (10)-(11), satisfies the property of locality, which
in this case reads as follows: for every ϕ,ψ ∈ L2(Ω,Σσ;C) and e ∈ Σσ the equality
ϕ|e = ψ|e a. s. implies (Uστ ϕ)|e = (Uστ ψ)|e a. s.

Proof. Locality of the solution flow follows from the uniqueness of solutions and a
simple trick described below. We first redefine the coefficients H and G by putting

(13) H̃(t, x, ω) = H(t, x)1e(ω), G̃(t, x, ω) = G(t, x)1e(ω).

Clearly, these functions are globally Lipschitz, with the constant L independent of
ω. This gives the uniqueness of solutions (see again [12]) to the equation

(14) dx(t) = H̃(t, xt)dt+ G̃(t, xt)dW (t) (t > 0).

Using the notation in (10), we put y(t) := ϕxσ(t)1e so that

y(t) =

ϕ(0)1e +
∫ t

σ
H(u, ϕxσu)du1e +

∫ t

σ
G(u, ϕxσu)dW (u)1e, t > σ

ϕ(t− σ)1e, σ − r ≤ t ≤ σ.

Clearly, ∫ t

σ
H(u, ϕxσu)du1e =

∫ t

σ
H̃(u, yu)du.

Using locality of Itô integrals we obtain also∫ t

σ
G(u, ϕxσu)dW (u)1e =

∫ t

σ
G(u, ϕxσu)1edW (u) =

∫ t

σ
G̃(u, yu)dW (u).

This explains why y(t) satisfies (14) for t > σ. In addition, y(t) satisfies the initial
condition yσ = ϕ1e.

In a similar way, one can show that the function z(t) := ψxσ(t)1e satisfies (14)
for t > σ and the initial condition yσ = ψ1e. Uniqueness of solutions implies
y(τ) = z(τ) a. s. or, in other words,

(Uστ ϕ)1e = ϕxσ(t)1e = ψxσ(t)1e = (Uστ ψ)1e a.s.

This completes the proof of the theorem. �
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Remark 7.1. The result just proved shows that the property of locality is common
for solution flows Uστ associated with stochastic functional differential equations.
On the other hand, it was shown by S.-E. A. Mohammed that these solution flows
can be non-Carathèodory. He calls such equations and flows singular in contrast to
Carathèodory flows that are regular. A precise definition of the regular flow says
that for any τ, σ the function Fτ,σ(ω, x) := Uστ (ω)x should be Carathèodory and
thus generate a local operator. Still, the class of local operators are wider, and the
singular flows are examples of non-Carathèodory local operators. The difference
between regular and singular flows is crucial in many studies. If one, for example,
wish to use the Lyapunov exponents of the equation, then one necessarily needs a
Carathèodory operator Uστ . Otherwise, the Lyapunov exponents are not defined,
and the asymptotic behavior of solutions can be quite erratic.

S.-E. A. Mohammed described also some important classes of regular and singular
flows. Roughly speaking, one obtains a Carathèodory operator Uστ and hence a
regular flow if the diffusion G contains no delay. The switching from regular to
singular flows typically occurs when the the diffusion G becomes delayed. For
example, a singular equation can be as simple as dx(t) = x(t− h)dW (t).

Now we are going to explain what α-peridiocity of H and G implies for the flow
Uστ let us define the canonical Brownian shift θ : R × Ω → Ω on the Wiener space
Ω by

(15) θ(a, ω)(u) := ω(a+ u)− ω(a), u, a ∈ R, ω ∈ Ω.

This map is invertible, measure-preserving and a.s. satisfies

(16) W (t, θ(a, ω))−W (u, θ(a, ω)) = W (t+ a, ω)−W (u+ a, ω)

for every a, t, u. Moreover, it is straightforward that

(17) θ(a,Σt) = Σt−a

up to a P-null set.
It is well-known (see e.g. [2, p. 5]) that if an ordinary stochastic differential

equation has time-independent coefficients and satisfies some additional regularity
assumptions, then its solution flow U(t, ω), defined by (U(t, ω)x = x(t, ω), where
x(t, ω) is the solution with x(0, ω) = x, satisfies the so-called “cocycle property”,
which reads as follows:

(18) U(t+ s, ω) = U(t, θ(s, ω)) ◦ U(s, ω)

almost surely for all t, s (see e.g. formula (1.1.1) in [2]). If coefficients are α-periodic,
we obtain a discrete version of the cocycle property (18) where an arbitrary s is
replaced by the period α (see also formula (26) below). The aim of what follows to
generalize this result to the case of stochastic functional differential equations (8).

As in what follows we only use α-periodic functions and stochastic processes,
we can simplify our previous notation by putting g = θ−1(α, ·). Clearly, the for-
mula (15) gives

(19) W (t, ω)−W (u, ω) = W (t+ α, gω)−W (u+ α, gω)
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a.s. for all t, where gω := g(ω). This can be generalized as follows

(20) Tg

(∫ t

t0

Φ(v)dW (v + α)
)

=
∫ t

t0

Tg(Φ(v))dW (v)

a.s. for every adapted stochastic process Φ = Φ(v, ω) which can be integrated (see
e.g. [16]). Here Tg acts in the random variable: (Tgy)(u, ω) = (Tg)(y(u, ·))(ω).

It is also evident that the shift Tg provides an isometry:

Tg : L2(Ω,Σσ+α;C) → L2(Ω,Σσ;C), σ ≥ 0.

The next result of this section describes a generalized cocycle property for sto-
chastic functional differential equations with periodic coefficients.

Theorem 7.2. Assume that H : [0,∞) × C → Rd, G : [0,∞) × C → Rd×m are
jointly continuous, α-periodic and globally Lipschitz in the second variable function-
als. Then the solution flow Uστ defined in (10)-(11) satisfies the generalized cocycle
property

(21) Tg ◦ Uσ+α
τ+α ◦ T−1

g = Uστ , (τ ≥ σ ≥ 0).

Proof. Given an arbitrary ϕ ∈ L2(Ω,Σσ;C) we simplify the notation in (10) by
setting

(22) y(t) := ϕxστ = Uστ ϕ.

According to (11), one has

(23) y(t) =

ϕ(0) +
∫ t

σ
H(u, yu)u+

∫ t

σ
G(u, yu)dW (u), t > σ

ϕ(t− σ), σ − r ≤ t ≤ σ.

In addition, we let ψ := T−1
g ϕ ∈ L2(Ω,Στ ;C), z(t) := ψxσ+α(t). Now, using (10)

we obtain

(24) Uσ+α
τ+α (T−1

g ϕ) = Uσ+α
τ+α ψ

ψxσ+α
τ+α = zτ+α.

Again due to (11), the function z(t) satisfies

z(t) =


ψ(0) +

∫ t

σ+α
H(u, zu)du+

∫ t

σ+α
G(u, zu)dW (u),

t > σ + α,

ψ(t− σ − α),
σ + α− r ≤ t ≤ σ + α.

To prove the theorem we have to verify that

(Tg ◦ Uσ+α
τ+α )ψ = Uστ ϕ

whenever τ ≥ σ ≥ 0 for every ϕ ∈ L2(Ω,Σσ;C), or equivalently, that

(25) Tgz(t+ α) = y(t)

for every t ∈ [−r,∞), where we put t := s+ τ . To verify the last equality we denote
z̄(t) = Tgz(t+α). Our aim is to prove that z̄(t) satisfies the same equation and the
same initial condition as y(t). Minding the uniqueness of the solution we will hence
conclude the proof.
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To verify the claim concerning z̄(t) we first observe that

z̄(t) = Tgz(t+ α) =ϕ(0) + Tg

∫ t+α

σ+α
H(u, zu)du+ Tg

∫ t+α

σ+α
G(u, zu)dW (u), t > σ

ψ(t− σ), σ − r ≤ t ≤ σ,

because Tgψ = ϕ. Therefore, it is readily seen that z̄(t) and y(t) satisfy the same
initial condition.

On the other hand, since Tg is an isometry and H(t, x) is independent of ω,
Lipschitz in x and α-periodic in t, we have

Tg

(∫ t+α

σ+α
H(u, zu)du

)
(s)
∫ t+α

σ+α
H(u, Tg(z(u+ s)))du∫ t

σ
H(v + α, Tg(z(v + α+ s)))dv =

(∫ t

σ
H(v, z̄v)dv

)
(s)

for every s ∈ [−r, 0].
A similar argument, based in addition on the property (20), gives

Tg

(∫ t+α

σ+α
G(u, zu)dW (u)

)
(s) = Tg

(∫ t

σ
G(v + α, z(v + α+ s))dW (v + α)

)
=
∫ t

σ
G(v, Tg(z(v + α+ s)))dW (v) =

(∫ t

σ
G(v, z̄v)dW (v)

)
(s)

for every s ∈ [−r, 0]. This shows that z̄(t) satisfies the equation (23), so that
z̄(t) = y(t) for every t ∈ [−r,∞). Since t = s+ τ and s ∈ [−r, 0], this completes the
proof of the theorem. �

Remark 7.2. The above theorem 7.2 describes the cocycle property for both sin-
gular and regular solution flows associated with stochastic functional differential
equations. Roughly speaking, if the diffusion G contains delays then the general-
ized cocycle property (21) is valid, while the standard cocycle property (26) is not.
We may also say, though rather loosely, that equations with the generalized cocycle
property constitute a generic subset in the set of all stochastic functional differential
equations, while equations with the standard cocycle property constitute a nowhere
dense subset.

To verify that for regular solution flows the formula (21) gives the standard
cocycle property (for the case of periodic coefficients), we assume that Uστ is regular,
i.e. that for every τ, σ the function Fτ,σ(ω, x) := Uστ (ω)x is Carathèodory. In this
case we may use x ∈ Rd. Letting σ = 0 we get that a.s.

U0
τ (ω)x = (Tg ◦ Uατ+α(ω) ◦ T−1

g )x(ω) = Uατ+α(gω)x

= (U0
τ+α(gω) ◦ (U0

α)−1(gω))x.

Remembering that θ(α, ·) = g−1 and multiplying by U yield the cocycle property
for the periodic case (compare to (18)):

(26) U0
τ+α(ω) = U0

τ (θ(α, ω)) ◦ U0
α(ω)
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almost surely.
Let us stress it again that without assuming the flow U0

τ (ω)x to be Carathèodory
in (ω, x) we would not be able to obtain the standard cocycle property (26) from
its generalized version (21). Theorem 7.2 shows how one can adjust the standard
cocycle property for non-Carathèodory U . Being more general, the generalized
cocycle property (21) is independent of particular properties of the coefficients F
and G, only determined by the existence and uniqueness of the solutions. On the
contrary, the standard cocycle property depends heavily on the properties of the
functions F and G (especially on G).

We conclude this section with a result showing how to obtain periodic (in dis-
tribution) solutions to (8) with the help of atomic operators. For this purpose we
need some definitions.

Definition 7.1. A solution x(t) of the stochastic functional differential equation (8)
with α-periodic coefficients is called a strong periodic (in distribution) solution with
the period α if

(27) x(t+ α, ω) = x(t, θ(α, ω)) a. s.

for all t ∈ [−r,∞). Here θ is the Brownian shift from (15).

Roughly speaking, this formula ensures that each deterministic characteristic of
the stochastic process x(t) (like expectation, distributions etc.) will be α-periodical.
On the other hand, it is unrealistic to find a periodic solution in a proper sense
(i.e. without the Brownian shift θ), as the Brownian motion W (t) has periodic (in
distribution) increments, only.

Definition 7.2. The monodromy operator associated with the stochastic functional
differential equation (8) with periodic coefficients is defined by

(28) T = Tg ◦ U0
α,

where g = θ−1(α, ·).

Evidently, T : L2(Ω,Σ0;C) → L2(Ω,Σ0;C) as Tg : L2(Ω,Σα;C) → L2(Ω,Σ0;C).
From discussions in the previous sections it immediately follows that T is atomic.

In the theorem below we will also use a (a bit simplified) notation from (11),
namely, we set

ϕx0(t) := ϕx(t) and ϕx0
t : ϕxt,

where ϕ is the initial function (at σ = 0) for the solution ϕx(t).

Theorem 7.3. Assume that H : [0,∞) × C → Rd, G : [0,∞) × C → Rd×m

are jointly continuous, globally Lipschitz in the second variable and α-periodic in t
functionals. Then the following statements are equivalent:

1) ϕx(t) is a strong α-periodic (in distribution) solution to (8);
2) ϕ ∈ L2(Ω,Σ0;C) is a fixed point of the monodromy operator T associated

with (8).

Proof. We first observe that (27) can be rewritten as follows:

(29) xt+α(ω) = xt(θ(α, ω)) a. s.
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for all t ∈ [0,∞). Assume first that ϕx(t) is a strong α-periodic (in distribution)
solution. Setting t = 0 and using g = θ−1(α, ·) we obtain Tg(ϕxα) = ϕx0 = ϕ so
that

Tϕ = (Tg ◦ U0
α)ϕ = Tg(ϕxα) = ϕ.

Conversely, if ϕ ∈ L2(Ω,Σ0;C) is a fixed point of the monodromy operator T , then
using the generalized cocycle property (21) we obtain

Tg(ϕxt+α) = (Tg ◦ U0
t+α)ϕ = (Tg ◦ Uαt+α ◦ U0

α)ϕ

= (Tg ◦ Uαt+α ◦ T−1
g ) ◦ (Tg ◦ U0

α)ϕ = U0
t Tϕ

= U0
t ϕ = ϕxt

almost surely for every t ∈ [0,∞). Hence the solution ϕxt is α-periodic (in distri-
bution). �

Remark 7.3. This result can easily be adjusted to the case when one replaces the
standard Brownian shift in (15) by another measure preserving shift θ defined on
Ω (or its extension) and satisfying (17) for some σ-algebras Σt, not necessarily
generated byW (t). In addition, the Brownian motionW (t) should remain Brownian
motion on the extended probability space and again satisfy (16). Such a situation
occurs, for instance, when Σt is generated by a pair (W (t), V (t)), where V (t) is
another stochastic process, which is independent of W (t).

In the case of non-Brownian shift, a solution x(t) to (8) satisfying (27) with
the new θ is called a weak α-periodic (in distribution) solution. The correspond-
ing monodromy operator T can be called the weak monodromy operator associated
with the shift θ, while its fixed points will be then referred to as weak fixed points.
Theorem 7.3 will then read as follows: ϕx(t) is a weak α-periodic (in distribution)
solution to (8) if and only if ϕ is a weak fixed point of the corresponding monodromy
operator T (which of course will be atomic again).
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