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A VARIANT EXISTENCE RESULT FOR PERIODIC SOLUTIONS
OF A CLASS OF HAMILTONIAN SYSTEMS WITH INDEFINITE

POTENTIAL

LEONARD KARSHIMA SHILGBA

Abstract. In this paper we have solved an open problem by providing a variant
existence result for periodic solutions to a class of Hamiltonian systems with a
sign-indefinite super quadratic potential.

1. Introduction

It is our objective to investigate the existence of periodic solutions of the class of
Hamiltonian systems:

ẍ + A(t)x + b(t)V ′(x) = 0 on [0, T ](P)

x(0) = x(T )

ẋ(0) = ẋ(T )

where

1.1 A ∈ C0(R,RN×N ) is a symmetric T-periodic matrix function that is not

sign definite on [0,T]

1.2 b ∈ C0(R,R) is T-periodic and changes sign on [0,T]

1.3 V ∈ C2(RN ,R) with V (x) > V (0) = 0 for all x ∈ RN , and has
super quadratic behaviour.

The above problem has been studied by several authors case-by-case:
Case A: A ≡ 0. Lassoued [14] obtained existence of T-periodic solutions when V

is strictly convex and homogeneous, while Ben Naoum etal [6] provided existence
results by relaxing condition on V to only homogeneity.

By using the Alama-Tarantella condition [1] given as follows:

(1.4) There exist c > 0, β > 2 : |V ′(x)x− βV (x)| 6 c|x|2 for all x ∈ RN ,

Girardi and Matzeu [13] proved some existence and multiplicity results for T-
periodic and subharmonic solutions.

Case B: A 6= 0. Refer to [3], [2], [10] (with the references contained therein),
severally for existence of periodic, homoclinic, and subharmonic solutions where b
and matrix function A are sign-definite. Besides, when we assume b changes sign and
A is a negative definite matrix,there are some existence and multiplicity results of
periodic, subharmonic, and homoclinic solutions.(Refer to [12], [8], and [5]). When
b(.) changes sign and A is not sign-definite, the author is aware of only two results,
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namely, Antonacci’s [4], and (the most recent) that of Yuang-Tong Xu and Zhi-Ming
Guo’s [18]. Antonacci proved existence of non-trivial periodic solutions under the
assumption that

(1.5)
∫ T

0
(A(t)ξ, ξ)dt > 0 for all ξ ∈ RN , |ξ| = 1

Antonacci observed the vital role played by assumption (1.5) as he posed two open
problems:

Given that A(.) is not negative definite, to:

1. Study the existence of T-periodic solutions of (P) in the case

(1.5)holds andA(.)is sign indefinite in any interval [0,T].

2. find some existence results in the case that A does not satisfy (1.5).

Antonacci solved problem 1 in [4]. Yuang-Tong Xu and Zhi-Ming Guo, in attempt-
ing the solution of open problem 2 in [18], relied among other assumptions, on the
weaker version of (1.5) that,

There exist α, µ > 0, β > 2, γ : 0 < γ < α

(∫ T

0
b(t)dt

)
β such that

∫ T

0
(A(t)ξ, ξ)dt > −γ, for all ξ ∈ RN , |ξ| = 1(1.6)

where V (x) > α|x|β − µ for all sufficiently large x ∈ RN .

It is clear from (1.6) that
∫ T
0 (A(t)ξ, ξ)dt, ξ ∈ RN , |ξ| = 1 is neither assumed to

be definitely positive nor negative, which is a relaxation on condition (1.5.) In this
paper we seek to fill in some gaps and provide a variant existence result to those of
the above quoted authors [4,18]. For instance, while Yuang-Tong Xu and Zhi-Ming
Guo do not assume (1.5) in order to answer the second open problem posed by
Antonacci, their restriction to the case

∫ T
0 b(t)dt > 0 leaves the case

∫ T
0 b(t)dt < 0

unresolved, which would indeed break down assumption (1.6) and hence the entire
structure of the proof in [18]. We shall resolve this problem.

2. Main result

Theorem 2.1. Let conditions 1.1-1.3 be verified in addition to the following con-
ditions:

a.1 0 < l = max |A(t)|
t∈[0,T ]

<
4π2

(1 + 4π2)T 2
: (A(t)x, x) 6 l|x|2.

for all x ∈ RN , t ∈ [0, T ]

b.1
∫ T

0
b(t)dt 6= 0.

m.1 There exist δ > 0, η : 0 < η < l, t0 ∈ [0, T ], R1 > 0 :

i) b(t) > 0 for all t ∈ Iδ, Iδ = [t0 − δ, t0 + δ] ⊂ [0, T ].
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ii)
∫

Iδ

(A(t)x, x)dt > η

∫

Iδ

|x|2dt for all x ∈ RN .

iii)
∫

Ī
(A(t)ξ, ξ)dt > −ηT for all ξ ∈ RN , |ξ| = 1, (Ī = [0, T ] \ Iδ).

V.1 There exist β > 2, a1 > 0, R2 > 0 :

i) βV (x) 6 V ′(x)x and

ii) V (x) > a1|x|β for all x ∈ RN , |x| > R2.

V.2 There exists R3 > 0 : −βV (x) + (V ′(x), x) 6 c|x|2 for all x ∈ RN , |x| > R3

where

c <
β − 2
2m

[
4π2

(1 + 4π2)T 2
− l

]
, m = max b(t)

t∈[0,T ]

.

V.3 lim
|x|→0

V (x)
|x|2 = 0

Then problem (P) has at least one periodic solution.

Remark. Assumption m.1 indicates that
∫ T

0
(A(t)ξ, ξ)dt > η(2δ − T ) for all ξ ∈ RN , |ξ| = 1; 2δ − T < 0

This is an improvement on condition (0.2) in [4].

We shall investigate the periodic solutions of (P) in the Sobolev space H1
T =

H1([0, T ],RN ) = {u : [0, T ] → RN , is absolutely continuous, u(0) = u(T ), u̇ ∈
L2(0, T ;RN )} with the norm:

‖u‖ =
(∫ T

0
|u̇|2 +

∫ T

0
|u|2

) 1
2

for all u ∈ H1
T .

Hamiltonian action:
We reduce problem (P) to finding critical points of the functional:

(*) I(x) =
1
2

[∫ T

0
|ẋ|2 −

∫ T

0
A(t)x.x

]
−

∫ T

0
b(t)V (x) x ∈ H1

T

associated with (P). We note that the critical points of this functional correspond
to periodic solutions of (P). (xy denotes the inner product of the pair of vectors
x, y ∈ RN ).

Definition 2.2. Given a real Banach space X, we say that I ∈ C1(X,R) satisfies
the Cerami-Palais-Smale condition at level d ∈ R (i.e condition (CPS)d for short)
if for any sequence (xn) ∈ X such that

I(xn) → d and (1 + ‖xn‖)I ′(xn) → 0,

it implies that (xn) contains a strongly convergent subsequence in X.

Remark. The Cerami-Palais-Smale condition was introduced by G. Cerami [9] as a
weaker variant of the classical Palais-Smale condition.
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We shall rely on the following linking theorem of Benci- Rabinowitz (see [16], [7])
as an investigative tool:

Theorem 2.3 (Linking theorem). Let E be a Banach space and I ∈ C1(E,R) such
that

a) E = E− ⊕ E+, dimE− < ∞ and E+ is closed in E.

b) There exist r,R : 0 < r < R, and ν ∈ E+ with ‖ν‖ = 1 :

sup{I(x) : x ∈ ∂Q} 6 inf{I(x) : x ∈ D}
Q = {u + λν : λ > 0, u ∈ E−, ‖u + λν‖ 6 R} ⊂ E− ⊕ Rν;

D = {x ∈ E+ : ‖x‖ = r}
c) I satisfies the Cerami-Palais-Smale condition(CPS)d,

d = inf
g∈Γ

sup
y∈Q

I(g(y)), Γ = {g ∈ C(Q,E) : g(y) = y for all y ∈ ∂Q}

Then d > inf I
D

and d is a critical value of I .Moreover, if d = inf I
D

, there is a

critical point xd ∈ D : I(xd) = d.

Lemma 2.4. Let conditions 1.1 − 1.3, a.1, b.1, V.1, andV.2 be verified. Then I ∈
C1(H1

T ,R) given as in (∗) satisfies the Cerami-Palais-Smale condition for all real
d.

Proof. We only need to show that given any sequence (xn) ∈ H1
T such that I(xn)

is bounded and (1 + ‖xn‖)I ′(xn) → 0 as n → ∞ (i.e sup{(1 + ‖xn‖)I ′(xn)θ : θ ∈
H1

T , ‖θ‖ = 1} → 0 as n → ∞), then (xn) contains a strongly convergent
subsequence in H1

T .
Boundedness of I(xn) implies that there exists k > 0 such that

(2.1)
1
2

∫ T

0
|ẋn|2 6 1

2

∫ T

0
(A(t)xn, xn) +

∫ T

0
b(t)V (xn) + k.

Since (1 + ‖xn‖)I ′(xn) is linear, it follows from Riesz’s representation theorem
that there exists a sequence (zn) ∈ H1

T such that

‖(1 + ‖xn‖)I ′(xn)‖H−1
T

= ‖zn‖ = εn → 0 as n → +∞ and

(1 + ‖xn‖)I ′(xn)ϕ = 〈zn, ϕ〉H1
T

for all ϕ ∈ H1
T .

Thus, we have from Cauchy-Schwartz inequality that
∫ T

0
|ẋn|2 >

∫ T

0
(A(t)xn, xn) +

∫ T

0
b+(t)(V ′(xn), xn)−

∫ T

0
b−(t)(V ′(xn), xn)− εn

where b+(t) = max{0, b(t)} and b−(t) = −min{0, b(t)}, t ∈ [0, T ].

Clearly, b(t) = b+(t)− b−(t) for all t ∈ [0, T ].

Hence,
∫ T

0
|ẋn|2 >

∫ T

0
(A(t)xn, xn) + β

∫ T

0
b(t)V (xn)−mc

∫ T

0
|xn|2 − εn.
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Therefore,

− 1
β

∫ T

0
|ẋn|2 6 − 1

β

∫ T

0
(A(t)xn, xn)−

∫ T

0
b(t)V (xn) +

mc

β

∫ T

0
|xn|2 +

εn

β
.(2.2)

Combining (2.1) and (2.2) results in,

β − 2
2β

∫ T

0
|ẋn|2 6 (β − 2)l + 2mc

2β

∫ T

0
|xn|2 +

εn

β
+ k. That is,

(β − 2)
∫ T

0
|ẋn|2 6 [(β − 2)l + 2mc]

∫ T

0
|xn|2 + k̄, (0 < k̄ < ∞).

Or, according to Wirtinger’s inequality, we have that
{

(β − 2)− [(β − 2)l + 2mc]
T 2

4π2

} ∫ T

0
|ẋn|2 6 T [(β − 2)l + 2mc]|x̄n|2 + k̄

where

x̄n =
1
T

∫ T

0
xn(t)dt, n ∈ N.

Clearly from condition V.2,

d̄ = (β − 2)− [(β − 2)l + 2mc]
T 2

4π2
> 0.

Thus, setting

d1 =
T [(β − 2)l + 2mc]

d̄
(> 0) and d2 =

k̄

d̄
(> 0), we obtain

(2.3)
∫ T

0
|ẋn|2 6 d1|x̄n|2 + d2.

Moreover, applying Sobolev inequality and from (2.3), it is not difficult to verify
that,

min |xn(t)|
t∈[0,T ]

> d3|x̄n| − d4, (d3 = 1− (Td1)
1
2 , d4 = (Td2)

1
2 ).

We claim that 1− Td1 > 0. Suppose the contrary, that

1− Td1 6 0. That is if and only if 2mc > (β − 2)
[

4π2

(1 + 4π2)T 2
− l

]
.

This is a contradiction. Hence, we have,

(2.4) min |xn(t)|
t∈[0,T ]

> d3|x̄n| − d4, (d3, d4 > 0)

Clearly, if the sequence (|x̄n|) of real numbers is bounded,then so is (xn) in
H1

T . Suppose

|x̄n| → +∞ as n → +∞. Then

V (xn) → +∞. So, we can define a sequence in H1
T :

ψn(t) =
xn(t)

(1 + ‖xn‖)V (xn(t))
, t ∈ [0, T ] which is well defined at infinity.
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ψ̇n =
V (xn)ẋn − xn[V ′(xn)ẋn]

(1 + ‖xn‖)(V (xn))2
; So,

|ψ̇n|2 6 const.|ẋn|2
[(1 + ‖xn‖)V (xn)]2

for sufficiently large n, and

‖ψn‖2 6
[{ T 2

4π2 + const.}d1 + T ]|x̄n|2 + const.

a1
2(1 + ‖xn‖)2(d3|x̄n| − d4)2β

→ 0 as n → +∞. Hence,

(1 + ‖xn‖)I ′(xn)ψn → 0 as n → +∞.

It is clear that,

i). (1 + ‖xn‖)
∣∣∣∣
∫ T

0
ẋnψ̇n

∣∣∣∣ → 0 as n → +∞.

ii) (1 + ‖xn‖)
∣∣∣∣
∫ T

0
A(t)xnψn

∣∣∣∣ → 0 as n → +∞.

Now,
∣∣∣∣(1 + ‖xn‖)

∫ T

0
b(t)V ′(xn)ψn

∣∣∣∣ >
∣∣∣∣β

∫ T

0
b(t)dt− c

∫ T

0
b+(t)

|xn|2
V (xn)

dt

∣∣∣∣

>
∣∣∣∣β

∫ T

0
b(t)dt

∣∣∣∣− c

∣∣∣∣
∫ T

0
b+(t)

|xn|2
V (xn)

dt

∣∣∣∣ .

Thus,
∣∣∣∣(1 + ‖xn‖)

∫ T

0
b(t)V ′(xn)ψn

∣∣∣∣ → L >
∣∣∣∣β

∫ T

0
b(t)dt

∣∣∣∣ 6= 0 as n → +∞

since
∫ T
0 b(t)dt 6= 0 and

∣∣∣∣
∫ T

0
b+(t)

|xn|2
V (xn)

dt

∣∣∣∣ <
m( T 2

4π2 d1 + T )|x̄n|2 + const.

a1(d3|x̄n| − d4)β
→ 0 as n → +∞.

Note: Either
∫ T
0 b(t)dt < 0 or

∫ T
0 b(t)dt > 0; whichever the case may be,

the same conclusion holds.
This contradicts our assumption. Therefore, (xn) is bounded, and so by a similar

proof in [5], admits a strongly convergent subsequence. ¤

Proof of theorem 2.1. H1
T = H̃⊕RN , H̃ =

{
x ∈ H1

T :
∫ T
0 x(t)dt = 0

}
. Let x ∈ H̃.

Then,

I(x) =
1
2

∫ T

0
|ẋ|2 − 1

2

∫ T

0
(A(t)x, x)−

∫ T

0
b(t)V (x)

> 1
2

(
1− lT 2

4π2
−

) ∫ T

0
|ẋ|2 −m

∫ T

0
V (x)

According to V.3, we can choose ε : 0 < ε < 1
2m(4π2

T 2 − l) such that there
exists r′(ε) > 0 sufficiently small and

I(x) > 1
2

(
1− lT 2

4π2

) ∫ T

0
|ẋ|2 −mε

∫ T

0
|x|2
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> 1
2

(
1− lT 2

4π2
−mε

T 2

2π2

) ∫ T

0
|ẋ|2

> T

24

(
1− lT 2

4π2
−mε

T 2

2π2

)
‖x‖2

∞ > ω > 0

for all x ∈ H̃, ‖x‖∞ = r′. Thus, we can find r(r′) > 0 : I(x) > ω for all x ∈
H̃, ‖x‖ = r. Furthermore, choose a constant vector φ0 ∈ RN : |φ0|2 = δ

δ2+π2 .
Define,

ν(t) =





φ0 cos π
δ (t + δ − t0) t ∈ Iδ

0 t ∈ Ī = [0, T ] \ Iδ

So, we have ν(t) ∈ H1
T , ‖ν‖ = 1. Besides, supp{ν} = Iδ.

Set H =
{
λν + z : λ > 0, z ∈ RN

}
. Thus, for every λν + z ∈ H, we have

I(λν + z) 6 λ2

2

∫ T

0
|ν̇|2 − |z|2

2

∫

Ī
(A(t)ξ, ξ)− η

2

∫

Iδ

|λν + z|2

−
∫

Iδ

b(t)V (λν + z)− V (z)
∫

Ī
b(t)

6 λ2

2

∫

Iδ

|ν̇|2 +
|z|2
2

ηT − η

2

∫

Iδ

|λν + z|2

− a1β̃

∫

Iδ

|λν + z|β − V (z)
∫

Ī
b(t)

where β̃ = min b(t)
Iδ

> 0 and ξ ∈ RN , ξ = z/|z|.
Now, defining some two norms on H:

‖λν + z‖δ1
=

(∫

Iδ

|λν + z|2
) 1

2

, ‖λν + z‖δ2
=

(∫

Iδ

|λν + z|σ
) 1

σ

, σ > 2

it is clear that they are equivalent since dimH < ∞. Therefore, for our fixed
β > 2, we have that, there exists k1(δ) > 0 such that ‖λν + z‖β

δ2
> k1‖λν +

z‖β
δ1

for all λ > 0, z ∈ RN . Besides, we can find some constant k2 > 0 (inde-
pendent of z ∈ RN , λ > 0 ):

(2.5) I(λν + z) 6 (k2 − η

2
)‖λν + z‖2

δ1
− k1a1β̃‖λν + z‖β

δ1
− V (z)

∫

Ī
b(t)

We have two cases, namely,

Case1:
∫

Ī
b(t) > 0.

(
i.e

∫ T

0
b(t) > 0.

)

Case 2:
∫

Ī
b(t) < 0.

(
if and only if −

∫

Ī
b(t) > 0.

)

Case1: We have from (2.5) that

I(λν + z) 6 k2‖λν + z‖2
δ1
− η

2
‖λν + z‖2

δ1
− k1a1β̃‖λν + z‖β

δ1
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Clearly, we can find R > r (sufficiently large) such that,

I(λν + z) 6 0 for all λν + z ∈ H :‖λν + z‖ = R.

Therefore,

sup{I(λν + z) : λ > 0 z ∈ RN , ‖λν + z‖ = R} 6 inf{I(x) : x ∈ H̃, ‖x‖ = r} .

Hence the conditions of the linking theorem are satisfied. Consequently, I has a
non-constant critical point in H1

T which is a solution of (P).
Note:‖λν + z‖δ1 6 ‖λν + z‖.
Case2:

∫
Ī b(t)dt < 0

Without loss of generality, we further assume that there exists real numbers,
α, γ : α > γ > 1 such that

γ

∫

Iδ

b(t)dt +
∫

Ī
b(t)dt > 0

and for all z1, z2 ∈ RN , z1 6= z2, and |z1 + z2| > R2, we have

V (z1 + z2) > γ (V (z1) + V (z2))− α|z1 − z2|2.
For any λ > 0 and z ∈ RN , ‖λν + z‖ = λ2 + T |z|2. So, ‖λν + z‖ → +∞ if and only
if λ → +∞ or |z| → +∞.
Hence, for sufficiently large λ > 0 or |z| we have,

I(λν + z) 6 λ2

2

∫ T

0
|ν̇|2 − |z|2

2

∫

Ī
(A(t)ξ, ξ)− ηλ2

2

∫

Iδ

|ν|2 − ηδ|z|2

−
∫

Iδ

b(t)V (λν + z)− V (z)
∫

Ī
b(t)dt.

Or

I(λν + z) 6 λ2

2

(∫

Iδ

(|ν̇|2 − η|ν|2)
)
− |z|2

2

(∫

Ī
(A(t)ξ, ξ) + 2ηδ

)

−
(

γ

∫

Iδ

b(t)dt +
∫

Ī
b(t)dt

)
V (z)− γ

∫

Iδ

V (λν)dt + α

∫

Iδ

b(t)|λν − z|2

6 λ2

2

(∫

Iδ

|ν̇|2 + (2αm− η)
∫

Iδ

|ν|2
)
−|z|

2

2

(∫

Ī
(A(t)ξ, ξ) + 2ηδ−4mδα

)

− |z|βa1

(
γ

∫

Iδ

b(t)dt +
∫

Ī
b(t)dt

)
− a1λ

βγ

∫

Iδ

|ν|βdt

Clearly, as ‖λν + z‖ → +∞, I(λν + z) → −∞; and so, we can find R > r such
that for ‖λν + z‖ = R, I(λν + z) 6 0.

This verifies the Linking theorem and hence, completes the proof of theorem
2.1 ¤

Remark. We consider some examples of the potential V that satisfy our assumptions:

Example 1. The first obvious example is the function

V (x) = |x|β , for any β > 2.
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Here
V ′(x).x = βV (x) for all x ∈ RN .

So, for any c > 0, V (x) = |x|β satisfies condition V.2. Furthermore,

|x1|β + |x2|β − κ|x1 − x2|2 6 1
2
|x1 + x2|β, (κ > 1 is large enough)

for all x1, x2 ∈ RN , |x1 − x2| 6= 0, and |x1 + x2| sufficiently large.

Example 2. We define

V (x) = |x|β loge

(
1 + 2|x|2
1 + |x|2

)
, 2 < β < 3.

For sufficiently large |x|,
V (x) > a|x|β for some a : 0 < a < loge 2

since

lim
|x|→+∞

loge

(
1 + 2|x|2
1 + |x|2

)
= loge 2.

V ′(x)x = βV (x) +
2|x|β+2

(1 + |x|2)(1 + 2|x|2) 6 βV (x) + c|x|2, for some c > 0,

while
V ′(x)x > βV (x).

Remark. The logarithmic operator moderates the growth of the potential in example
2. So, for any z1, z2 ∈ RN , z1 6= z2, and |z1 + z2| sufficiently large, we can
find some α > γ > 1, α, large enough so that

|z1 + z2|β loge

(
1 + 2|z1 + z2|2
1 + |z1 + z2|2

)

> γ

[
|z1|β loge

(
1 + 2|z1|2
1 + |z1|2

)
+ |z2|β loge

(
1 + 2|z2|2
1 + |z2|2

)]
− α|z1 − z2|2.

References

[1] Alama S.and Tarantello G., On semilinear elliptica equations with indefinite non linearities.
Calc. Var. Partial Diff. Eq. 93 (1991), pp. 1-18.

[2] Ambrosetti A. and Coti ZelatiV., Multiple homoclinic orbits for a class of conservative systems.
Rend. Sem. Mat. Univ. padova 89 (1993), pp. 177-194.

[3] Ambrosetti A. and Mancini G., Solutions of minimal period to a class of convex Hamiltonian
systems. Math. Ann. 255 (1981), pp. 405-421.

[4] Antonacci F., Existence of periodic solutions of Hamiltonian systems with potential indefinite
in sign. Nonlinear Anal. TMA, 29 (1997), pp. 1353-1364.

[5] Antonacci F., Periodic and Homoclinic solutions to a class of Hamiltonian systems with po-
tential indefinite in sign. Boll. Unione. Mat. Ital. 10-B (1996),pp. 303-324.

[6] Ben Naoum A.K., Trostler,C. and Willem M., Existence and multiplicity results for homoge-
neous second order differential equations. J. Diff. Equations, 112 (1994), pp. 239-249.

[7] Benci V. and Rabinowitz P.H., Critical point theorem for indefinite functionals, Invent.
Math.52 (1979), pp.241-273.

[8] Caldiroli P. and Montecchiari P.,Homoclinic orbits for second order Hamiltonian systems with
potential changing sign. Comm. Appl. Anal. 1 (1994), pp. 97-129.



104 LEONARD KARSHIMA SHILGBA

[9] Cerami G., Un criterio di esistenza per in punti critici su varieta illimitate., Istit. Lombardo
Accad. Sci. Lett. RendA112 (1978), 332-336.

[10] Coti Zelati V. and Rabinowitz P.H., Homoclinic orbits for second order Hamiltonian systems
possessing super quadratic potential. J. Ann. Math. Soc.4 (1991), pp. 693-727.

[11] Degiovani M., Basic tools of critical point theory. (2002).
[12] Ding Y.H. and Girardi M., Periodic and homoclinic solutions to a class of Hamiltonian systems

with the potential changing sign. Dynamical systems. Appl.2 ( 1993), pp. 131-145.
[13] Girardi M. and Matzeu M., Existence and multiplicity results for periodic solutions for su-

per quadratic Hamiltonian systems where the potential changes sign. Nonlinear Differential
Equations and Appl.2 ( 1995), pp. 35-61.

[14] Lassoued L., Periodic solutions to a second order super quadratic system with a change of sign
in the potential. J. Diff. Equations,93 (1991), pp. 1-18.

[15] Mawhin J. and Willem M.,Critical point theory and Hamiltonian systems. Springer-Verlag,
New York (1989).

[16] Rabinowitz P.H., Minimax methods in critical point theory with applications to differential
equations. CBMS Reg. Conference Series in Mathematics, American Mathematical Society,
Providence, RI, Vol.65, 1986.

[17] Rabiniwitz P.H., Periodic solutions of Hamiltonian systems. Comm. Pure. Appl. Math.31 (
1978), pp. 157-184.

[18] Yuang-Tong Xu and Zhi- Ming Guo, Existence of periodic solutions to second order Hamilton-
ian systems with potential indefinite in sign. Nonlinear Anal. TMA 51, 7 (2002), pp. 1273-1283.

Manuscript received December 3, 2004

revised April 12, 2005

Leonard Karshima Shilgba
ABTI-American University of Nigeria, School of Arts and Sciences, PMB 2250 Yola, Adamawa
State, Nigeria.

E-mail address: shilgba@yahoo.com


