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A VARIANT EXISTENCE RESULT FOR PERIODIC SOLUTIONS
OF A CLASS OF HAMILTONIAN SYSTEMS WITH INDEFINITE
POTENTIAL

LEONARD KARSHIMA SHILGBA

ABSTRACT. In this paper we have solved an open problem by providing a variant
existence result for periodic solutions to a class of Hamiltonian systems with a
sign-indefinite super quadratic potential.

1. INTRODUCTION

It is our objective to investigate the existence of periodic solutions of the class of
Hamiltonian systems:

(P) P+ Atz +o(t)V'(z) =0 on [0,T]
x(0) = z(T)
z(0) = z(7T)

where

1.1 AeCOR,RY*N) s a symmetric T-periodic matrix function that is not
sign definite on [0,T]

1.2 be C°R,R) is T-periodic and changes sign on [0,T]

1.3 VeC*)RY,R) with V(z)>V(0)=0 forall zeRY and has
super quadratic behaviour.

The above problem has been studied by several authors case-by-case:

Case A: A =0. Lassoued [14] obtained existence of T-periodic solutions when V
is strictly convex and homogeneous, while Ben Naoum etal [6] provided existence
results by relaxing condition on V to only homogeneity.

By using the Alama-Tarantella condition [1] given as follows:

1. ere exist ¢>0,0> 2: T)xr — z)| < clz orall ze¢& ,
4) Th i 0,6>2:|V' BV 2 for all RN

Girardi and Matzeu [13] proved some existence and multiplicity results for T-
periodic and subharmonic solutions.

Case B: A # 0. Refer to [3], [2], [10] (with the references contained therein),
severally for existence of periodic, homoclinic, and subharmonic solutions where b
and matrix function A are sign-definite. Besides, when we assume b changes sign and
A is a negative definite matrix,there are some existence and multiplicity results of
periodic, subharmonic, and homoclinic solutions.(Refer to [12], [8], and [5]). When
b(.) changes sign and A is not sign-definite, the author is aware of only two results,
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namely, Antonacci’s [4], and (the most recent) that of Yuang-Tong Xu and Zhi-Ming
Guo’s [18]. Antonacci proved existence of non-trivial periodic solutions under the
assumption that

T
(1.5) /0 (A(t)E,€6)dt >0 forall €¢cRN, ¢ =1

Antonacci observed the vital role played by assumption (1.5) as he posed two open
problems:
Given that A(.) is not negative definite, to:
1. Study the existence of T-periodic solutions of (P) in the case
(1.5)holds and A(.)is sign indefinite in any interval [0,T].
2. find some existence results in the case that A does not satisfy (1.5).
Antonacci solved problem 1 in [4]. Yuang-Tong Xu and Zhi-Ming Guo, in attempt-

ing the solution of open problem 2 in [18], relied among other assumptions, on the
weaker version of (1.5) that,

T
There exist a, >0, [>2, ~v:0<v<a« (/ b(t)dt) B such that
0

T
(10 [ (A@€Qd > -, forall ¢cRY, [f=1

where V(z) > alz|® — p for all sufficiently large = € RY.

It is clear from (1.6) that fOT (A(t)E,€)dt, € € RN, [€] = 1 is neither assumed to
be definitely positive nor negative, which is a relaxation on condition (1.5.) In this
paper we seek to fill in some gaps and provide a variant existence result to those of
the above quoted authors [4,18]. For instance, while Yuang-Tong Xu and Zhi-Ming
Guo do not assume (1.5) in order to answer the second open problem posed by

Antonacci, their restriction to the case fOT b(t)dt > 0 leaves the case fOT b(t)dt < 0
unresolved, which would indeed break down assumption (1.6) and hence the entire
structure of the proof in [18]. We shall resolve this problem.

2. MAIN RESULT

Theorem 2.1. Let conditions 1.1-1.8 be verified in addition to the following con-
ditions:

47
al 0<l=max|A(t)] < ———: (A()z, z) < l|z|%

forall zeRY, te [0,T]
T
b.1 / b(t)dt # 0.
0

m.1  There exist 6 >0, n: 0<n<l, tye€l[0,T], R >0:
i) b(t) >0 forall tels, L;:[t()—(s,to—i-(S]C[O,T].
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i7) / (A(t)x,z)dt > |z2dt  for all x € RN,
Is Is

i) [ (AEQd > T foral €ER, =1, (T=[0.TI\).
V.1 There exist (3> 2,a1 >0,Rs >0:

i) BV(z)<V'(z)xr and

i) V(z)=aylz|® forall zeRN |z >
V.2 There exists Ry > 0: =0V (x) + (V'(z),2) < c]x\Q forallz e RN, |z| > R

where
6—2 472
—1 = b(t) .
€< 2m | (14 4m2)T? pm Hﬁ}[;,T(] )
V.3 im V(xz) =
j2[—0 |z

Then problem (P) has at least one periodic solution.

Remark. Assumption m.1 indicates that
T
/ (A(t)E,€)dt > n(26 —T) forall €cRY, |¢=1;20-T <0
0

This is an improvement on condition (0.2) in [4].
We shall investigate the periodic solutions of (P) in the Sobolev space Hi}. =

HY([0,T],RY) = {u : [0,T] — RN, is absolutely continuous, u(0) = w(T),u €
L?*(0,T;RM)}  with the norm:

T T 3
l|lull = </ || +/ |u]2> for all w € Hr.
0 0

Hamiltonian action:
We reduce problem (P) to finding critical points of the functional:

%) I(z) = % [/OT B2 — /OT A(t)x.m} _ /OT WOV () e HE

associated with (P). We note that the critical points of this functional correspond
to periodic solutions of (P). (xy denotes the inner product of the pair of vectors
r,y € RV).

Definition 2.2. Given a real Banach space X, we say that I € C!'(X,R) satisfies
the Cerami-Palais-Smale condition at level d € R (i.e condition (C'PS)4 for short)
if for any sequence (z,) € X such that

I(zy) —d and (1+ ||xp])I'(x,) — 0,
it implies that (x,) contains a strongly convergent subsequence in X.

Remark. The Cerami-Palais-Smale condition was introduced by G. Cerami [9] as a
weaker variant of the classical Palais-Smale condition.
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We shall rely on the following linking theorem of Benci- Rabinowitz (see [16], [7])
as an investigative tool:

Theorem 2.3 (Linking theorem). Let E be a Banach space and I € C*(E,R) such
that

a) E=E_®FE;, dmE_<oo and E; isclosedin E.
b) There exist r,R: 0<r<R, and veFE; wih |v|=1:
sup{I(z) : z € 0Q} < inf{I(z) : z € D}

Q={u+ :A20,uc E_ ||lu+ M| <R} C E_®Ry;
D={zeB,: | =r}
c) I satisfies the Cerami-Palais-Smale condition(CPS)g,

d=infsupI(g(y)), I'={g€C(Q.E):g(y) =y foral yeiQ}
gel’ yeQ

Then d > inl‘I;I and d is a critical value of I .Moreover, if d = inIfJI, there is a
critical point x4 € D : I(xq) = d.

Lemma 2.4. Let conditions 1.1 — 1.3, a.1, b.1, V.1, and V.2 be verified. Then I €
CY(H},R) given as in (x) satisfies the Cerami-Palais-Smale condition for all real
d.

Proof. We only need to show that given any sequence (r,) € HX such that I(z,)
is bounded and (1 + ||z,||)I'(x,) — 0 as n — oo (i.e sup{(1 + ||zn|) I (x,)0 : 0 €
HL |0 =1} — 0 as n — oo0), then (z,) contains a strongly convergent

subsequence in H}
Boundedness of  I(x,) implies that there exists & >0 such that

T T T
(2.1) ;/0 [nl? < ;/0 (A(t)xn,xn)—l—/o BV () + k.

Since (14 ||n]|)I’(x,) is linear, it follows from Riesz’s representation theorem
that there exists a sequence (z,) € H1. such that

(1 + Han)I’(:cn)HH;l =|lzu]l =en — 0 as n— +oo and

(1 + |zl (zn) e = (2n, cp)H% for all o € Hi.
Thus, we have from Cauchy-Schwartz inequality that
T T T T
[ 1P = [ Az + [ 5 @O0 @)~ [ 5 O0 @) 0) -
0 0 0 0

where b7 (t) = max{0,b(t)} and b (t) = —min{0,b(t)}, t€[0,T).
Clearly, b(t)=0b"(t)—b (t) forall te]0,T].

Hence,

/OT || > /OT (A(t)xn,xn)-i-ﬂ/oTb(t)V(xn) —mC/OTa:nP .
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Therefore,

1 [T 1 /7 T me [T €
2.2) —— il < —= AT, Tn —/ b(t)V (zy) + — o |* + —=.
()ﬂo\\ ﬁo(() )0()()ﬂ0\\6

Combining (2.1) and (2.2) results in,

g—2 (T (ﬂ—2)l—|—2mc/T . ,
—_— X {— X 4+ — + k. That is,
268 Jo 2l 243 0 2l B

T T
(5—2)/0 |x'n|2<[(ﬂ—2)l+2mc]/ lzn > +k, (0 <k < o0).

0
Or, according to Wirtinger’s inequality, we have that
2

T
{(@_2)_[(5_2)z+2mc}T}/0 (il < T8 — 2)1 + 2me]|7nl? + F

472

where
1 (T
Ty = T/o xp(t)dt, neN.

Clearly from condition V.2,
2

_ T
Thus, setting

i = T8 - 2(); + 2mc] (>0) and dy—

(>0), we obtain

Ul =

T
(2.3) / (dl? < du|Znl? + do.
0

Moreover, applying Sobolev inequality and from (2.3), it is not difficult to verify
that,

min |z, (t)] > ds|zn| — da,  (d3 =1 — (Td1)2, dy = (Tds)?).
te[0,7)

We claim that 1 —7Td; > 0. Suppose the contrary, that

4 2
1~ Td; <0. That is if and only if 2me > (6 — 2) [(1%17;2)T2 - z] :
This is a contradiction. Hence, we have,
(2.4) min |l’n(t)’ > dg‘.fn’ — dy, (dg,d4 > 0)

te[0,7)
Clearly, if the sequence  (|Z,|) of real numbers is bounded,then so is () in
H} Suppose
|Zp| — 400 as n — +oo. Then
V(xp) — +00. So, we can define a sequence in  Hp :
Tn (1)

) = DV ()

,t €[0,7] which is well defined at infinity.
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V(wp)in — 2 [V (20) 0]
(1 ;r [2n ) (V (22))?
© 2 const.|Zy|
ol < @ Tl VP
[{% + const. }dy + T”Cfn!Q + const.
ar?(1+ [|nl)?(ds|@n| — da)?P
(1 + |z (zn)n — 0 as n — +oo.

QLTL = ) SO,

for sufficiently large n, and

as n — +oo. Hence,

lnll* <

It is clear that,

). u+mmw/ém%

—0 as n— +oo.

—0 as n — +4oo.

Now,

> ‘ﬂ/OTb(t)dt—c/OTH(t)"/azgf)dt‘

> ‘ﬂ/OTb(t)dt‘ —c /OTb+(t)‘|/x(7;f)dt‘ .

T
\(14—\xnu>jﬁ bV ()

T
—>L2’6/0 b(t)dt'#o as n — +00

since fOT b(t)dt #0 and

/T b (t) il dt‘ < m(%dl + T)|Zn|* + const.
0 a1 (ds|@y,| — d4)P

Note: Either fo t)dt < 0 or fo t)dt > 0; whichever the case may be,
the same conclusion holds.

This contradicts our assumption. Therefore, (z,,) is bounded, and so by a similar
proof in [5], admits a strongly convergent subsequence. O

—0 as n — +oo.

Proof of theorem 2.1. H}:ﬁ@RN, H= {wEHl fo dt—O}.Let:EGfI.

Then,
T T T
1@ =g [ k=5 [ @A) - /bwvm

) [t

According to V.3, we can choose €: 0<e€< L(W — 1) such that there

2m
exists 1/(e) > 0 sufficiently small and

1 ZTZ T T
I(z) > = <1 - 2) / || — me/ ||?
2 47T 0 0
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1 1T? T2 r o,
>-(1-— —me— ||
2 47T2 27T2 0

T ( T2 T2
>

for all € H,|z|lsoc = r’. Thus, we can find r(+') > 0: I(z) > w forall z e
H,|z|| = r. Furthermore, choose a constant vector ¢g € RY : |¢o|2 = ﬁ.
Define,
pocos 5 (t+0 —tg) tE€ s

v(t) = _
0 tel=0,T)\Is

So, we have v(t) € HL, ||v|| = 1. Besides, supp{v} = Is.
Set H = {)\u—i—z tA>=0,z € RN}. Thus, for every v+ z € H, we have

N A n 2
towr < e =5 [awe -3 [ poss

- /I 6 bV (v + 2) — V(2) / b(t)
2

I
A |22 n 2
<= |1)|2—|-17T—/|)\1/—|—z|
2 /i, 2 2 /;,

— a3 |Ay+z\ﬁ—V(z)/Ib(t)

Is

where [ =minb(t) >0 and & ecRN ¢=2z/|z
Is
Now, defining some two norms on H:

1 1
2 e
ot sl = ([ o s2) T ksl = ([ wrar)”s o2
5 S

it is clear that they are equivalent since dim H < oo. Therefore, for our fixed
B > 2, we have that, there exists  k1(6) >0 such that [Av+ sz2 > kil A\ +

z||§1 forall A >0,z € RY. Besides, we can find some constant ko > 0 (inde-
pendent of z€ RV A >0):

(2.5) IOw+2) < (ks — g)”)\u + 22— kiaBlaw + 2l — V(z) /b(t)

We have two cases, namely,

Casel: /Ib(t) > 0. (i.e /OT b(t) > 0.>

Case 2: /b(t) < 0. <if and only if — /b(t) > 0.)
I I
Casel: We have from (2.5) that

IOw + 2) < kol + 2|2, — gHAV 22 — kBl + 2|2
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Clearly, we can find R > r (sufficiently large) such that,
IMv+2)<0 forall Aw+zeH:||\w+z| =R
Therefore,
sup{IAv+2):A>0 zeRY, |Aw+z||=R}<inf{l(z):zeH, |z|=r}.
Hence the conditions of the linking theorem are satisfied. Consequently, I has a
non-constant critical point in H7. which is a solution of (P).
Note:||Av + z||s, < |[Av + 2.

Case2:  [7b(t)dt <0
Without loss of generality, we further assume that there exists real numbers,

o,y :a >y >1such that
y / b(t)dt + / b(t)dt > 0
Is I

and for all z;, z0 € RV, 2 # z9, and |21 + 22| > Rg, we have
V(e 4 22) >y (V(z1) + V() — alz; — 2]

For any A > 0 and z € RV, |[Av + z|| = A2 + T'|z|?. So, || \v + z|| — +oc if and only
if A\ = 400 or |z| — +oc.
Hence, for sufficiently large A > 0 or |z| we have,

2 T P 2 2
v+ <y [ k=B [anee - [k -l
- / OV (O + 2) — V(=) / b(t)dt.

Is I
Or

1w <y ([ 0 -av?)) = B ([ e + )
- (7/15 b(t)dt + /I_b(t)dt) V(2) —7/16 VOw)dt + a/}é b() w22
<y ([ wr e com—n [ wp)-5F ([0 + 205-ama)

= ofay (w / b(#)dt + / b(t)dt) My / |t
Is I Is

Clearly, as ||\v + z|| — +o0, I(Av + z) — —o0; and so, we can find R > r such
that for [[A\v + z|]| = R, I(A\v + z) < 0.

This verifies the Linking theorem and hence, completes the proof of theorem
2.1 Il

Remark. We consider some examples of the potential V' that satisfy our assumptions:

Example 1. The first obvious example is the function

V(z) = |z|?, forany > 2.
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Here
V'(z).x = fV(x) forall zeRY.
So, for any ¢>0, V(z)=|z|® satisfies condition V.2. Furthermore,

1
217 + |a2]? — K2y — 20f* < 5!331 +x5/%, (k>1 is large enough)

for all z1,20 € RY, |x1 —x9| #0, and |z1 + z2| sufficiently large.

Example 2. We define

V(&) = ol o,

For sufficiently large |z|,

1+ 2|z|?
— TP}, 2<B<3.
1+ |z|? b

V(x) > alz|® for some a:0<a <log,2

, 1+ 2|z|?
lim lo — | =log. 2.
e too g€<1+wxw e

2|$|/3+2
1+ [=[*)(1 + 2[x[?)

since

V'(z)z = BV (z) + < BV (x) 4 c|z|?, for some ¢ >0,

while
V'(z)x > BV (z).

Remark. The logarithmic operator moderates the growth of the potential in example
2. So, for any 21,20 € RV, 2; # 2z, and |z + 20| sufficiently large, we can
find some «a >y >1,«, large enough so that

1+2 2
21+ 20/ log, (+Z1+z2\>

1+ |z1 + 222
1+ 2|22 1+ 2|22)?
> A —_— f1 — || = — 2%
Y |:’Z1‘ 08, < 1+ |Zl‘2 + |22’ 0L, 1+ |22’2 O"'Zl 22
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