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NEW APPROXIMATION SCHEMES FOR NONEXPANSIVE
NONSELF-MAPPINGS IN A BANACH SPACE

SORNSAK THIANWAN, NARIN PETROT, AND SUTHEP SUANTAI

ABSTRACT. In this paper, weak and strong convergence theorems of a new three-
step iteration with errors are established for nonexpansive nonself-mappings in
Banach spaces. The results obtained in this paper extend and improve the several
recent results in this area.

1. INTRODUCTION

Fixed-point iteration processes for approximating fixed point of nonexpansive
mapping in Banach spaces have been studied by various authors (see [3, 4, 6, 10,
11, 12, 16, 17, 18]) using the Mann iteration process (see [6]) or the Ishikawa iteration
process (see [4, 16, 18]). In 2000, Noor [8] introduced a three-step iterative scheme
and studied the approximate solutions of variational inclusion in Hilbert spaces. In
1998, Takahashi and Kim [15] proved strong convergence of approximants to fixed
points of nonexpansive nonself-mappings in reflexive Banach spaces with uniformly
Gateaux differentiable norm. In the same year, Jung and Kim [5] proved the ex-
istence of a fixed point for nonexpansive nonself-mapping in a uniformly convex
Banach space with a uniformly Gateaux differentiable norm.

In [16], Tan and Xu introduced a modified Ishikawa process to approximate fixed
points of nonexpansive self-mappings defined on nonempty closed convex bounded
subsets of a uniformly convex Banach space. Suantai [14] defined a new three-
step iterations which is an extension of Noor iterations and gave some weak and
strong convergence theorems of such iterations for asymptotically nonexpansive
mappings in uniformly Banach spaces. Recently, Shahzad [13] extended Tan and
Xu’s results([16],Theorem 1, p.305) to the case of nonexpansive nonself-mapping in
a uniformly convex Banach space. Inspired and motivated by research going on in
this area, we define and study a new three-step iteration with errors for nonexpan-
sive nonself-mapping. This scheme can be viewed as an extension for the two-step
iterative schemes of Shahzad [13]. The scheme is defined as follows.

Let X be a normed space, C' be a nonempty convex subset of X, P : X — C
be the nonexpansive retraction of X onto C, and T': C' — X be a given mapping.
Then for a given z; € C, compute the sequences {x, }, {yn} and {z,} by the iterative
scheme

P(anTzn + (1 — an — Yn)Tn + Ynln)
(1.1) Yn = P(bn Tz + cnTxp + (1 — by, — ¢n — fn)Tn + fintn)
Tnt1 = PlanTyn + BTz + (1 — ap — B — An)xn + Nwy), n>1,

Zn
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where {an},{bn}, {cn} {an},{Bn}, {7}, {tn},{An} are appropriate sequences in
[0,1] and {u,}, {v,} and {w,} are bounded sequences in C.

If ap = ¢ = B = Yn = i = Ay = 0, then (1.1) reduces to the iteration scheme
defined by Shahzad [13]

Yn = P(byTxy, + (1 —by)xy)
(1.2) Tnt1 = PlanTyn + (1 — an)xy), n>1,

where {b,},{a,} are appropriate sequences in [0, 1].
If T:C — C, then the iterative scheme (1.1) reduces to the three-step iterations
with errors

zn = apnTTy + (1 — Qnp — ’7n)$n + YnUn
(1.3) Yn =bpTzn + cyTxn + (1 — by — Cp — fin)Tr + fnp
Tp41 = o, Ty, + BT zn + (1 — oy — By — )\n)xn + Awy, n>1,

where {an},{bn}, {cn} {an},{Bn}, {7}, {pn}, {An} are appropriate sequences in
[0,1] and {u,}, {v,} and {w,} are bounded sequences in C.

The purpose of this paper is to establish weak and strong convergence results of
the iterative scheme (1.1) for completely continuous nonexpansive nonself-mappings
in a uniformly convex Banach space. Our results extend and improve the corre-
sponding ones announced by Shahzad [13], Tan and Xu [16] and others.

Now, we recall the well known concepts and results.

Recall that a Banach space X is said to satisfy Opial’s condition (9] if x,, — x
weakly as n — oo and = # y imply that

limsup ||z, — z|| < limsup ||z, — y||.
n—00 n—0o0

In the sequel, the following lemmas are needed to prove our main results.

Lemma 1.1 ([16], Lemma 1 ). Let {an}, {bn} and {0,} be sequences of nonnegative
real numbers satisfying the inequality

ant1 < (1+6p)an + by, Vn=1,2,..,
If 22021 Op < 00 and Zzozl b, < 00, then

(1) limy,— o0 ay, exists .
(2) limy, o0 a, = 0 whenever liminf,, o a, = 0.

Lemma 1.2 ([7], Lemma 1.4 ). Let X be a uniformly conver Banach space and
B, ={x € X :|z|| <r}, r>0. Then there exists a continuous, strictly increasing,
and convex function g : [0,00) — [0,00),g(0) = 0 such that

laz + By + pz + dwl* < allz)|? + Bllyll* + ullz* + Mw|* — aBg([lz — yl),
forall z,y,z,w € By, and all a, B, pu, X € [0,1] with a+ B+ p+ A= 1.

Lemma 1.3 (Browder [1]). Let X be a uniformly convexr Banach space, C a
nonempty closed convex subset of X and T : C — X be a nonexpansive map-
ping. Then I — T is demiclosed at 0, i.e., if v, — x weakly and x, — Tz, — 0
strongly, then x € F(T), where F(T) is the set of fized point of T



NEW APPROXIMATION SCHEMES FOR NONEXPANSIVE NONSELF-MAPPINGS 85

Lemma 1.4 ([14], Lemma 2.7 ). Let X be a Banach space which satisfies Opial’s
condition and let {x,} be a sequence in X . Let u,v € X be such that lim, . |2, —
ul| and limy, o0 ||y, — v|| exist. If {zn, } and {zp,} are subsequences of {xy,} which
converge weakly to u and v, respectively, then u = v.

2. MAIN RESULTS

In this section, we prove weak and strong convergence theorems of the new three-
step iterative scheme (1.1) for nonexpansive nonself-mapping in a uniformly convex
Banach space. In order to prove our main results, the following lemma is needed.

Lemma 2.1. Let X be a uniformly convexr Banach space, and let C be a nonempty
closed convex monexpansive retract of X with P as a nonexpansive retraction. Let
T :C — X be a nonexpansive nonself-mapping with F(T) # 0. Let {an}, {bn}, {cn},
{an}, {6n}, {n}, {tn} and {A\,} be real sequences in [0, 1] such that a, + vn, by +
Cn+fin and g+ Bn+ Xy are in [0,1] for alln > 1, and Y07 vp < 00, Y07 fiy <
00, Yol Ay < 00, and let {uy}, {vn} and{wy,} be bounded sequences in C. For a
given x1 € C, let {zp}, {yn} and {z,} be the sequences defined as in (1.1).
(i) If q is a fixed point of T, then lim, . ||z, — q|| exists.
(ii) If 0 < liminf, o o, < limsup,,_, . (n + Bn + An) < 1, then limy, o || Tyn
—z,] = 0.
(iii) If either 0 < liminf,, o B, < limsup,,_,oo(@n + Bn + An) <1 or 0 <
liminf, o @, and 0 < liminf,, . b, <limsup,,_, . (bn+cn+pn) < 1, then
lim,, oo [|T2n, — xn|| = 0.
(iv) If the following conditions
(a) 0 < liminf, o ap, < limsup,,_,(an + B + An) <1 and
(b) either 0 < liminf, .o By < limsup, ,o(an + OB + An) < 1 and
limsup,_,a, < 1 or 0 < liminf, .o b, < limsup,_, (b, + ¢, +

fn) <1
are satisfied, then limy, oo || Ty — zp|| = 0.

Proof. Let q € F(T), by boundedness of the sequence {u,},{v,} and {w,}, we can
put

M = max{sup ||u, — ¢, sup|lv, —q||, sup |lw, —ql|}.
n>1 n>1 n>1

(i) For each n > 1, we have
(2.1)
[Zn+1 — qll = [[P(anTyn + BnTzn + (1 — an — Bn — An)Tn + Anwn) — P(q)|
<Nl Tyn + BnTzn + (1 — an — Bn — An)Tn + Anwy — q||
< anl|Tyn — qll + Bul Tz — qll
+ (1= an = Bn = An)llzn — qll + Anllwn — gl
< anllyn = qll + Bullzn — all + (1 — o — B — An)l|n — gl + MAp,

(2.2) |2 — qll = [|P(anT2zn + (1 = an — Yn)Tn + Yntin) — P(q) |
< anl|Txn — ql| + (1 = an — W) |zn — ql| + Ynllun — 4|



86 SORNSAK THIANWAN, NARIN PETROT, AND SUTHEP SUANTAI

< apllzn —qll + (1 — an — W) |20 — qll + M
< len = qll + My
and
lyn = qll = [[P(bnT2n + cnTan + (1 = bp — cn — pin)Tn + pinvn) — P(q)||
< bpl|Tzn — q|| + cul| Tn — 4
+ (L =bn = cn— )20 — all + pnllvn — qf
< bnllzn — gl + enllzn — gl + (1 = by — cn — pn) |20 — ql| + Mpn
< bullzn = qll + (1 = bp) |20 — ql| + M pn.
From (2.2) we get

23) Ny —all < ballen — all + M) + (1= b2 — gll + Mps
— o —all + ey,

where 67(11) = Mbypyn + Mpy. Since Y 02 vy, < oo and Y o7 pun, < 00, we have
Yoy €y < oc.
From (2.1), (2.2) and (2.3) we get
@4 ot —all < anlllzn —all + €8y) + Ballon — all + M)
+ (1= an = Bn = An)llzn — gl + M,
= apllzn —qll + anﬁ?l) + Bullzn — all + M Bryn
+ (1 —an = Bp = An)llon — gl + MAn
< lm — all + €y,
where 67(12) = ane?l) + M Byyn + MA,. Since > 07, 6?2) < 0o we obtain from (2.4)
and Lemma 1.1 that lim, . ||z, — ¢ exists.

(ii) By (i) we have that lim,, . ||z, — ¢|| exists for any ¢ € F(T). It follows from

(2.2) and (2.3) that {x,, —q}, {Txn—q}, {zn—a}, {T2n—q}, {yn — q} and {Ty, — q}
are bounded sequences. This allows us to put

K =max{M, sup ||z, — ql|, sup||Tz, — q||, sup [z, — 4|,
n>1 n>1 n>1
sup [| T2, — qll, sup lyn — qll, sup [Tyn — gl }-
n>1 n>1 n>1

Since 0 < liminf,, . ap < limsup,, . (an+ B +An) < 1, It follows from (2.2) and
(2.3) that

(2.5) 20— al2 < 2 — qll® + €y,
(2.6) g = all” < e — all> + <,

where €)= M?~2 + 2M K~,, and €y = (e’(ll))2 + 2Ky Since Y 7, €y <
and > >, 6?4) < 00, by Lemma 1.2, there is a continuous strictly increasing convex

function g : [0,00) — [0,00), ¢(0) = 0 such that
(2.7) Az + By + vz + pwl* < Nz|” + Bllyl1? + Iz + pllwl* = A3g(llz = yl)
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for all z,y,z,w € Bg and all \,3,v,u € [0,1] with A+ 3+~ = 1. By (2.5), (2.6)
and (2.7), we have

(2.8)  llzns1 — all* = [ P(anTyn + BTz
+ (1= an = B = An)@n + Apwn) — P(q)]?
< [lon(Tyn — @) + BTz — q)
+ (1 —an = By — M) (@0 — @) + An(wy — Q)H2
< anl|Tyn = qlI” + Bl T2n — a)?
+ (1= an = Bn = An)llzn — all? + Anllwn — qf]?
—an(l —an = Bn — )91 Tyn — 2all)
< anllyn — all* + Ballza — all* + (1 — an = B = M) |z — gl
+ K2\, — an(1 —an = Bn = M) g([|Tyn — xal))
< nll2n — all? + €) + Balllzn — all? + )
+ (1 = an = Bn— M) l|lzn — QHQ + K\,
—an(l —an = Bn — M)g(ITyn — znl])
= apllzn — QHQ + ane&) + Bullzn — QH2 + ﬂneq(ls)
(U= o= = Az — P+ KA
—an(l —an = Bn — An)g(1Tyn — 2all)
< o — al> + €fs) — (1 — an — B — M) (T — 2,
where 6?5) = an€?4)+ﬂn6?3)+K2)\n. It is worth to note here that > > | 6?‘5) < oo since
S 6?4) < 00,07 6?3) < o0, and Y o2 Ap < 00. Since 0 < liminf, o o <

limsup,, o (an + Bn + An) < 1, there exists ng € N and 1,02 € (0,1) such that
0 <d1 < apand oy + By + Ay < 02 < 1 for all n > ng. Hence, by (2.8), we have

(2.9) 611 —=32) Y gUITyn —wnl) < Y Ulzn —al* = lwnss —al®) + Y €
n=ng n=ng n=ng

m
= lm — P+ S .
n=ng

Since Y7 €(5) < 00, by letting m — oo in (2.9) we get Yo I Tyn — @) <
oo, and therefore lim, .o g(||Tyn, — zn||) = 0. Since g is strictly increasing and
continuous at 0 with ¢g(0) = 0, it follows that lim, .. || Tyn — 25| = 0.
(iii) First, we assume that 0 < liminf, . 8, < limsup,,_,.(an + Bn+ An) < 1. By
(2.7), we have
(210)  Nlzni1 — all* < anllyn — all* + Ballzn — all?

+ (1 -y — Bp — >\n)||$n - QH2 + K2>‘n

- ﬁn(l —ap — Bp — )\n)g(HTzn - l‘nH)

< an(llan = all” + ) + Balllen — al* + fy)
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+ (1= an = B = An)llzn — al* + K2X,
= Bn(1 = an = Bn = An)g (I T2 — nl])
= anllzn — qll? + ey + Ballzn — qll? + Baely,
+ (1= an = Bp = Mo)llzn — al” + KX,
= Bn(1 = an = B = An)g (|1 Tz — z|)
< llzn — qll? + €5y — Bu(l — an — B — A)g(IT2n — ),
where 67(15) = anea) + ﬂne?g) + K?%)\,. Since 0 < liminf, .. 8, < limsup,, . (a, +

Bn + A\n) < 1, there exists ng € N and 01,02 € (0,1) such that 0 < 01 < [,
and oy 4+ O + A < 02 < 1 for all n > ng. Hence, by (2.10), we have 6?5) =

ane&) + @Le&) + K2\,.

m m m
@11) 61(1-8) S oIz —zal) < 3 (ltn — al? — feasr —al?) + 3 €l
n=no n=ng n=ng
m
= [|lzne —qll* + Z €(5)-
n=ng
Since 7 €(5) < 00, by letting m — o0 in (2.11) we get D g 9T 20 — wa]) <

oo, and therefore lim,, o g(|| 72z, — z,||) = 0. Since g is strictly increasing and
continuous at 0 with ¢g(0) = 0, it follows that lim,,_,o || T2, — x| = 0.

Next, we assume that 0 < liminf, . «;, and liminf, .. b, < limsup,,_, . (b, +
cn + pn) < 1. By (2.5) and (2.7), we have

(2.12) lyn — ql|? = | P(bnT 20 + cnTap
+ (1= bn — o — pn)Tn + fintn) — P(Q>H2
< 6Tz — @) + cn(Tan — q)
+ (L= by —cn — pn) (@ — @) + pin(vn — Q)H2
< b Tzn — QH2 + cn|| T — QH2
+ (1 = by — cn — pn) |70 — QH2 + i lvn — QHQ
—bn(1 = bn — cn — pn)9(| T2 — zn)
< bnllzn — all* + enllzn — qf®
+ (1= bn—cn — pn)||lzn — Q||2 + MnKz
= bn(1 = by — cn = pn)g([[T2n — anl|)
< ba(llzn — ql® + €(3)) + callzn — glf?
+ (1= bn —cn = pn) |20 — al® + pn
—bn(1 = by — cn — pn)g([|T2n — anl|)
< lzn - QHZ + 67(16) = bn(1 = by — o — pn)g(| T2 — @nl]),

where 6?6) = bne?s) + pun K 2,
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By (2.5), (2.7) and (2.12), we also have
(2.13)
2011 = all” = [ P(anTyn + BTz
+ (1= an = B = A)zn + Anwn) — P(g)?
< len(Tyn — @) + Bn(Tzn — q)
+ (1= an = B = Xa)(@n — @) + An(wn — )12
< anllyn — gl + Ballzn — all* + (1 = an = B = An)lzn — gl* + K2\,
= an([lzn = qll* + €y = bu(1 = by — ¢ = p)g(| T2n — )
+ Bulllzn — al” + €fg)) + (1 = an = B = M) |20 — al” + K2X,
= agllzn — ql” + anels) — anbn(l = by = co = pn)g([|T20 — 24
+ Bullzn — all® + Buelsy + (1= an = B = Ao)llzn — gl + K2\,
< lwn = all® + €y = anbn(1 = by — o = pn)g([| T 20 — ),
where 6?7) = ane” + Bne”3) + K2)\,.

It is worth to note here that 7 (m) < oo since Sy €(6) < Sy €(3) < 00,
and >">7 A\, < o0.

By our assumption 0 < liminf,,_,o o, and 0 < liminf,, .~ b, < limsup,,_, (b, +
Cn + in) < 1, there exists ng € N and 1,02 € (0,1) such that 0 < & < ap,
0 <91 < by and by, + ¢ + iy < 92 < 1 for all n > ng. Hence, by (2.13), we have

m m m
(214) 671 —=02) > 91Tz —zall) < D (lzn = dal* = 2 —al?) + Y €y
n=ng n=ng n=ng
m
= |lzne —al>+ > €
n=ng
Since Y7, € (7 < 00, by letting m — oo in (2.14) we get Yo 9T 20 — 2n|) <

0o, and therefore lim,, o g(||T2, — zn||) = 0. Since g is strictly increasing and
continuous at 0 with g(0) = 0, it follows that lim, .. || T2y, — zn| = 0.

(iv) Suppose that the conditions (1) and (2) are satisfied. Then by (ii) and (iii), we
have

(2.15) lim [Ty, — 2] =0 and lim || Tz, — x| = 0.
n—00 n—00

From z, = P(a,Txn + (1 — ap — Yn)Tn + Ynun) and y, = P(bpyTz, + ey Ty + (1 —
bn — Cn — tn)Tn + fnUy), wWe have ||z, — x| < apl|Txy — 20| + Ynllun — 2| and
lyn — Tnl|| < bpl|T2n — nl| + enl|TTn — Tnl| + pnl|vn — z5]|. It follows that
|Tzn, — zn|l < [|T2n — Tznll + [ T2n — @nl|
< lzn = zall + 1 T2n — 24|
< an||Tzyn — znll + nllun — 20l + | T2n — 24l
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which implies
(1 —an)lTzn — 2ol < llun — 2ull + T2 — 2n |-
If limsup,, . an < 1, this together with (2.15) and lim, .~ 7, = 0 imply that
lim,, oo [|T2r, — zn|| = 0.
If lim sup,, o (br, + ¢n + pin) < 1, there exists a positive integer Ny and n € (0,1)
such that
n <by+cp+ pn <n Vn> Np.
Then for n > Ny, we have
|Tzn — n| < (| T2n — Tynll + | Tyn — znll
< lzn = ynll + (| Tyn — 2]
< bp|| Tz — n|| + cnl|Tzy — ]
+ tinllvn — Tull + 1 Tyn — 24|
< b T2n — znll + 9l Tzn — 20|
+ tinlvn — 2ol + ([ Tyn — 24l|-
Hence
(L= Txn — znll < bul|T2n — 20l + pnllon — znll + [ Tyn — 0l

This together with (2.15) and the fact that u, — 0 as n — oo imply lim, o || T2y —
Zn|| = 0. O

Theorem 2.2. Let X be a uniformly convexr Banach space, and let C' be a nonempty
closed convex nonexpansive retract of X with P as a nonexpansive retraction. Let T :
C — X be a completely continuous nonexpansive nonself-mapping with F(T) # .
Let {an}, {bn},{cn},{an}, {Bn}, { M}, {tn} and {\,} be sequences of real numbers
in [0, 1] with an + v, € [0,1], by, + ¢ + i, € [0,1] and oy, + By + Ay € [0,1] for all
n>1, and Y 07 < 00, Yoot fn < 00, 300 Apy < 00. If
(i) 0 < min{liminf, o oy, liminf, o G,} < limsup,,_, . (o, + Bn + M) < 1
and limsup,_ ., ap, <1 or
(ii) 0 < liminf,, o o < limsup,,_, o (@n+Gn+An) < 1 and0 < liminf, . b, <
lim sup,, o (b + ¢ + pin) < 1,
then the sequences {x,},{yn} and {z,} defined by the iterative scheme (1.1) con-
verge strongly to a fized point of T.

Proof. 1t follows from Lemma 2.1(i) that {z,} is bounded. Again by Lemma 2.1 ,
we have

lim || Ty, — x| =0,
n—oo

(2.16) lim || Tz, — z,| =0,
n—oo

lim |7z, —z,| = 0.
n—oo

Since T' is completely continuous and {z,} is bounded, there exists a subsequence
{zn, } of {z,} such that {Tx,, } converges. Hence, by lim, ., ||T2;, — || = 0, it
follows that {z, } converges. Let lim;, o ,, = ¢. By continuity of 7" and (2.16)
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we have that T'q = ¢, so ¢ is a fixed point of T. By Lemma 2.1 (i), lim,, ¢ ||Zn — ¢||
exists. But limy_.o [|zn, — ¢|| =0, so lim, . ||z, — ¢|| = 0. By (2.16), we have
|y — znll = |P(bpT'2n, + cnTxy,
+ (L= by — cn = pn)Tn + pnn) — Plan)||
S bul| Tz — zal| + cnl| T2 — @pl| + pin|lvn — 20|

— 0 (as n — 00),

and 2n — @pll = |P(@anTTn + (1 = an — Yn)Tn + Ynun) — Pz
< anl|Tzn — 2ol + Yo llun — o4

— 0 (as n — 00).

It follows that limy, o yn = ¢ and lim, 0 2, = ¢q . O

If T is a self-mapping, then the iterative scheme (1.1) reduces to that of (1.3)
and the following result is directly obtained by Theorem 2.2.

Theorem 2.3. Let X be a uniformly convexr Banach space, and C a nonempty
closed convex subset of X. Let T be a completely continuous nonexpansive self-
mapping of C with F(T) # 0. Let {an}, {bn}, {cn},{an},{Bn} be sequences of real
numbers in [0, 1] with b, + ¢, € [0,1] and o, + By € [0,1] for alln >1 . If
(i) 0 < min{liminf,,_, o oy, liminf,, o G,} < limsup,,_, . (an + Bn + \n) < 1
and limsup,_,a, <1 or
(ii) 0 < liminf,, o o < limsup,,_, . (@n+Gn+An) < 1 and0 < liminf, o b, <
limsup,, o (bn + ¢ + pin) < 1,
then the sequences {xn},{yn} and {z,} defined by the iterations (1.3) converge
strongly to a fixed point of T.

When ¢, = 8, = Y = pn = Ay = 0 in Theorem 2.2 , the following result is
obtained.

Theorem 2.4. Let X be a uniformly convexr Banach space, and let C' be a nonempty
closed convex monexpansive retract of X with P as a nonexpansive retraction. Let
T:C — X be a completely continuous nonexpansive nonself-mapping with F(T) #
0. Let {an}, {bn},{an} be real sequences in [0,1] satisfying

(i) 0 < liminf,, s b, <limsup,_,., by, <1, and
(ii) 0 < liminf, o @, < limsup,,_,. o, < 1,

For a given x1 € C, define

Zn, (anTzy + (1 — ap)xy)
Un (bnTzp + (1 —bp)xy), n>1
Tp+1 = P(anTyn + (1 - an)xn)'

P
P
Then {zn},{yn} and {z,} converge strongly to a fized point of T

When a, = ¢, = B, = " = tn = Ap = 0 in Theorem 2.2 ;| we obtain the
following result.
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Theorem 2.5. Let X be a uniformly convexr Banach space, and let C' be a nonempty
closed convex monexpansive retract of X with P as a nonexpansive retraction. Let
T:C — X be a completely continuous nonexpansive nonself-mapping with F(T) #
0. Let {bp},{an} be a real sequences in [0,1] satisfying

(i) 0 < liminf,, s by, < limsup,,_,. by, <1, and

(ii) 0 < liminf, s @, < limsup,,_, ., apn < 1.
For a given x1 € C, define

Yn = P(byTz, + (1 — by)xp)
Tnt1 = Plan Ty, + (1 — ap)xy), n>1.

Then {z,} and {y,} converge strongly to a fixed point of T.

In the next result, we prove weak convergence of the iterations scheme (1.1)
for nonexpansive nonself-mapping in a uniformly convex Banach space satisfying
Opial’s condition.

Theorem 2.6. Let X be a uniformly convexr Banach space which satisfies Opial’s
condition, and C' a nonempty closed convexr nonerpansive retract of X with P as a
nonezxpansive retraction. Let T : C' — X be a nonexrpansive nonself-mapping with
F(T) #0. Let {an}, {bn}, {cn} {an}, {Bn}, {tn}, {\n} be sequences of real numbers
in [0, 1] with an + Yn, by + cn + pn and oy, + Bn + Ay are in [0,1] for alln > 1, and
Yoo T <00, Yoo gy < 00, Y00 Ay < 00. If
(i) 0 < min{liminf,, o @y, liminf,, . Bn} < limsup,,_ o (an + B+ Ap) < 1
and limsup,_,. an, <1 or
(ii) 0 < liminf, o o < limsup,,_, . (@p+8n+An) < 1 and 0 < liminf, . by, <
limsup,, oo (b, + cn + pn) < 1,
then the sequences {xy},{yn} and {z,} defined by the iterative scheme (1.1) con-
verge weakly to a fized point of T.

Proof. Tt follows from Lemma 2.1 that lim, ., [|T2,—2y| = 0 and lim, .o || T2 —
Zn|| = 0. Since X is uniformly convex and {x,} is bounded, we may assume that
Ty, — u weakly as n — oo, without loss of generality. By Lemma 1.3, we have
u € F(T). Suppose that subsequences {zy, } and {z,, } of {z,} converge weakly
to u and v, respectively. From Lemma 1.3, u,v € F(T). By Lemma 2.1 (i),
lim,, o ||z, — u|| and lim, . |2, — v exist. It follows from Lemma 1.4 that u = v.
Therefore {z,} converges weakly to a fixed point u of T. Since ||yn — Znl|
bn||Tzn, — Tnl|| + cnl|Txn — zp|| + pnl|vn — znl] — 0 (as n — o0) and ||z, — x4 ||
an||Txy, — Tn|| + Yo l|tn — zn|| — 0 (as n — 00) and z, — u weakly as n — oo,
follows that ¥, — u and z, — u weakly as n — oo.
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