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STRONG CONVERGENCE TO ZEROS OF ACCRETIVE
OPERATORS IN BANACH SPACES

KAZUHIDE NAKAJO

ABSTRACT. Let C' be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gateaux differentiable and let A C E x
E be an accretive operator such that A7'0 # () and D(A) C C' C NxsoR(I+A).
Then, we consider a sequence {z,} generated by z € C, z, = anz + (1 —
an)JIx,zn (Yn € N), where {an} C (0,1), {A\n} C (0,00) and J»,, is the resolvent
of A and prove that if lim,— oo an = limp—o0 n/An = 0, {zn} converges strongly
to some element of A~'0. And we consider a sequence {x,} generated by z1 =
z€C, Tnt1 =anz+ (1 —an)Jyr,zn (Vn € N), where {a,} C [0,1] and {An} C
(0, 00) and proved that if limy, oo atn =0, > 00 | n =00, Y oo | |an—ani1| < 00,
liminfp oo An > 0and Y07 | [An — Ang1| < 00, {zn} converges strongly to some
element of A710.

1. INTRODUCTION

Throughout this paper, let E be a real Banach space with norm || - | and let
N be the set of all positive integers. Let A C E x E be an m-accretive operator
such that A='0 # (). An m-accretive operator is equivalent to a maximal monotone
operator in a Hilbert space. Let x € E and {\,} C (0,00). At first, Rockafellar
[21] considered the proximal point algorithm, i.e. 1 =z, xpy1 = Jy, 2, (Vn € N)
where J), is the resolvent of A and proved weak convergence to an element of A~10
in a Hilbert space. But the strong convergence of the proximal point algorithm
failed; see Giiler [7]. So, Kamimura and Takahashi [10] considered a sequence {x,}
generated by Halpern type iteration [8], that is,

(1) 1 =2, Tnpy1=ap2+ (1 —ay)Jy,zn (Vn e N)

where {ay,} C [0,1] and they proved that {z,,} converges strongly to an element
of A710 if limy, 00 ay = 0, Yonl  ay =00 and limy, o Ay, = 00. Then, Kamimura
and Takahashi [11, 12] extended this result to a Banach space, (see also [27]). And
Solodov and Svaiter [25], Bauschke and Combettes [2] and the author and Takahashi
[14] considered a sequence generated by Haugazeau’s hybrid method [9] and proved
strong convergence to an element of A710 in a Hilbert space, (see also [15, 17]).
Then, Kamimura and Takahashi [13] and Ohsawa and Takahashi [19] extended
Solodov and Svaiter’s result to a Banach space, separately. And author, K. Shimoji
and W. Takahashi [18] considered a sequence {z,} generated by Browder type [3],
that is,

(2) Ty = an® + (1 —ay)Jy,zn (Yn € N)
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where {a,,} C (0,1) and proved strong convergence to an element of A~'0 in a
Hilbert space when lim,, o oy = limy, 00 /A, = 0.

In this paper, we extend the result [18] to a Banach space in section 3. Next, we
prove strong convergence to an element of A~10 by (1) under liminf, .., A, > 0 in
section 4.

2. PRELIMINARIES AND LEMMAS

We write x,, — x to indicate that a sequence {x,} converges strongly to x. Let
C be a subset of E and let T : C' — FE. T is called Lipschitzian if there exists
a nonnegative number k such that [Tz — Ty|| < k|jz — y|| for all z,y € C. T is
said to be a contraction if T is Lipschitzian with k < 1. T is called nonexpansive
if T is Lipschitzian with k& = 1, that is, |Tz — Ty|| < ||z — y|| holds for each
xz,y € C. We denote by F(T) the set of all fixed points of T. We define the
modulus of convexity of E dg as follows: dg is a function of [0,2] into [0,1] such
that dp(e) = inf{l — |z +y|/2: ||z|| < 1, ||ly]| < 1, ||z —y|| > &} for every € € [0, 2].
E is called uniformly convex if dg(e) > 0 for each ¢ > 0. E is called strictly
convex if ||z +y||/2 < 1 for all z,y € E with ||z| = ||y = 1 and  # y. In a
strictly convex Banach space F, we have that if [|z|| = ||y|| = [|Az + (1 — Ay
for x,y € E and A € (0,1), then x = y. It is known that a uniformly convex
Banach space is strictly convex. Let G = {g : [0,00) — [0,00) : g(0) = 0, g :
continuous, strictly increasing, convex}. Xu [29] proved the following theorem: Let
FE be a uniformly convex Banach space. Then, for every bounded subset B of FE,
there exists gp € G such that

(3) Az + (1= Nyll? < Allz)” + (1 = Mllyl|> = A1 = Ngs(llz —yl)
for all z,y € B and 0 < A < 1. F is said to be smooth if the limit

" ety — e
t—0 t

exists for every x,y € S(E), where S(E) ={z € E : ||z|]| = 1}. And the norm of £
is said to be uniformly Gateaux differentiable if for each y € S(F), (4) is attained
uniformly for z € S(E). Tt is known that the duality mapping J : E — 2F" is
single valued and norm to weak® uniformly continuous on bounded subsets of E
if £ has a uniformly Gateaux differentiable norm. Let p be a continuous, linear
functional on [*°. We call p a Banach limit [1] when p satisfies ||u|| = wu(1) =1
and i (ap+1) = pn(ay) for all {a,} € [°°. We know that liminf,, o a, < pp(a,) <
limsup,, o an for every {a,} € [°°. We have the following from [28]; see also [5].

Lemma 2.1. Let C' be a convex subset of E whose norm is uniformly Gateauz
differentiable and let z € C. Let {x,} C E be a bounded sequence and let  be
a Banach limit. Then, |z, — 2||*> = mingec pnllzn — y||? if and only if pn(y —
z,J(zn, —2)) <0 for ally € C.

Let C be a convex subset of F and let K be a nonempty subset of C. Let P be
a retraction of C onto K, that is, Px = z for every x € K. P is said to be sunny if
P(Pz + t(x — Pz)) = Px whenever Px + t(x — Px) € C for z € C and t > 0. We
know the following [4, 20].
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Lemma 2.2. Let C be a convex subset of a smooth Banach space and let K be a
nonempty subset of C'. Let P be a retraction of C onto K. Then, P is sunny and
nonexpansive if and only if (x — Pz, J(y — Px)) < 0 for every xz € C and y € K.
Hence, there is at most one sunny, nonezxpansive retraction of C' onto K.

An operator A C E x E is called accretive if for (z1,y1), (z2,y2) € A, there exists
j € J(x1 — x2) such that (y1 —y2,7) > 0, where J is the duality mapping of E. An
accretive operator A is said to satisfy the range condition if D(A) C R(I + AA) for
all A > 0, where D(A) is the domain of A, R(I + \A) is the range of I + AA and
D(A) is the closure of D(A). And an accretive operator A is said to be m-accretive
if R(I + XA) = E for every A > 0. If A is accretive, then we can define, for each
r > 0, a mapping J, : R(I +rA) — D(A) by J,. = (I +7A)~L. J, is called the
resolvent of A. We know that J,. is nonexpansive and A=10 = F(J,.) for every r > 0.
We also define the Yosida approximations A, by A, = (I — J;)/r; see [26, 27] for
more details. We have the following result for the resolvents [16], see also [26, 27].

Lemma 2.3. Let A C E x E be an accretive operator which satisfies the range
condition. Then, 1||(I — J\)Jrz| < ||(I — J,)z|| holds for every r,A > 0 and
x € R(I+rA).

And we have the following [6], see also [26, 27].

Lemma 2.4. Let A C E x E be an accretive operator. Then, for each r,\ > 0 and
2 € R(I+71A) N R + \A), |z — Joz|| < 2z — Jyz| holds.

3. BROWDER TYPE

Using an idea of [23] (see also [24]), we get the following.

Theorem 3.1. Let C be a nonempty closed convex subset of a uniformly convex
Banach space E whose norm is uniformly Gateaux differentiable and let A C EX E
be an accretive operator such that A=*0 # 0 and D(A) C C C NysoR(I + AA). Let
{zn} be a sequence generated by (2), where x € C, {ayn} C (0,1) and {\,} C (0, 00).
If limy, o0 iy = limy, o0 ‘;—: =0, {z,} converges strongly to z € A=0. Further if

Px :=lim, .oz, (Vo € C), P is a sunny nonexpansive retraction of C onto A~10.

Proof. Let T,y = anz + (1 — ay)Jy,y for every n € N and y € C. We have
T, : C — C and T,, is a contraction for all n € N since J), is nonexpansive and
0 < ap < 1. So, for each n € N, there exists a unique element x,, € C such that
Tp = apr + (1 — ay)Jy, zn. Let 290 € A710. We get
[#n — 20ll = llan(z — 20) + (L — an)(Jx, 2n — 20)||
< anllz = 20l + (1 = an) Iy, 20 — 20
< anl|z — 2o + (1 — o) |2 — 20|

for every n € N. So, we obtain ||z, — 20|| < ||z — 20| for all n € N which implies
{zy} is bounded. Further, we have

20 = Inp@nll = anllz = Ix,znll < anllle = zoll + [[Ix, 20 = 20[l) < 20m[[x = 2]
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for each n € N. As lim,, o0 ay, = limy, o0 an /A, = 0, we get
. . 1
(5) lim ||z, — Jy, 2| = lim —|z, — Jy, xn| = 0.
n—oo n—oo )\n

Let r > 0. We obtain

lzn — Jran| < |lzn — J>\n$n|| + HJAnxn - JrJ)\nan + HJTJ,\"a:n — Jray|
r
An

for every n € N by Lemma 2.3. Therefore, we have

< 2[lzn — Ix,@nll + 1 llon — Ix, @l

(6) lim |z, — Jra,|| =0
n—oo

for all » > 0 from (5). Since A), is accretive, we get

an(x — 20, J(xn, — 20)) = an(xn — 20, J(Tn — 20))
+ (1 — an)((zn — In,xn) — (20 — JIx, 20), J(xn, — 20))

> ap |z, — ZO||2

for every n € N and 2y € A~10. So, we obtain

(7) 20 — 20|* < (& — 20, J (20 — 20))
for all n € N. And we have
1—a,
(8> (l’n -, J(xn - ZO)) = (J)\nxn — Tn, J(xn - ZO))
1— o,
= {(In,mn — 20, J (20 — 20)) — (@0 — 20, J (20 — 20))}
1—a,

= {(In,n = 20, J (Tn = 20)) = [l2n — 20[*} < 0
n
for each n € N and zy € A710. Let {z,,,} be a subsequence of {x,,} and let ; be a
Banach limit. Let g be a real valued function on C defined by g(y) = p;|zn, — yl?
for every y € C. By [23, Proposition 2], we get g is continuous and convex, and g
satisfies lim o g(y) = 00. So, there exists zo € C such that g(zo) = inf,ec g(y)-
Let y1,y2 € C with y1 # y2 such that g(y1) = g(y2) = infyec g(y) and let B be a
bounded subset of F containig {z,, —y1} and {z,, —y2}. There exists gp € G such
that
|

n; 9

Y1+ Y22 1 1 2
[ = [ -+ e -o0)

1 1 1
< Sllwn, = 91l + 5 hea — ) = J980ln — w2l

which implies

y1 + y2> 1 1 1 .
)<= = - = - < inf .
g( 5 ) = 59w+ 59(w2) — g5y — v2l) < inf g(y)
This is a contradiction. So, we obtain y; = yo. Therefore, there exists a unique
element yo of C such that g(yo) = infyec g(y). We suppose yo ¢ A~10. Let r > 0
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and let B be a bounded subset of E containing {z,, — yo} and {z,, — Jyyo}. We
have

I

Lm+mw
2

ng

1 1 1
< —||@n, — yoll* + §H$m — Jryoll* - ZQB(HyO — Jryoll)

1 1 1

< Sllwn: = ol + Slllwn; = Jown [l + 1 Frwn; = Jeyol}* = S9m(llvo = Jryol)
1 1 1

< Sl = ol + Slllwn; = Jozn ]l + lwn, = voll}* = 295(lvo = Jrwol)

1 1
= len, = w0l + S {len, = Jrn, | + 2lan, = Jran, | - 2n, = ol

1
+ [z, — yol?} — ZQB(Hyo — Jryol))

for some gp € G which implies
Jrijo + yo) 1 1 1 .
— ) <= = - = —J < inf
g( 5 < 59(0) + 59(0) = 795(llvo — Jruoll) < inf g(y)
by (6). This is a contradiction. So, we get yg € A~10. It follows from (7) and Lemma
2.1 that p;|zn, — yoll> < pi(z — o, J(xn, — y0)) < 0. There exists a subsequence
{xnij} of {zp,} such that
lim ||xm - y0H2 =0
J—00 J
because

lim ||z, — ol = liminf [|zn, —yo[|* < pillzn, — ol* < 0.
Jj—00 J 1—00

On the other hand, let {z,,} and {z,;} be sebsequences of {z,} such that z,, —
z1 € A0 and x,; — 22 € A710. By (8), we obtain (zy, — x,J(zn, — 22)) < 0 for
all i € N and (v, — x,J(zn; — 21)) < 0 for each j € N. Since

[(2n; — @, J(@n, — 22)) — (21 — 2, J(21 — 22))|
< |($nz -, J(Im - ZQ)) - (Zl - &, J(xnz - Z2))‘
+ (21 — @, J(zn, — 22)) — (21 — 2, J (21 — 22))
< an, — 21l - [|on, = z2ll + (21 — 2, J (20, — 22)) — (21 — 2, J (21 — 22))
for every i € N and J is norm to weak™ uniformly continuous on bounded subsets
of E, we have (21 —x, J(z1 — 22)) < 0. Similarly, (zo —z, J(22 — 2z1)) < 0. So, we get
|21 — 22||* = (21 — 22, J(21 — 22)) < 0, that is, z; = z2. Therefore, {z,,} converges
strongly to some element of A~'0. Hence, we can define a mapping P of C onto
A710 by Px = lim,,_,o =, because z is an arbitrary point of C. By the argument

above, we obtain (Pz — x, J(Pz — 29)) <0 for all z € C and 29 € A~10. So, P is a
sunny nonexpansive retraction from Lemma 2.2. [l

The following generalizes the result of [18, Theorem 4.2].

Theorem 3.2. Let E be a uniformly convexr Banach space whose norm is uniformly
Gateauz differentiable and let A C E x E be an m-accretive operator such that
A7Y0 # 0. Let {x,} be a sequence generated by (2), where v € E, {ay,} C (0,1)
and {\,} C (0,00). If limy, o0 apy = limy, o0 ?\‘—Z =0, {z,} converges strongly to
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z € A7'0. Further if Px = lim, ..o 2, (Vo € E), P is a sunny nonerpansive
retraction of E onto A™10.

4. HALPERN TYPE ITERATION
Using the method employed in [22], we get the following.

Theorem 4.1. Let C be a nonempty closed convexr subset of a uniformly convex
Banach space E whose norm is uniformly Gateauz differentiable and let A C E X E
be an accretive operator such that A=10 # 0 and D(A) C C C NxsoR(I + MA). Let
{zn} be a sequence generated by (1), where x € C, {ay} C [0, 1] and {\,} C (0, 00).
If limy oo on, = 0, D> 07 oy = 00, D00 o — apq1]| < o0, liminf, .o Ay > 0
and Y00 1 [An — Ant1| < o0, {zn} converges strongly to = € A7'0. Further, if
Pz :=lim, .oz, (Vz € C), P is a sunny nonexpansive retraction of C' onto A~10.

Proof. Let 29 € A710. We have ||z, — 20| < ||z — 20l for every n € N. In fact,
suppose that ||z, — z0|| < || — 20|| for some n € N. We get

[2n+1 = 20ll = llan (2 = 20) + (1 = an)(Jx, 20 = 20)]|
< anllz = zoll + (1 = an)lzn — 20/l < [l = 20l|-

So, {zy} is bounded. From Lemma 2.4, we obtain
[#n41 = @nll = [[(an — an—1)z + (1 = o) Ix, 0 — (1 = 1) I, T |

= [[(an — an—1)x + (1 — an) (I, Tn — Ix,_1Zn—1) + (an—1 — an)JIx, _;Tn-1]|

<lon — an—1| ||z = I,y Tn-1]|

(1= ([ — Tsn |+ [ Tasnos — a2}
<lan — an—1| ||z = I,y Tn-1]|

An — Ap—
e N |

< (’an - an—l’ + ‘)\n - )‘n—l‘) - My + (1 - an)”-%'n - xn—l”

+ (1= an){ an = 20l +

for everyn =2,3,---, where My = sup {||lz—Jx, ,Zn—1||+|lzn—1—JIxn, Zn-1||/An}
n=23,

Let m,n € N. We have
[Zntmt1 — Tntml|
< (lon+m — angm—1] + [Angm = Antm-1]) Mo + (1 = antm) | Tntm — Tosm—1]|
< (lon+m — angm—1| + [Antm — Angm—11) Mo
+ (1 = anpm){(|ontm—1 — Angm—2| + [Antm—1 — Antm—2) Mo
+ (1 = antm-1)|Tntm-1 — Tnpm—2||}
<A(lan+m — angm—1l + [Antm — Antm—1]) + (|Cntm—1 — ntm—2|
+ [Antm—1 = Antm—2]) } Mo + (1 — antm) (1 — angm—1)[|Tntm—1 — Tntm—2||
<.
n+m—1 n+m—1

<Mo-{ 37 (ansr —anl+ Mpr =MD +{ TT (0= awsn) fllamss = @l

k=m k=m
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Hence, we get

lim sup ”xn—i-l - an = lim sup Hxn+m+1 - xn—i—m”
n—00 n—00

< My - {Z(!Ozkﬂ — ag| + [Agr1 — )\k’)}

k=m
o0
for each m € N. By Z(’ak+1 — | + [ A1 — Ak]) < 00, limy, oo [|2n+1 — 20| = 0.
k=1
So, we obtain
(9) lim ||z, — Jy,zn| =0
n—oo

since [|[zn — I, @nll < |2n — Tng1|| + |01 — In, @all < |@ns1 — ||+ onlle — Iy, 24|
and lim,, .o o, = 0. By Lemma 2.3, we have

l|lzn — J)\mxn” < lzn — Jknan + HJAnxn - JAmJAnan + HJ)\mJAnxn - JAman

Am
An

for all m,n € N. Hence, from (9) and liminf,, . A, > 0, we get

< 2[|wy — Iy, Tl + |20 — Jx, Znl|

(10) lim ||z, — Jy, Znl| =0
n—oo

for every m € N. Let {f,} C (0,1) with lim,, o B = 0 and let {y,,} be a
sequence of C' such that y,,, = Bnx+ (1 — Bm)Ja,, Ym for every m € N. By Theorem
3.1, limy, 00 Ym = 2z € A710. Let u be a Banach limit. It follows from (10) and

[@n — kaymHQ < ln — JAmanz + ||zn — ym”2 +2|lzn — Izl - l2n — yml|
for each n € N that
(11) pnllzn = I tml? < pnllzn — yml|?
for all m € N. Since
(1= Bm)(@n — Irnym) = (@0 — Ym) — Bm(@n — @),
we obtain
(1- 5m)2Hxn - Jxmym\lz > [|zn — ymH2 = 2Bm(2n — 2, J (20 — Ym))
= (1= 28p)||lzn — ym||2 + 26m(® = Ym, J (Tn — Ym))
for every m,n € N. Hence, we have
(L= Bm) |20 — Ix, ymll?
> (1= 28p)pnllzn — ymHZ + 2Bmpin (T — Ym, J (T — Ym))
for all m € N. By (11),
(1= Bm)pinlln = ym|®
> (1 =28 pn l|lzn — ym||2 + 2Bmpin (T = Ymy S (Tn — Ym)),
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that is,

Bm
(12) 7#7@”1% - ymH2 > (T = Ym, J (0 — Ym))

for each m € N. Let € > 0. As J is norm to weak™ uniformly continuous on bounded
subsets of F and vy, — z, there exists my € N such that for every m > mq,

(@ = 2, J(2n = 2)) = (z = 2, J (20 = ym))| <

Wl mw|m

[(z =2, J(2n — ym)) — (& = Ym, J (@ — ym))| <
for all n € N. And from (12) and 3,, — 0, there exists ma € N such that

13
(T — Y, J(fvn - ym)) < 3

for each m > my. Hence, there exists mg € N such that for every m > my,
pin(z = 2, J(2n — 2)) = {pn(x — 2, J (20 = 2)) = pin (2 — 2, J (20 — Ym))}
+{pn(z — 2, J (@0 — Ym)) = (@ = Y, J (20 — ym)) }
+ Hn(x — Ym, J(xn - ym))
cSL Lt
-3 3 3 7
Since € is arbitrary,
pn(x — 2z, J(x — 2)) < 0.
Further, by ||[zp4+1 — 2n|| — 0, we get
(z — 2z, J(xy, — 2)) — (x — 2z, J(xpy1 — 2))| — 0.
Therefore, we obtain

(13) limsup(z — z, J(z, — 2)) <0

n—oo

by [22, Proposition 2]. From
(1 —apn)(JIn,zn — 2) = (Tpt1 — 2) — ap(x — 2),

we have

(1= an)?|In,@n = 2[* = [lzns1 — 2I° = 2an(z — 2, J (@nt1 — 2))
for all n € N. Let € > 0. By (13), there exists ng € N such that

|41 — ZHQ <(@1- an)QHJAnxn - ZH2 + 2an(z — 2, J(Tnt1 — 2))

< (L—ap)llzn —2* + {1~ (1 —an)}e
for every n > ng. Hence,
lZnr1 — 2|
< (1= an){(1 = an-)llzn—1 — 2> + (1 = (1 = ap_1))e} + {1 = (1 —an)}e

= (1 an)( = an-1)zn-1 =2l + {1 = (1 = an)(1 — an-1)}e
<.
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<1 =) —ap_1) (1 —any)l[wn, — Z||2
{1 -1 =)l —an-1)- (1 —any)}e

for each n > ng. Therefore, limsup,,_, . |Tne1 — 2||*> < e. Since ¢ is arbitrary,
we get x, — 2z € A7'0. Hence, we can define a mapping P of C onto A~'0 by
Pz = lim,, .o ©,. From Theorem 3.1, P is a sunny nonexpansive retraction of C
onto A~10. O

We get the following result.

Theorem 4.2. Let E be a uniformly convexr Banach space whose norm is uniformly
Gateauz differentiable and let A C E x E be an m-accretive operator such that
A0 #£ 0. Let {z,} be a sequence generated by (1), where x € E, {a,} C [0,1]
and {An} C (0,00). If limy oo p = 0, Y 07y = 00, D o7 | — Qng1]| < 00,
liminf, oo Ay > 0 and > 07 1 [An—An+1| < 00, {an} converges strongly to z € A0,
Further, if Px :=lim,_ x, (Yo € E), P is a sunny nonezrpansive retraction of
onto A~10.

5. APPLICATION

Let 3; € (0,1) (¢ = 1,2,---,7) such that Y ;_, #; = 1 and let C' be a nonempty
closed convex subset of a strictly convex Banach space E. Let Ty,T5,--- T, be
nonexpansive mappings of C' into itself with N]_, F(T;) # 0 and let T = >"7_, BiT;.
Then, T is nonexpansive of C into itself and F(T) = N_,F(T;). In fact,
NI_,F(T;) C F(T) is trivial. Let z € F(T) and u € N[_; F(T;). We get

|z —ul| = |51(T12z — u) + Bo(Toz —u) + - - - + B (Trz — u)||
< BTz — ul| + Bl T2z — ul| + - + Br[| T2 — ul|
< Billz —ull + Ballz —ull 4+ + Brllz —ull = ||z — ul|

which implies |11z — u|| = [Tz —u| = -+ = || Tz — u|| = ||z — ul|. Since E
is strictly convex, T1z = Toz = --- = T,z = z. So, let A =1 —T. We know
A C E x FE is an accretive operator such that C' = D(A) C NysoR(I + AA) and
A710 = F(T). Further, for A > 0, 2 € R(I + MA) and y € D(A), we have
y=JIr<=y= 1+#)\:U + 1J%)\Ty. So, we obtain the following by Theorem 4.1.
Theorem 5.1. Let C be a nonempty closed convex subset of a uniformly convexr Ba-
nach space E whose norm is uniformly Gateaux differentiable and let 3; € (0,1) (i =
1,2,---,7) such that Y ;_, B; = 1. Let T1, T, - , T, be nonexpansive mappings of
C into itself such that N[_F(T;) # 0 and let T =Y., 5;T;. Let {x,} be a sequence
generated by x1 =2 € C, y, = ﬁxn—kli—&nTyn, Tpt1 = o+ (1—op)yn (Vn €
N), where {a,} C [0,1] and {\,} C (0,00). If limy oo, = 0, Y 00 0y = 00,
Yoo lan — o] < 00, liminf, oo Ay > 0 and Y07 | [An — Apy1] < 00, {2} con-
verges strongly to z € N_F(T;). Further, if Pz = lim, .oz, (Vo € C), P is a
sunny nonexpansive retraction of C' onto N_, F(T;).
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