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MINIMAL ELEMENT THEOREMS AND EKELAND’S
PRINCIPLE WITH SET RELATIONS

ANDREAS HAMEL AND ANDREAS LÖHNE

Abstract. We present two existence principles for minimal points of subsets of
the product space X × 2Y , where X stands for a separated uniform space and
Y a topological vector space. The two principles are distinct with respect to the
involved ordering structure in 2Y .

We derive from them new variants of Ekeland’s principle for set-valued maps
as well as a minimal point theorem in X × Y and Ekeland’s principle for vector-
valued functions.

1. Introduction

Ekeland’s variational principle and its equivalent formulations belong to the cor-
nerstones of Nonlinear Functional Analysis with applications in many fields of anal-
ysis, optimization and operations research. During the last years, an increasing
interest could be observed for versions involving a set-valued function, compare e.g.
[3], [14], [15], [28].

A set-valued mapping from a set X into a set Y is usually understood to be a
relation F ⊂ X ×Y not necessarily satisfying the uniqueness property, i.e., we have
not that (x, y1), (x, y2) ∈ F implies y1 = y2.

In contrast to this, we understand a set-valued mapping to be a function from
X to 2Y , i.e., a relation F on X × 2Y satisfying the uniqueness property (i.e.,
(x, V1), (x, V2) ∈ F implies V1 = V2). This leads in a natural way to new definitions
of concepts like graph, domain and minimal points of set-valued maps as well as
new results in set-valued optimization theory.

Investigating an optimization problem with a set-valued objective function we
need to compare its values. In this paper, we use reflexive and transitive relations
on 2Y to compare two values F (x1) and F (x2) of a map F : X → 2Y . This is not
the common approach to set-valued optimization up to now. Usually, a set-valued
optimization problem is reduced to a vector-valued problem by looking for minimal
(efficient) points of the set

⋃
x∈X F (x).

We start considering subsets of X×2Y and looking for minimal elements of them
with respect to appropriate ordering relations on 2Y . We present existence results
for such elements called Minimal Element Theorems with Set Relations.

We shall draw several conclusions of the minimal element theorems.
First, we derive new variants of Ekeland’s variational principle for set-valued

maps. Our Ekeland-type theorems are much more general than and cover most of
the known results of the field as special cases.
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Secondly, we conclude a minimal point theorem in X × Y . Such theorems are
well-established and useful tools in vector optimization and related fields, cf. [25],
[11], [10], [14] for example.

Finally, the well-known Ekeland-type principle for vector-valued functions f :
X → Y (e.g. [26], [16], [11]) turns out to be a consequence of our new Ekeland-type
principles for set-valued maps as well as of the minimal point theorem.

The paper is organized as follows. In the next section we introduce two ordering
relations for elements of 2Y , where Y is a linear topological space, as well as related
boundedness concepts in the space 2Y . In Section 3 we present scalarization methods
for subsets of 2Y . These methods are essentially used for the proofs of the minimal
element theorems and may be of independent interest. In Section 5 our main results,
two minimal element theorems with set relations, are presented. Section 6 contains
the new set-valued variational principles and several conclusions.

2. Ordering Relations and Boundedness in 2Y

Let Y be a topological vector space. We denote by 2Y the set of all subsets of Y
including the empty set ∅. As usual, the sum of two sets V1, V2 ∈ 2Y is defined by
V1 + V2 := {v1 + v2 : v1 ∈ V1, v2 ∈ V2}. We use the convention ∅ + V1 = ∅. The
product of α ∈ R and V ∈ 2Y \{∅} is defined by αV := {αv : v ∈ V }. Moreover, we
define α · ∅ = ∅ for α 6= 0 and 0 · ∅ = {0}.

This section is concerned with ordering relations for sets as well as with order
boundedness concepts in 2Y . Such relations have been introduced for the case
Y = R in a paper [30] by Young from 1931. A comprehensive survey on these
relations and related power structures is [2]. Kuroiwa, Tananka and Truong [20],
[18], [19] started developing a new approach to set-valued optimization using the
same relations. A detailed approach to ordering relations on power sets as well as
links to several algebraic concepts can be found in [12].

We define two relations 4, 2 on 2Y as follows. These relations are two out of six
being natural generalizations of partial orderings on a linear space Y to relations
on 2Y , compare [20] for details.

Definition 2.1. Let K ⊆ Y be a convex cone containing 0 ∈ Y and V1, V2 ∈ 2Y .
We define:

V1 4K V2 ⇐⇒ V2 ⊆ V1 + K;
V1 2K V2 ⇐⇒ V1 ⊆ V2 −K.

If there is no risk of confusion the relations are simply denoted by 4 and 2.
Note that Luc [23], Chapters 2.5 and 5.1 implicitly used these relations describing

the constraints for a set-valued optimization problem. This can be seen observing
that V 4K {0} iff V ∩ (−K) 6= ∅ and V 2K {0} iff V ⊆ −K.

Both relations can also be expressed by the ordering ≤K in Y , which is defined
by y1 ≤K y2 iff y2 − y1 ∈ K:

V1 4 V2 ⇐⇒ ∀v2 ∈ V2 ∃v1 ∈ V1 : v1 ≤K v2;(1)

V1 2 V2 ⇐⇒ ∀v1 ∈ V1 ∃v2 ∈ V2 : v1 ≤K v2.(2)
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Furthermore, the following relationships are easy to show:

(3) V1 2 V2 ⇐⇒ −V2 4 −V1 ⇐⇒ V2 4−K V1.

In the following, we study the properties of 4 having in mind that by (3) we are
able to obtain the same properties for 2 with K replaced by −K if necessary.

The relations 4 and 2 are reflexive and transitive. We have no antisymmetry
but

(4) (V1 4 V2, V2 4 V1) ⇐⇒ V1 + K = V2 + K.

Introducing the equivalence relation V1 ∼ V2 iff V1 4 V2 and V2 4 V1 we may
generate a partial ordering on the set of equivalence classes. Furthermore, it can be
shown that for α1, α2 ≥ 0 we have

(5) (V1 4 V2, V3 4 V4) =⇒ α1V1 + α2V3 4 α1V2 + α2V4.

Note that K has not to be pointed (K is pointed iff K ∩ −K = {0}) for proving
(1)-(5). Let V ∈ 2Y be a subset of Y . We say that v̄ ∈ V is a ≤K–minimal element
of V if v ∈ V , v ≤K v̄ implies v̄ ≤K v. The set of all ≤K–minimal elements of V is
denoted by MinV . If K is a convex pointed cone then we have v̄ ∈ Min V iff v ∈ V ,
v ≤K v̄ implies v̄ = v. In this case,

(6) (V1 4 V2, V2 4 V1) =⇒ Min (V1) = Min (V2).

A subset V ⊂ Y is said to be lower externally stable iff V ⊆ Min V + K. This
property is called domination property by several authors. Compare Luc [23] and
the references therein. By direct calculation, one may find for V1, V2 ∈ 2Y being
lower externally stable sets that

(7) V1 4 V2 ⇐⇒ Min V1 4 Min V2.

A similar assertion follows for 2 replacing ≤K–minimal by ≤K–maximal elements
and lower by upper external stability.

The following relationships can easily be verified:

∀V ∈ 2Y : V 4 ∅, Y 4 V, ∅ 2 V, V 2 Y ;

∅ 4 V ⇒ V = ∅; V 4 Y ⇒ Y = V + K;
V 2 ∅ ⇒ V = ∅; Y 2 V ⇒ Y = V −K.

These relationships motivate the following boundedness concepts for subsets of 2Y .

Definition 2.2. A subset V ⊆ 2Y is said to be 4–bounded below if there exists some
topologically bounded subset Ṽ ⊆ Y such that Ṽ 4 V holds for all V ∈ V. The set
Ṽ is called a lower 4–bound of V. A subset V ⊆ 2Y is said to be 2–bounded above
and Ṽ is called an upper 2–bound of V if −V := {−V : V ∈ V} is 4–bounded
below with the lower 4–bound −Ṽ .

Definition 2.3. A subset V ⊆ 2Y is said to be 2–bounded below if there exists some
nonempty subset Ṽ ⊆ Y such that Ṽ 2 V holds for all V ∈ V. The set Ṽ is called
a lower 2–bound of V. A subset V ⊆ 2Y is said to be 4–bounded above and Ṽ is
called an upper 4–bound of V if −V is 2–bounded below with the lower 2–bound
−Ṽ .
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Using the complementary relations of 4 and 2, denoted by 64 and 62 we introduce
further boundedness concepts.

Definition 2.4. A subset V ⊆ 2Y is said to be weakly 4–bounded below if there
exists some topologically bounded subset Ṽ ⊆ Y such that V 64 Ṽ holds for all
V ∈ V. The set Ṽ is called a weak lower 4–bound of V. A subset V ⊆ 2Y is said
to be weakly 2–bounded above and Ṽ is called a weak upper 2–bound of V if −V is
weakly 4–bounded below with the weak lower 4–bound −Ṽ .

Definition 2.5. A subset V ⊆ 2Y is said to be weakly 2–bounded below if there
exists some nonempty subset Ṽ ⊆ Y such that V 62 Ṽ holds for all V ∈ V. The
set Ṽ is called a weak lower 2–bound of V. A subset V ⊆ 2Y is said to be weakly
4–bounded above and Ṽ is called a weak upper 4–bound of V if −V is weakly 2–
bounded below with the weak lower 2–bound −Ṽ .

Note that we have a kind of duality between nonempty sets and topologically
bounded sets in the definition of the above boundedness concepts. This duality can
be observed throughout the paper. Further, we have to take care using the symbol
∅: It denotes an element of 2Y but of course a subset V ⊆ 2Y can also be the empty
set.

Remark 2.6. Let clK 6= Y . If V ⊆ 2Y is 4–bounded below then V is weakly
4–bounded below. Indeed, let V be 4–bounded below, i.e., there exists some topo-
logically bounded set Ṽ ⊆ Y such that Ṽ 4 V for all V ∈ V. We show that Ṽ +y is
a weak lower 4–bound of V, where y 6∈ cl K. Assuming the contrary, i.e., V 4 Ṽ +y
for some V ∈ V it follows Ṽ + y ⊆ V + K ⊆ Ṽ + K. An induction argument yields
Ṽ + ny ⊆ Ṽ + K for all n ∈ N. Dividing by n and letting n →∞ implies y ∈ cl K,
a contradiction.

Example 2.7. Let K = R2
+ and V = {Y \ −K}. Then V is weakly 4–bounded

below but V is not 4–bounded below.

Remark 2.8. Let clK 6= Y . If V ⊆ 2Y is 2–bounded below then V is weakly 2–
bounded below. Indeed, let V be 2–bounded below, i.e., there exists some nonempty
set Ṽ ⊆ Y such that Ṽ 2 V for all V ∈ V. We show that ṽ − y is a weak lower
2–bound of V, where ṽ ∈ Ṽ and y 6∈ cl K. Assuming the contrary, i.e., V 2 ṽ − y
for some V ∈ V it follows ṽ ∈ Ṽ ⊆ V + K ⊆ ṽ − y + K. An induction argument
yields ṽ ∈ ṽ − ny + K for all n ∈ N. Dividing by n and letting n → ∞ implies
y ∈ cl K, a contradiction.

Example 2.9. Let K = R2
+ and V = {{y} : y ∈ Y \ −K}. Then V is weakly

2–bounded below but V is not 2–bounded below.

3. Scalarization Methods on 2Y

We present several nonlinear scalarization functionals defined on 2Y . They are
generalizations of the functionals introduced in [7] and extensively studied in [29],
[8], [11] and [10]. The most important property of our functionals turns out to be
the monotonicity with respect to the relations 4, 2. Let V1, V2 ∈ 2Y . We call a
functional z : 2Y → R∪ {±∞} 4–monotone iff V1 4 V2 implies z(V1) ≤ z(V2). It is
called 2–monotone iff V1 2 V2 implies z(V1) ≤ z(V2).
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Theorem 3.1. Let Y be a topological vector space, K ⊆ Y a convex cone and
k0 ∈ K \−cl K. Let V ⊆ 2Y be nonempty and 4–bounded, i.e., there is a topological
bounded set V ′ ⊆ Y and a nonempty set V ′′ ⊆ Y such that

∀V ∈ V : V ′ 4 V 4 V ′′.

Then, the functional zl : 2Y → R ∪ {±∞}, defined by

zl(V ) := inf{t ∈ R : tk0 + V ′′ ⊆ V + cl K},

has the following properties:

(i) zl is bounded on V;
(ii) V ∈ V, α ∈ R implies zl(V + αk0) = zl(V ) + α;
(iii) zl is 4–monotone.

Proof. Since V ′′ is an upper 4–bound, we have V ′′ 6= ∅ and V ′′ ⊆ V + K. Hence
V 6= ∅ and zl(V ) ≤ 0 for all V ∈ V.

Assume that zl is not bounded below. Then for each n ∈ N, we can find some
tn < −n and some Vn ∈ V such that −nk0 + V ′′ = (−n − tn)k0 + tnk0 + V ′′ ⊆
K \−cl K +Vn +cl K ⊆ Vn +cl K. Since V is 4–bounded below by V ′ ⊆ Y we have
−nk0 + V ′′ ⊆ Vn + clK ⊆ V ′ + clK for all n ∈ N. Hence −nk0 + v0 ∈ V ′ + clK for
arbitrary v0 ∈ V ′′. Dividing by n and letting n →∞ we get k0 ∈ −cl K since V ′ is
bounded. This contradicts the assumption k0 ∈ K \ −cl K.

Assertion (ii) is obvious. To show (iii) let V1 4 V2. Then V2 + clK ⊆ V1 + K +
cl K ⊆ V1 + cl K. This implies zl(V1) ≤ zl(V2) by definition of zl. �

An analogous result for the relation 2 is an immediate conclusion.

Corollary 3.2. Let Y , K, k0 be as in Theorem 3.1. Let V ⊆ 2Y be nonempty and
2–bounded, i.e., there is a nonempty set W ′ ⊆ Y and a topologically bounded set
W ′′ ⊆ Y such that

∀V ∈ V : W ′ 2 V 2 W ′′.

Then, the functional zu : 2Y → R ∪ {±∞} defined by

zu(V ) := − inf{t ∈ R : t
(
−k0

)
+ W ′ ⊆ V − cl K}

is bounded on V, satisfies zu(V + αk0) = zu(V ) + α for all V ∈ V, α ∈ R and is
2–monotone.

Proof. Note that V is 2–bounded iff it is 4−K–bounded with upper bound W ′.
Taking into account that −zu(V ) coincides with zl(V ) replacing V ′′ by W ′, K by
−K and k0 by −k0 we may apply Theorem 3.1 to obtain the assertions of the
corollary. �

Let Y be a topological vector space and K ⊆ Y a convex cone. We use the
following assumption for weakening the boundedness condition.

(C) There exists a proper closed convex cone C ⊆ Y with
nonempty interior satisfying K ⊆ C.
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Remark 3.3. If Y is a locally convex space and K ⊆ Y a convex cone such that
K \ −cl K 6= ∅ then assumption (C) is satisfied and there exists an element k0 ∈
K ∩ intC. Indeed, if k0 ∈ K \ −cl K then we have

{
−k0

}
∩ cl K = ∅ and we

can apply a classical separation theorem to the convex compact set
{
−k0

}
and the

closed convex set clK. We obtain the existence of a continuous linear functional
y∗ ∈ Y ∗ such that y∗(−k0) < 0 ≤ y∗(k) for all k ∈ cl K. The desired cone C can be
defined by C := {y ∈ Y : y∗(y) ≥ 0}.

Theorem 3.4. Let Y be a topological vector space, K ⊆ Y a convex cone satisfying
assumption (C). Let k0 ∈ K∩intC and let V ⊆ 2Y be nonempty, 4C–bounded above
and weakly 4C–bounded below. Then, the functional cl : 2Y → R ∪ {±∞} defined
by

cl(V ) := inf
{
t ∈ R : V 4C

{
tk0

}}
has the following properties:

(i) cl is bounded on V;
(ii) V ∈ V, α ∈ R implies cl(V + αk0) = cl(V ) + α;
(iii) cl is 4–monotone;
(iv) If V consists of compact sets V ⊆ Y and K \ {0} ⊆ intC then(

V1 4 V2 , V1 ∩ V2 = ∅
)

=⇒ cl(V1) < cl(V2).

Proof. Let V ′′ be an upper 4C–bound of V, i.e., V ′′ 6= ∅ and V ′′ ⊆ V + C for all
V ∈ V. Let v′′ ∈ V ′′ be given. Because of k0 ∈ intC there exists a neighborhood U
of zero such that U ⊆ −k0 + int C. Choosing some σ > 0 such that −v′′ ∈ σU we
obtain v′′ ∈ −σU ⊆ σ(k0 − intC) ⊆ σk0 −C. Hence σk0 ∈ V ′′ + C ⊆ V + C for all
V ∈ V. This means cl(V ) ≤ σ for all V ∈ V, i.e., cl is bounded above.

Assume that cl is not bounded below. Then, for all n ∈ N, we can find tn < −n
and Vn ∈ V such that Vn 4C

{
tnk0

}
. Hence −nk0 = (−n − tn)k0 + tnk0 ∈

C + Vn + C ⊆ Vn + C. Thus

(8) ∀n ∈ N, ∃vn ∈ Vn : −nk0 ∈ vn + C.

Since V is supposed to be weakly 4–bounded below there exists some topolog-
ically bounded set V ′ ⊆ Y such that V ′ 6⊆ V + C for all V ∈ V. Hence for each
n ∈ N there exists v′n ∈ V ′ such that v′n 6∈ vn + C. It follows

−k0 − v′n/n
(8)
∈ (vn − v′n)/n + C ⊆ (Y \ −intC) + C ⊆ Y \ −intC.

Letting n →∞ we get k0 6∈ intC which contradicts the assumption k0 ∈ K ∩ intC.
Hence cl is bounded on V.

Assertions (ii) and (iii) are obvious. Let us prove (iv). By definition of the
infimum, for each n ∈ N there exists vn ∈ V2 such that

(
cl(V2) + 1/n

)
k0 ∈ vn + C.

Since V2 is compact, we can find a subnet of the sequence {vn}n∈N converging to
some v̄ ∈ V2. Hence cl(V2)k0 ∈ v̄ + C. Let V1 4 V2 and V1 ∩ V2 = ∅. We
have v̄ ∈ V2 ⊆ V1 + K \ {0} ⊆ V1 + intC. Hence there is some δ > 0 such that
v̄− δk0 ∈ V1 +int C. It follows cl(V2)k0 ∈ v̄ +C ⊆ δk0 +V1 +C. Applying assertion
(ii) we obtain cl(V1) + δ = cl(V1 + δk0) ≤ cl(V2). �
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The analogous result using the relation 2 can not be deduced from Theorem
3.4 by a construction similar to that of Corollary 3.2. Instead, we define a new
scalarization functional. Compare the remark following the proof of Theorem 3.5.

Theorem 3.5. Let Y be a topological vector space, K ⊆ Y a convex cone satisfying
assumption (C). Let k0 ∈ K∩intC and let V ⊆ 2Y be nonempty, 2C–bounded above
and weakly 2C–bounded below. Then, the functional cu : 2Y → R ∪ {±∞}

cu(V ) := inf
{
t ∈ R : V 2C

{
tk0

}}
has the following properties:

(i) cu is bounded on V;
(ii) V ∈ V, α ∈ R implies cu(V + αk0) = cu(V ) + α;
(iii) cu is 2–monotone;
(iv) If V consists of compact sets V ⊆ Y and K \ {0} ⊆ intC then(

V1 2 V2 , V1 ∩ V2 = ∅
)

=⇒ cu(V1) < cu(V2).

Proof. Let V0 be an upper 2–bound of V, i.e., W ′′ ⊆ Y is topologically bounded
and V ⊆ W ′′ − C for all V ∈ V. Let U be a neighborhood of zero such that
U ⊆ −k0 + int C. Choosing σ > 0 such that −W ′′ ⊆ σU we obtain V ⊆ W ′′ −C ⊆
−σU − C ⊆ σ(k0 − intC)− C ⊆ σk0 − C. Hence cu(V ) ≤ σ for all V ∈ V, i.e., cu

is bounded above on V.
Assuming that cu is not bounded below, for all n ∈ N we can find some Vn ∈ V

such that Vn ⊆ −nk0 − C. Since V is weakly 2–bounded below there exists some
nonempty set W ′ ⊆ Y such that V 6⊆ W ′ −C, hence V 6⊆ w′ −C where w′ ∈ W ′ is
arbitrarily chosen. Hence for all n ∈ N there exists vn ∈ Vn such that vn−w′ 6∈ −C
and −vn − nk0 ∈ C. We obtain

−k0 − w′/n = −k0 − vn/n + (vn − w′)/n ⊆ C + (Y \ −intC) ⊆ Y \ −intC.

Letting n →∞ we get k0 6∈ intC, which contradicts the assumption k0 ∈ K∩ intC.
Assertions (ii) and (iii) are obvious. It remains to prove (iv). By the definition

of the infimum there exists a sequence {vn}n∈N ⊆ V1 such that vn 6∈ (cu(V1) −
1/n)k0 − C. Since V1 is compact, there is a subnet of {vn}n∈N ⊆ V1 converging to
some v̄ ∈ V1. Hence

(9) v̄ 6∈ cu(V1)k0 − intC.

Let V1 2 V2 and V1∩V2 = ∅. We have v̄ ∈ V2−K \{0} ⊆ V2− intC. Choose v ∈ V2

such that v̄ ∈ v − intC. Then there exists some δ > 0 such that

(10) v̄ ∈ v − δk0 − intC.

Assuming that v ∈ (cu(V1) + δ)k0 − C we obtain

v̄
(10)
∈ v − δk0 − intC ⊆ cu(V1)k0 − C − intC ⊆ cu(V1)k0 − intC.

This contradicts (9). Hence we have v 6∈ (cu(V1) + δ)k0−C. Since v ∈ V2 it follows
cu(V1) + δ ≤ cu(V2), i.e., cu(V1) < cu(V2). �
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Let us discuss why the construction of Corollary 3.2 fails in the present setting.
This is due to the fact that the boundedness assumptions are not longer symmetric:
In Theorem 3.5 we supposed V to be 2C–bounded above and weakly 2C–bounded
below. This is true if and only if −V is 4C–bounded below and weakly 4C–bounded
above. However, the following example shows that the weak 4C–boundedness from
above does not imply the boundedness of the functional cl of Theorem 3.4.

Example 3.6. Let Y = R2, C = R2
+, k0 = (1, 1) and consider the set V =

{{(−1, 1)}, {(−1, 2)}, {(−1, 3)}, ...} ⊆ 2Y consisting of singletons. Then {(0, 0)} is a
weak upper 4C–bound and {(−1, 1)} is a lower 4C–bound of V. But cl({(−1, n)}) =
n for all n ∈ N, i.e., cl is not bounded above on V.

4. Basic Tools

For the convenience of the reader we present two basic tools for the proof of
minimal element theorems wit set relations.

4.1. The Brézis-Browder Principle. The first tool is a very general existence
principle for minimal elements in quasi-ordered sets due to Brézis and Browder [1],
1976.

Theorem 4.1. Let (W,�) be a quasi-ordered set (i.e., � is a reflexive and transitive
relation on W ) and let φ : W → R be a function satisfying

(A1) φ is bounded below;
(A2) w1 � w2 implies φ(w1) ≤ φ(w2);
(A3) For every �–decreasing sequence {wn}n∈N ⊆ W there exists some w ∈ W

such that w � wn for all n ∈ N.
Then, for every w0 ∈ W there exists some w̄ ∈ W such that

(i) w̄ � w0;
(ii) ŵ � w̄ implies φ(ŵ) = φ(w̄).

Proof. See [1, Corollary 1]. �

4.2. Uniform Spaces. Our results involve a uniform space X (cf. [17]). Examples
for uniform spaces not being necessarily metrizable are topological vector spaces
and K–metric spaces (see [24] or [22]). If the reader is only interested in results for
metric spaces the following considerations can be skipped. Then, one has to replace
the families of quasi-metrics, in the following denoted by {qλ}λ∈Λ or by qΛ, by the
metric.

In [14] we presented a characterization of uniform spaces via families of quasi-
metrics introduced by Fang [5]. We shall give a short summary of these results.

Definition 4.2. Let X be a nonempty set and let (Λ,≺) be a directed set. A
system {qλ}λ∈Λ of functions qλ : X ×X → [0,∞) satisfying

(Q1)
(
λ ∈ Λ, x ∈ X

)
=⇒ qλ(x, x) = 0;

(Q2)
(
λ ∈ Λ, x, y ∈ X

)
=⇒ qλ(x, y) = qλ(y, x);

(Q3) ∀λ ∈ Λ, ∃µ ∈ Λ with λ ≺ µ: x, y, z ∈ X =⇒ qλ(x, y) ≤ qµ(x, z) + qµ(z, y);
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(Q4)
(
x, y ∈ X, λ, µ ∈ Λ, λ ≺ µ

)
=⇒ qλ(x, y) ≤ qµ(x, y)

is called a family of quasi-metrics. If, in addition, the condition

(Q5)
(
∀λ ∈ Λ : qλ(x, y) = 0

)
=⇒ x = y

is satisfied, the family of quasi-metrics is said to be separating.

Theorem 4.3. A topological space (X, τ) is a (separated) uniform space iff its
topology τ can be generated by a (separating) family of quasi-metrics.

Proof. See [14]. �

Convention 4.4. For an easy dealing with uniform spaces we introduce the follow-
ing notation. Let {qλ}λ∈Λ the family of quasi-metrics which generates the topology
of the uniform space X. We write qΛ iff an assertion holds for all λ ∈ Λ. If X is a
metric space, then qΛ is its metric.

5. Minimal Element Theorems with Set Relations

This section contains the main results of the paper. We present two minimal
element theorems with respect to the set ordering relations introduced in Section 2.
Let us consider a subset A of X × 2Y , where X is a separated uniform space and Y
is a topological vector space. We introduce the following notation:

V(A) := {V ∈ 2Y : ∃x ∈ X : (x, V ) ∈ A}.

5.1. Minimal Element Theorem I. Using the relation 4 we introduce the fol-
lowing ordering relation on X × 2Y :

(x1, V1) 4k0 (x2, V2) ⇐⇒ V1 + k0qΛ(x1, x2) 4 V2.

According to Convention 4.4, the last inequality has to be read as

∀λ ∈ Λ : V1 + k0qλ(x1, x2) 4 V2.

The relation 4k0 is a reflexive and transitive relation on X × 2Y . We present our
Minimal Element Theorem involving 4k0 .

Theorem 5.1. Let X be a separated uniform space, Y a topological vector space,
K ⊆ Y a convex cone and k0 ∈ K \ −cl K. Let A be a nonempty subset of X × 2Y

such that for some (x0, V0) ∈ A and for A0 := {(x, V ) ∈ A : (x, V ) 4k0 (x0, V0)}
the following conditions are satisfied:

(M1) V(A0) is 4–bounded above, i.e., V0 is nonempty;
(M2) V(A0) is 4–bounded below;
(M3) For every 4k0–decreasing sequence {(xn, Vn)}n∈N ⊆ A0 there exists some

(x, V ) ∈ A0 such that (x, V ) 4k0 (xn, Vn) for all n ∈ N.
Then, there exists (x̄, V̄ ) ∈ A such that

(i) (x̄, V̄ ) 4k0 (x0, V0);
(ii)

(
(x̂, V̂ ) ∈ A, (x̂, V̂ ) 4k0 (x̄, V̄ )

)
=⇒ x̂ = x̄.

Under the additional assumption (C) and if k0 ∈ K ∩ intC, (M2) can be relaxed to
(M2′) V(A0) is weakly 4C–bounded below.
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If, in addition, k0 ∈ K \ {0} ⊆ intC and if for each (x, V ) ∈ A0, V is compact,
then (ii) can be strengthened to

(ii′)
(
(x̂, V̂ ) ∈ A, (x̂, V̂ ) 4k0 (x̄, V̄ )

)
=⇒

(
x̂ = x̄ and V̂ ∩ V̄ 6= ∅

)
.

Proof. We shall apply the Brézis-Browder principle to the quasi-ordered set
(A0,4k0) and the functional

φ : A0 → R, φ(x, V ) := zl(V ),

where zl : V(A0) → R is the scalarization functional of Theorem 3.1. In the
definition of zl the upper 4–bound V ′′ has to be replaced by V0.

We have to check the assumptions of Theorem 4.1. By (M1), (M2) and Theorem
3.1 (i), φ is well-defined and bounded. Theorem 3.1 (ii) and (iii) yield

(11) (x1, V1) 4k0 (x2, V2) =⇒ φ(x1, V1) + qΛ(x1, x2) ≤ φ(x2, V2).

Hence, φ is 4k0–monotone on A0, i.e., assumption (A2) of Theorem 4.1 is satisfied.
Of course, (M3) implies assumption (A3).

Theorem 4.1 yields the existence of an element (x̄, V̄ ) ∈ A0 (i.e., (i) holds) such
that

(12)
(
(x̂, V̂ ) ∈ A0, (x̂, V̂ ) 4k0 (x̄, V̄ )

)
=⇒ φ(x̂, V̂ ) = φ(x̄, V̄ ).

Let (x̂, V̂ ) ∈ A such that (x̂, V̂ ) 4k0 (x̄, V̄ ). The transitivity of 4k0 yields (x̂, V̂ ) ∈
A0. Applying (12) and (11) we obtain qΛ(x̂, x̄) = 0. Since X is separated, we have
x̂ = x̄, i.e., (ii) holds.

To see that (M2) can be replaced by (M2′) we proceed as above but using the
functional cl of Theorem 3.4 instead of zl in the Definition of φ. To prove (ii’)
assume that V̂ ∩ V̄ = ∅. Then, (iv) of Theorem 3.4 yields φ(x̂, V̂ ) < φ(x̄, V̄ ). This
contradicts (12). �

5.2. Minimal Element Theorem II. Using the 2–relation we present a second
minimal element theorem. We introduce the following ordering relation on X × 2Y :

(x1, V1) 2k0 (x2, V2) ⇐⇒ V1 + k0qΛ(x1, x2) 2 V2.

This relation is also reflexive and transitive.

Theorem 5.2. Let X be a separated uniform space, Y a topological vector space,
K ⊆ Y a convex cone and k0 ∈ K \ −cl K. Let A be a nonempty subset of X × 2Y

such that for some (x0, V0) ∈ A and for A0 := {(x, V ) ∈ A : (x, V ) 2k0 (x0, V0)}
the following conditions are satisfied:

(M1) V(A0) is 2–bounded above;
(M2) V(A0) is 2–bounded below;
(M3) For every 2k0–decreasing sequence {(xn, Vn)}n∈N ⊆ A0 there exists some

(x, V ) ∈ A0 such that (x, V ) 2k0 (xn, Vn) for all n ∈ N.
Then, there exists (x̄, V̄ ) ∈ A such that

(i) (x̄, V̄ ) 2k0 (x0, V0);
(ii) (x̂, V̂ ) ∈ A, (x̂, V̂ ) 2k0 (x̄, V̄ ) implies x̂ = x̄.

Under the additional assumption (C) and if k0 ∈ K ∩ intC, (M1) and (M2) can be
relaxed to
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(M1′) {V0} is 2C–bounded above;
(M2′) V(A0) is weakly 2C–bounded below.

If, in addition, k0 ∈ K \ {0} ⊆ intC and if for each (x, V ) ∈ A0, V is compact,
then (ii) can be strengthened to

(ii′) (x̂, V̂ ) ∈ A, (x̂, V̂ ) 2k0 (x̄, V̄ ) implies x̂ = x̄ and V̂ ∩ V̄ 6= ∅.

Proof. We shall apply the Brézis-Browder principle to the quasi-ordered set
(A0,2k0) and the functional

φ : A0 → R, φ(x, V ) := zu(V )

where zu : V(A0) → R is the scalarization functional of Corollary 3.2. In the
definition of zu, the set W ′ has to be a lower 4–bound of V(A0) which exists
according to (M2).

We have to check the assumptions of Theorem 4.1. This can be done using (M1),
(M2), (M3) and Corollary 3.2. Theorem 4.1 yields the existence of the desired
element (x̄, V̄ ) ∈ A0 in the same way as in the proof of Theorem 5.1.

To see that (M1) and (M2) can be replaced by (M1′) and (M2′) proceed as above
but using the functional cu of Theorem 3.5 instead of zu in the definition of φ.

To prove (ii′) assume that V̂ ∩ V̄ = ∅. Theorem 3.5 (iv) yields φ(x̂, V̂ ) < φ(x̄, V̄ ).
But we must have φ(x̂, V̂ ) = φ(x̄, V̄ ), a contradiction. �

Note that Theorem 5.2 can be transformed into a Maximal Element Theorem
with respect to the reflexive and transitive relation 4−k0 on X × 2Y defined by

(x1, V1) 4−k0 (x2, V2) ⇐⇒ V1 − k0qΛ(x1, x2) 4−K V2

observing that a sequence {(xn, Vn)}n∈N ⊆ A0 is 2k0–decreasing if and only if it is
4−k0–increasing. One can see that it is not possible to obtain Theorem 5.2 from
Theorem 5.1 by replacing 2k0 by 4−k0 . We face the alternative either to state
minimal element theorems for both the relations 4k0 , 2k0 or to state a minimal as
well as a maximal element theorem involving one of the relations.

6. Ekeland’s Principle with Set Relations

In this section, we present several conclusions of Theorem 5.1 and 5.2. Recently,
Truong [27] proved a variant of Ekeland’s variational principle involving only the
4–relation. A similar, but more general variant can be obtained from Theorem 5.1.
A new variational principle will be derived from Theorem 5.2. Another variant of
Ekeland’s principle for set-valued maps with point relations (cf. [3], [14]) as well as
a minimal point theorem in X × Y turn out to be consequences of Theorem 5.1 as
well as of Theorem 5.2.

Let X be a set, Y a linear topological space, F : X → 2Y a set-valued map and
K a convex cone in Y . In contrast to known definitions we call the set

graphF :=
{
(x, V ) ∈ X × 2Y : V = F (x)

}
the graph of F and the image of a subset M ⊆ X (see also [27]) is defined by

F (M) := {F (x) : x ∈ M}.
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Note that graphF is a subset of X × 2Y , not of X × Y and the image F (M) is a
subset of 2Y , not of Y !

Moreover, we shall introduce the concept of the domain of a set-valued map F
in a suitable way for each of the relations 4, 2. We define

4-dom F := {x ∈ X : F (x) 4 V for some nonempty V ⊆ Y } ,

2-dom F := {x ∈ X : F (x) 2 V for some topologically bounded V ⊆ Y } .

Clearly, x ∈ 4-dom F means that the set {F (x)} ⊆ 2Y consisting of just one element
is 4–bounded above, which is equivalent to F (x) 6= ∅. Similarly, x ∈ 2-dom F
means that the set {F (x)} ⊆ 2Y , consisting of just one element, is 2–bounded
above.

6.1. Ekeland’s Principle with Set Relations I. First, we state a variational
principle involving the ordering relation 4.

Theorem 6.1. Let X be a separated uniform space, Y a topological vector space,
K ⊆ Y a convex cone and k0 ∈ K \ −cl K. Let F : X → 2Y be a set-valued
mapping, x0 ∈ 4-dom F , S(x0) :=

{
x ∈ X : F (x) + k0qΛ(x, x0) 4 F (x0)

}
and

A0 := {(x, V ) ∈ graphF : x ∈ S(x0)} such that the following conditions are
satisfied:

(E1) F (S(x0)) is 4–bounded below;
(E2) For every 4k0–decreasing sequence {(xn, Vn)}n∈N ⊆ A0 there exists some

(x, V ) ∈ A0 such that (x, V ) 4k0 (xn, Vn) for all n ∈ N.

Then, there exists x̄ ∈ 4-dom F such that

(i) F (x̄) + k0qΛ(x̄, x0) 4 F (x0);
(ii) ∀x 6= x̄, ∃λ ∈ Λ: F (x) + k0qλ(x, x̄) 64 F (x̄).

Under the additional assumption (C) and if k0 ∈ K ∩ intC, (E1) can be relaxed to

(E1′) F (S(x0)) is weakly 4C–bounded below.

Proof. Set A := graphF and apply Theorem 5.1. It only remains to note that
x0 ∈ 4-dom F implies condition (M1) of Theorem 5.1. �

Condition (ii) tells us that there does not exist an x ∈ X\ {x̄} such that Fλ (x) 4
Fλ (x̄) = F (x̄) where

Fλ : X → 2Y , Fλ (x) := F (x) + k0qλ(x, x̄).

This means, x̄ is an s-minimizer in the sense of [28] of Fλ. Of course, Fλ (x̄) is also
a minimal element of {Fλ (x) : x ∈ X} with respect to 4.

The assumptions of Theorem 6.1 may look somewhat artificial. We give a suffi-
cient condition for (E2).

Theorem 6.2. Let X, Y , K, k0, F , x0, S(x0), A0 be as in Theorem 6.1 and let
(E1) be satisfied. Then (E2) is in force if the following condition is satisfied:

(E2′) For every x ∈ X the set S(x) :=
{
x′ ∈ X : F (x′) + k0qΛ(x′, x) 4 F (x)

}
is

sequentially complete in X.
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Proof. Let {(xn, Vn)}n∈N ⊆ A0 be a 4k0–decreasing sequence, i.e., Vn = F (xn) and

(13) F (xn+1) + k0qΛ(xn+1, xn) 4 F (xn)

for all n ∈ N. By the transitivity of 4k0 we get

(14) F (xm) + k0qΛ(xm, xn) 4 F (xn)

for all m ≥ n, m ∈ N. Applying the functional φ : A0 → R from the proof of
Theorem 5.1 to relation (13) we obtain

φ(xn+1, F (xn+1)) + qΛ(xn+1, xn) ≤ φ(xn, F (xn)).

The sequence {φ(xn, F (xn))}n∈N is nonincreasing and bounded below by (E1) and
the corresponding properties of φ, hence convergent and all the more a Cauchy
sequence. Applying φ to (14) we may conclude that {xn}n∈N is Cauchy as well. Since
S(x0) is sequentially complete, {xn}n∈N converges to some x ∈ S(x0). Moreover,
(14) implies that xm ∈ S(xn) for all m ≥ n, m ∈ N. Since by (E2’) S(xn) is
sequentially complete we have x ∈ S(xn) for all n ∈ N. This means (x, F (x)) 4k0

(xn, F (xn)) as desired. �

Remark 6.3. We indicate a special situation where (E2’) is satisfied. Let X be a
sequentially complete separated uniform space. Ferro [6] introduced the concept of
lower 4–semicontinuity (D-lower semicontinuity in [6]) and Truong [27] proved an
Ekeland-type theorem using this continuity property. A set-valued map F : X → 2Y

is said to be sequentially lower 4–semicontinuous iff for every V ∈ 2Y the set
{x′ ∈ X : F (x′) 4 V } is a sequentially closed subset of X. We claim that (E2’)
is satisfied if F is sequentially lower 4–semicontinuous with 4–closed values (for
each x ∈ X, F (x) + K is a closed set). Indeed, let {xn}n∈N ⊆ S(x) be a sequence
such that xn → x′. Fix λ ∈ Λ. Then there exists µ ∈ Λ such that qλ(x′, x) ≤
qµ(x′, xn) + qµ(xn, x). Since xn → x′ we can find for each ε > 0 a number nε ∈ N
such that qµ(x′, xn) ≤ ε for all n ∈ N, n > nε. Hence qµ(xn, x) ≥ qλ(x′, x)−ε. Since
F (xn) + k0qµ(xn, x) 4 F (x), for n > nε holds F (xn) + k0 (qλ(x′, x)− ε) 4 F (x).
This implies F (xn) 4 F (x) − k0 (qλ(x′, x)− ε) for n > nε. Since F is lower 4–
semicontinuous we have F (x′) 4 F (x)− k0 (qλ(x′, x)− ε), hence

(15) F (x) ⊆ F (x′) + k0
(
qλ(x′, x)− ε

)
+ K.

Take y ∈ F (x). Then, from (15) it follows that y + εk0 ∈ F (x′) + k0qλ(x′, x) + K.
Letting ε → 0 we obtain y ∈ F (x′) + k0qλ(x′, x) + K since the latter set is closed.
Hence x′ ∈ S(x).

Remark 6.4. In [27] the concept of K–boundedness (cf. [23]) is defined as follows:
A subset A of a linear topological space Y is said to be K–bounded if there is a
topologically bounded set M ⊆ Y such that A ⊆ M + K. It can easily be seen that
the boundedness condition in [27] coincides with condition (E1) of Theorem 6.1.

In [27], Y is supposed to be a locally convex space, K is a closed pointed convex
cone and k0 ∈ K \ {0}. Therefore we have k0 ∈ K \ −cl K. Remark 3.3 yields
that assumption (C) is satisfied and k0 ∈ K ∩ intC. Therefore, these assumptions
have not to be proposed additionally. Hence, our boundedness condition (E1’) is in
fact weaker than the boundedness condition in [27] (cf. Remark 2.6 and Example
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2.7). This extends the area of applicability of Ekeland’s principle as the following
example shows.

Example 6.5. Let X = [0,∞), Y = R2 with Euclidean norm, Br (y) be the closed
ball of radius r ≥ 0 centered at y ∈ Y , K = C = R2

+ and

F : X → 2Y , F (x) := Bx(0) \ −intK.

One may check that F is not 4–bounded, but (−1,−1)T is a weak lower 4–bound.
Hence the results of [27] are not applicable. Moreover, there does not exist a 4–
minimal value of F , but it is 4–lower semicontinuous. Thus, we can apply Theorem
6.2 in combination with Remark 6.3.

Theorem 6.2 and Remark 6.3 – 6.6 show that Theorem 5.1 of [27] is a very
special case of Theorem 6.1 concerning the properties of F : We use (E2) instead
of K-lower semicontinuity and also weaker boundedness assumptions, cf. Remark
6.4. Of course, we deal with larger classes of spaces X (uniform instead of metric
spaces) and Y (topological vector spaces instead of locally convex spaces) as well
as of cones in Y (not necessarily closed and pointed).

Remark 6.6. If x0 ∈ X is an εk0–minimal point of F in the sense of [27], i.e.,
F (x) 64 F (x0) − εk0 then relation (i) of Theorem of 6.1 can be split into the two
relations (i1) F (x̄) 4 F (x0); (i2) qΛ(x̄, x0) ≤ ε. Indeed, while (i1) is immediate, (i)
is equivalent to F (x0) ⊆ F (x̄) + k0qΛ(x̄, x0) + K. If qµ(x̄, x0) > ε for some µ ∈ Λ,
we have

F (x0) ⊆ F (x̄) + k0 (qµ(x̄, x0)− ε) + εk0 + K ⊆ F (x̄) + εk0 + K,

which contradicts the εk0–minimality of x0.

The following lemma tells us that there is always a 4–k0–minimal solution if F
is 4–bounded below.

Lemma 6.7. Let X, Y , K and k0 as in Theorem 6.1, F : X → 2Y . If F is
4–bounded below, then there exists x0 ∈ X such that

∀x ∈ X : F (x) 64 F (x0)− k0.

Proof. Assume the contrary, namely, for all x0 ∈ X there exists some x ∈ X such
that F (x) 4 F (x0) − k0. By induction we can construct a sequence {xn}n∈N such
that F (xn) 4 F (x0) − nk0 for all n ∈ N. Since F (x0) − nk0 4 F (x0) and by
assumption we conclude that V := {F (xn) : n ∈ N} is 4–bounded. Applying the
functional zl of Theorem 3.1 to the above inequality we get zl(F (xn)) ≤ zl(F (x0))−
n for all n ∈ N, i.e., zl is not bounded below on V. This contradicts (i) of Theorem
3.1 saying that zl is bounded on V. �

Note that, involving assumption (C), it is enough to suppose that F is weakly 4–
bounded below (compare Theorem 6.1). The same applies for the following theorem,
the classical form of Ekeland’s principle, see Theorem 1 bis in [4].

Theorem 6.8. Let the assumptions of Theorem 6.1 be satisfied. Then there exists
x̄ ∈ X such that

∀x ∈ X : F (x) 64 F (x̄)− k0(16)
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∀x ∈ X, x 6= x̄, ∃λ ∈ Λ : F (x) + k0qλ (x, x̄) 64 F (x̄).(17)

Proof. According to Lemma 6.7 there exists x0 ∈ X such that

(18) ∀x ∈ X : F (x) 64 F (x0)− k0.

Applying Theorem 6.1 and taking into account Remark 6.6 we obtain x̄ ∈ X sat-
isfying (17) as well as F (x̄) 4 F (x0). If x′ ∈ X, F (x′) 4 F (x̄)− k0 we obtain by
transitivity F (x′) 4 F (x0)− k0 contradicting (18). Hence (16) is true. �

6.2. Ekeland’s Principle with Set Relations II. In this section, we shall prove
an analogous variational principle for the relation 2.

Theorem 6.9. Let X be a separated uniform space, Y a topological vector space,
K ⊆ Y a convex cone and k0 ∈ K \ −cl K. Let F : X → 2Y be a set-valued
mapping, x0 ∈ 2-dom F , S(x0) :=

{
x ∈ X : F (x) + k0qΛ(x, x0) 2 F (x0)

}
and

A0 := {(x, V ) ∈ graphF : x ∈ S(x0)} such that the following conditions are
satisfied:

(E1) F (S(x0)) is 2–bounded below;
(E2) For every 2k0–decreasing sequence {(xn, Vn)}n∈N ⊆ A0 there exists some

(x, V ) ∈ A0 such that (x, V ) 2k0 (xn, Vn) for all n ∈ N.

Then, there exists x̄ ∈ 2-dom F such that

(i) F (x̄) + k0qΛ(x̄, x0) 2 F (x0);
(ii) ∀x 6= x̄ : ∃λ ∈ Λ : F (x) + k0qλ(x, x̄) 62 F (x̄).

Under the additional assumption (C) and if k0 ∈ K ∩ intC, then we can even allow
x0 ∈ 2C-dom F and (E1) can be replaced by

(E1′) F (S(x0)) is weakly 2C–bounded below.

Proof. Set A := graphF and apply Theorem 5.2 noting that x0 ∈ 2-dom F and
x0 ∈ 2C-dom F imply (M1) and (M1′) of Theorem 5.2, respectively. �

Theorem 6.10. Let X, Y , K, k0, F , S(x0), A0 be as in Theorem 6.9 and let (E1)
be satisfied. Then (E2) is in force if the following condition is satisfied:

(E2′) For every x ∈ X the set S(x) :=
{
x′ ∈ X : F (x′) + k0qΛ(x′, x) 2 F (x)

}
is

sequentially complete in X.

Proof. Follow the lines of the proof of Theorem 6.2. �

Remark 6.11. A map F : X → 2Y is called sequentially lower 2–semicontinuous
iff for every V ∈ 2Y the set {x′ ∈ X : F (x′) 2 V } is a sequentially closed subset of
X. Following arguments similar to those in Remark 6.3, we can prove that (E2’) of
Remark 6.10 is satisfied if F is sequentially lower 2–semicontinuous with 2–closed
values (for each x ∈ X, F (x)−K is a closed set).

Remark 6.12. Considerations similar to Remark 6.6, Lemma 6.7 and Theorem 6.8
can be done.
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6.3. Ekeland’s Principle with Point Relations and a Minimal Point The-
orem. In [14] we proved a minimal point theorem and its equivalence to a variant
of Ekeland’s principle for set-valued maps as well as many conclusions of them (e.g.
results of [3], [11], [10], [16], [21]). In this subsection we show that these theorems
are corollaries of Theorem 5.1 as well as of Theorem 5.2. We are concerned with
elements w = (wX , wY ) = (x, y) of the product space W = X × Y , X a separated
uniform space, Y a topological vector space. We introduce the ordering relation
�k0 on W using an element k0 ∈ K \ −cl K:

(19) (x1, y1) �k0 (x2, y2) ⇐⇒ y1 + k0qΛ (x1, x2) ≤K y2.

If K is a convex cone, �k0 is a reflexive and transitive relation. If K additionally
is pointed, the relation is also antisymmetric. See e.g. [11], [14]. Identifying an
element (x, y) ∈ X×Y with (x, {y}) ∈ X×2Y , we can easily see that �k0 coincides
with the above defined ordering 4k0 as well as with 2k0 .

The following corollary is a variant of Ekeland’s variational principle for set-
valued maps involving the ordering relation �k0 applied to elements of the set

grF := {(x, y) ∈ X × Y : y ∈ F (x)}
usually denoting the graph of F . Note the difference to the definition at the begin-
ning of Section 6.

Corollary 6.13. Let X be a separated uniform space, Y a topological vector space,
K ⊆ Y a convex cone and k0 ∈ K \−cl K. For the set-valued mapping F : X → 2Y ,
let w0 = (x0, y0) ∈ grF be given such that for the set A0 := {w ∈ grF : w �k0 w0}
the following assumptions are satisfied:

(E1) The set (A0)Y := {y ∈ Y : ∃x ∈ X : w = (x, y) ∈ A0} is ≤K–bounded below;
(E2) For every �k0–decreasing sequence {(xn, yn)}n∈N ⊆ A0 there exists some

point (x, y) ∈ A0 such that (x, y) �k0 (xn, yn) for all n ∈ N.
Then, there exists some point (x̄, ȳ) ∈ grF such that

(i) ȳ + k0qΛ(x̄, x0) ≤K y0;
(ii) If (x, y) ∈ grF and x 6= x̄, then there is λ ∈ Λ such that y+k0qλ(x, x̄) 6≤K ȳ.

Under the additional assumption (C) and if k0 ∈ K ∩ intC, (E1) can be relaxed to
(E1′) There exists some ỹ ∈ Y such that (A0)Y ∩ (ỹ − intC) = ∅ ;

and if k0 ∈ K \ {0} ⊆ intC then ȳ is ≤K–minimal in F (x̄).

Proof. Choose A = {(x, {y}) : (x, y) ∈ grF} and apply Theorem 5.1 or 5.2. �

The following corollary is a minimal point theorem in X×Y . Compare Theorem
9 in [14].

Corollary 6.14. Let X be a separated uniform space, Y a topological vector space,
K ⊆ Y a convex cone and k0 ∈ K \−cl K. Let A ⊆ W = X×Y such that for some
w0 ∈ A and for A0 := {w ∈ A : w �k0 w0} the following conditions are satisfied:

(M2) The set (A0)Y := {y ∈ Y : ∃x ∈ X : (x, y) ∈ A0} is ≤K–bounded below;
(M3) For every �k0–decreasing sequence {wn}n∈N ⊆ A0 there exists some w ∈ A0

such that w �k0 wn for all n ∈ N.
Then, there exists w̄ ∈ A such that
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(i) w̄ �k0 w0;
(ii)

(
ŵ ∈ A, ŵ �k0 w̄

)
=⇒ ŵX = w̄X .

Under the additional assumption (C) and if k0 ∈ K ∩ intC, (M2) can be replaced
by
(M2′) There exists some ỹ ∈ Y such that (A0)Y ∩ (ỹ − intC) = ∅.

If, in addition, k0 ∈ K \ {0} ⊆ intC then (ii) can be strengthened to

(ii′)
(
ŵ ∈ A, ŵ �k0 w̄

)
=⇒ ŵ = w̄, (i.e., w̄ is �k0–minimal in A).

Proof. Choose A = {(x, {y}) : (x, y) ∈ A} and apply Theorem 5.1 or 5.2. �

The equivalence of Corollary 6.13 and Corollary 6.14 as well as a fixed point the-
orem of Kirk-Caristi type has been established in [14]. Because of this equivalence
the minimal point theorem in X × Y can be understood as Ekeland’s principle for
set-valued maps with respect to an ordering relation for elements of grF ⊆ X × Y .

6.4. Ekeland’s Principle for Single-valued Maps. Finally, we present a con-
clusion for the case of a single-valued map f : X → Y . As above, identifying an
element y ∈ Y with {y} ∈ 2Y the ordering relations 4 and 2 coincide, hence the
following corollary may be deduced from Theorem 6.1 as well as from Theorem 6.9.
It is also possible to derive it from Corollary 6.13. As proposed in [11], [10], we
extend the space Y by an element ∞ such that y ≤K ∞ for all y ∈ Y . As usual,
the domain of f is said to be the set domf := {x ∈ X : f(x) 6= ∞}.

Corollary 6.15. Let X be a separated uniform space, Y a topological vector space,
K ⊆ Y a convex cone and k0 ∈ K \ −cl K. Let f : X → Y ∪ {∞} be a proper
function satisfying the conditions

(E1) f is ≤K–bounded below;
(E2) For every x ∈ dom f the set S(x) :=

{
x′ ∈ X : f(x′) + k0qΛ(x′, x) ≤K f(x)

}
is sequentially complete.

Then, for each x0 ∈ dom f there exists x̄ ∈ X such that
(i) f(x̄) + k0qΛ(x̄, x0) ≤K f(x0);
(ii) For all x ∈ X \ {x̄} there is λ ∈ Λ such that f(x) + k0qλ(x, x̄) 6≤K f(x̄).

Under the additional assumption (C) and if k0 ∈ K ∩ intC, (E1) can be replaced by
(E1′) There exists some ỹ ∈ Y such that f(S(x0)) ∩ (ỹ − intC) = ∅.

Proof. To apply Corollary 6.13 or Theorem 6.1 (and Remark 6.2) we may define
a set-valued function F : X → 2Y by setting F (x) := {f(x)} if f(x) 6= ∞ and
F (x) := ∅ else. A third variant of a proof can be given by setting F (x) := {f(x)} if
f(x) 6= ∞ and F (x) := Y else and applying Theorem 6.9 (and Remark 6.10). �

Taking into account Remark 6.6 and 6.12, respectively, we see that Corollary 6.15
is a generalization of Theorem 4 of [16] as well as Theorem 4 of [21]. It also covers
Corollary 2 of [11] as well as Corollary 2 of [10]. This shows that our minimal set
theorems are powerful generalizations of the minimal point theorems of [25], [10],
[11], [14].
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Figure 1. Relationships between the main results
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