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WEAK CONVERGENCE THEOREMS BY CESÁRO MEANS FOR
NONEXPANSIVE MAPPINGS AND

INVERSE-STRONGLY-MONOTONE MAPPINGS

HIDEAKI IIDUKA AND WATARU TAKAHASHI

Abstract. In this paper, we introduce an iterative scheme by Cesáro means
for finding a common element of the set of fixed points of a nonexpansive map-
ping and the set of solutions of the variational inequality for an inverse-strongly-
monotone mapping in a Hilbert space. Then we show that the sequence con-
verges weakly to a common element of two sets. Using this result, we obtain the
well-known nonlinear ergodic theorem which was proved by Baillon. Further we
consider the problem of finding a common fixed point of a nonexpansive mapping
and a strictly pseudocontractive mapping and so on.

1. Introduction

Let C be a closed convex subset of a real Hilbert space H and let PC be the
metric projection of H onto C. A mapping S of C into itself is called nonexpansive
if

‖Sx− Sy‖ ≤ ‖x− y‖
for all x, y ∈ C. We denote by F (S) the set of fixed points of S. In 1975, Baillon
[1] proved the first nonlinear ergodic theorem: Define

zn =
1
n

n∑
k=1

Sk−1x(1.1)

for every n = 1, 2, . . . and x ∈ C and suppose F (S) 6= ∅. Then the sequence {zn}
generated by (1.1) converges weakly to some element of F (S).

A mapping A of C into H is called monotone if for all x, y ∈ C, 〈x−y, Ax−Ay〉 ≥
0. We denote by V I(C,A)′ the set of solutions u ∈ C such that 〈v − u, Av〉 ≥ 0 for
all v ∈ C. For finding an element of V I(C,A)′, Bruck [3] introduced the following
iterative scheme: xn+1 = PC(xn − λnAxn) and

zn =
∑n

k=1 λkxk∑n
k=1 λk

(1.2)

for every n = 1, 2, . . ., where x1 = x ∈ C and {λn} is a sequence of positive real
numbers such that

∑∞
n=1 λn = ∞ and

∑∞
n=1 ‖λnAxn‖2 < ∞. He showed that the

sequence {zn} generated by (1.2) converges weakly to some element of V I(C,A)′.
The variational inequality problem is to find a u ∈ C such that

〈v − u, Au〉 ≥ 0
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for all v ∈ C. The set of solutions of the variational inequality is denoted by
V I(C,A). A mapping A of C into H is called inverse-strongly-monotone if there
exists a positive real number α such that

〈x− y, Ax−Ay〉 ≥ α‖Ax−Ay‖2

for all x, y ∈ C; see [4] and [8]. For such a case, A is called α-inverse-strongly-
monotone. For finding an element of F (S) ∩ V I(C,A), Takahashi and Toyoda [16]
introduced the following iterative scheme:

xn+1 = αnxn + (1− αn)SPC(xn − λnAxn)(1.3)

for every n = 1, 2, . . ., where x1 = x ∈ C, {αn} is a sequence in (0, 1) and {λn}
is a sequence in (0, 2α). They showed that the sequence {xn} generated by (1.3)
converges weakly to some element of F (S) ∩ V I(C,A).

In this paper, motivated by (1.1) and (1.3), we introduce an iterative scheme
by Cesáro means for finding a common element of the set of fixed points of a
nonexpansive mapping and the set of solutions of the variational inequality for an
inverse-strongly-monotone mapping in a Hilbert space. Then we show that the
sequence converges weakly to a common element of two sets. Using this result, we
obtain the well-known nonlinear ergodic theorem which was proved by Baillon [1].
Further we consider the problem of finding a common fixed point of a nonexpansive
mapping and a strictly pseudocontractive mapping and so on.

2. Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and let
C be a closed convex subset of H. We write xn ⇀ x to indicate that the sequence
{xn} converges weakly to x. xn → x implies that {xn} converges strongly to x.
For every point x ∈ H, there exists a unique nearest point in C, denoted by PCx,
such that ‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C. PC is called the metric projection of
H onto C. We know that PC is a nonexpansive mapping of H onto C. It is also
known that PC satisfies

(2.1) 〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2

for every x, y ∈ H. Moreover, PCx is characterized by the properties: PCx ∈ C and
〈x − PCx, PCx − y〉 ≥ 0 for all y ∈ C. In the context of the variational inequality
problem, this implies that

(2.2) u ∈ V I(C,A) ⇐⇒ u = PC(u− λAu)

for all λ > 0, where A is a monotone mapping of C into H. It is also known that
H satisfies Opial’s condition [10], i.e., for any sequence {xn} with xn ⇀ x, the
inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖
holds for every y ∈ H with y 6= x.

If A is an α-inverse-strongly-monotone mapping of C into H, then it is obvious
that A is 1/α-Lipschitz continuous. We also have that for all x, y ∈ C and λ > 0,

‖(I − λA)x− (I − λA)y‖2 = ‖(x− y)− λ(Ax−Ay)‖2

= ‖x− y‖2 − 2λ〈x− y, Ax−Ay〉+ λ2‖Ax−Ay‖2
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≤ ‖x− y‖2 + λ(λ− 2α)‖Ax−Ay‖2.(2.3)

So, if λ ≤ 2α, then I − λA is a nonexpansive mapping of C into H.
A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈ Tx

and g ∈ Ty imply 〈x− y, f − g〉 ≥ 0. A monotone mapping T : H → 2H is maximal
if the graph G(T ) of T is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping T is maximal if and only if for
(x, f) ∈ H ×H, 〈x − y, f − g〉 ≥ 0 for every (y, g) ∈ G(T ) implies f ∈ Tx. Let A
be an inverse-strongly-monotone mapping of C into H and let NCv be the normal
cone to C at v ∈ C, i.e., NCv = {w ∈ H : 〈v − u, w〉 ≥ 0,∀u ∈ C}, and define

Tv =
{

Av + NCv, v ∈ C,
∅, v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C,A); see Theorem
3 of [12].

3. Weak Convergence theorem

In this section, we prove a weak convergence theorem for nonexpansive mappings
and inverse-strongly-monotone mappings in a Hilbert space.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let A be
an α-inverse-strongly-monotone mapping of C into H and let S be a nonexpansive
mapping of C into itself such that F (S) ∩ V I(C,A) 6= ∅. Let {zn} be a sequence
generated by 

x1 = x ∈ C,
xn+1 = SPC(xn − λnAxn),

zn =
1
n

n∑
k=1

xk

for every n = 1, 2, . . ., where {λn} is chosen so that λn ∈ [a, b] for some a, b with
0 < a < b < 2α. Then {zn} converges weakly to z ∈ F (S) ∩ V I(C,A).

Proof. Put yn = PC(xn − λnAxn) for every n = 1, 2, . . .. Let u ∈ F (S) ∩ V I(C,A).
Since I − λnA is nonexpansive and u = PC(u− λnAu) from (2.2), we have

‖yn − u‖ = ‖PC(xn − λnAxn)− PC(u− λnAu)‖
≤ ‖(xn − λnAxn)− (u− λnAu)‖
≤ ‖xn − u‖(3.1)

for every n = 1, 2, . . .. From (2.2) and (2.3), we also have

‖yn − u‖2 = ‖PC(xn − λnAxn)− PC(u− λnAu)‖2

≤ ‖(xn − λnAxn)− (u− λnAu)‖2

≤ ‖xn − u‖2 + λn(λn − 2α)‖Axn −Au‖2

≤ ‖xn − u‖2 + a(b− 2α)‖Axn −Au‖2

for every n = 1, 2, . . .. So, we have

‖xn+1 − u‖2 = ‖Syn − u‖2
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≤ ‖yn − u‖2 ≤ ‖xn − u‖2 + a(b− 2α)‖Axn −Au‖2

≤ ‖xn − u‖2.(3.2)

Therefore, there exists limn→∞ ‖xn − u‖. Hence {xn}, {yn} and {zn} are bounded.
Since

−a(b− 2α)‖Axn −Au‖2 ≤ ‖xn − u‖2 − ‖xn+1 − u‖2,

we obtain ‖Axn −Au‖ → 0. From (2.1), we have

‖yn − u‖2 = ‖PC(xn − λnAxn)− PC(u− λnAu)‖2

≤ 〈(xn − λnAxn)− (u− λnAu), yn − u〉

=
1
2
{‖(xn − λnAxn)− (u− λnAu)‖2 + ‖yn − u‖2

− ‖(xn − λnAxn)− (u− λnAu)− (yn − u)‖2}

≤ 1
2
{‖xn − u‖2 + ‖yn − u‖2 − ‖(xn − yn)− λn(Axn −Au)‖2}

=
1
2
{‖xn − u‖2 + ‖yn − u‖2 − ‖xn − yn‖2

+ 2λn〈xn − yn, Axn −Au〉 − λ2
n‖Axn −Au‖2}

and hence

‖yn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖2

+ 2λn〈xn − yn, Axn −Au〉 − λ2
n‖Axn −Au‖2.

So, we have

‖xn+1 − u‖2 ≤ ‖yn − u‖2

≤ ‖xn − u‖2 − ‖xn − yn‖2

+ 2λn〈xn − yn, Axn −Au〉 − λ2
n‖Axn −Au‖2

and hence

‖xn − yn‖2 ≤ ‖xn − u‖2 − ‖xn+1 − u‖2 + 2λn〈xn − yn, Axn −Au〉.

So, we obtain ‖xn − yn‖ → 0.
As {zn} is bounded, we have that a subsequence {zni} of {zn} converges weakly

to z. We show z ∈ F (S) ∩ V I(C,A). Let us first show z ∈ V I(C,A). Let

Tv =
{

Av + NCv, v ∈ C,
∅, v /∈ C.

Then T is maximal monotone. Let (v, w) ∈ G(T ). Since w ∈ Tv = Av + NCv, we
have w −Av ∈ NCv. From xk ∈ C, we have

〈v − xk, w −Av〉 ≥ 0.

On the other hand, from yk = PC(xk−λkAxk), we have 〈v−yk, yk−(xk−λkAxk)〉 ≥
0 and hence 〈

v − yk,
yk − xk

λk
+ Axk

〉
≥ 0.
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Therefore, we have

〈v − xk, w〉 ≥ 〈v − xk, Av〉

≥ 〈v − xk, Av〉 −
〈
v − yk,

yk − xk

λk
+ Axk

〉
= 〈v − xk, Av −Axk〉+ 〈(v − xk)− (v − yk), Axk〉

−
〈
v − yk,

yk − xk

λk

〉
≥ 〈yk − xk, Axk〉 −

〈
v − yk,

yk − xk

λk

〉
≥

(
− ‖Axk‖ −

‖yk − v‖
λk

)
‖yk − xk‖

≥

(
−K − L

a

)
‖yk − xk‖

for every k = 1, 2, . . ., where K = sup{‖Axk‖ : k ∈ N} and L = sup{‖yk − v‖ : k ∈
N}. Hence we have

〈v − zn, w〉 ≥

(
−K − L

a

)
1
n

n∑
k=1

‖yk − xk‖.

Taking n = ni, from ‖xn − yn‖ → 0, we have 〈v − z, w〉 ≥ 0 as i → ∞. Since T
is maximal monotone, we obtain z ∈ T−10 and hence z ∈ V I(C,A). Let us show
z ∈ F (S). Let u ∈ V I(C,A). From (3.1), we have

‖xk+1 − Su‖ ≤ ‖yk − u‖ ≤ ‖xk − u‖
for every k = 1, 2, . . .. For u ∈ V I(C,A), we have

0 ≤ ‖xk − u‖2 − ‖xk+1 − Su‖2

= ‖xk − Su‖2 + 2〈xk − Su, Su− u〉
+ ‖Su− u‖2 − ‖xk+1 − Su‖2

for every k = 1, 2, . . .. Then

0 ≤ 1
n

(‖x− Su‖2 − ‖xn+1 − Su‖2) + 2〈zn − Su, Su− u〉+ ‖Su− u‖2.

Taking n = ni, we have, as i →∞,

0 ≤ 2〈z − Su, Su− u〉+ ‖Su− u‖2.

Putting u = z, we obtain 0 ≤ −‖Sz − z‖2 and hence z ∈ F (S). This implies
z ∈ F (S) ∩ V I(C,A).

Put un = PF (S)∩V I(C,A)xn. Let u ∈ F (S) ∩ V I(C,A). From (3.2), we have

‖xn+m − u‖2 ≤ ‖xn+m−1 − u‖2

≤ ‖xn+m−2 − u‖2 ≤ · · · ≤ ‖xn − u‖2

for every n, m = 1, 2, . . .. Then we have

‖xn+m − un‖2 ≤ ‖xn − un‖2.
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Since un+m = PF (S)∩V I(C,A)xn+m, we have∥∥∥xn+m − un + un+m

2

∥∥∥ ≥ ‖xn+m − un+m‖.

So, we have

‖un+m − un‖2 = ‖(un+m − xn+m) + (xn+m − un)‖2

= 2‖un+m − xn+m‖2 + 2‖xn+m − un‖2 − 4
∥∥∥xn+m − un + un+m

2

∥∥∥2

≤ 2‖xn+m − un‖2 − 2‖xn+m − un+m‖2

≤ 2‖xn − un‖2 − 2‖xn+m − un+m‖2

for every n, m = 1, 2, . . .. Therefore, {‖xn − un‖} is nonincreasing and hence there
exists limn→∞ ‖xn− un‖. So, {un} is a Cauchy sequence. Since F (S)∩ V I(C,A) is
closed, {un} converges strongly to w ∈ F (S) ∩ V I(C,A).

Finally, we show z = w. Since uk = PF (S)∩V I(C,A)xk and z ∈ F (S) ∩ V I(C,A),
we have

〈z − uk, uk − xk〉 ≥ 0

for every k = 1, 2, . . .. So, we have

〈z − w, xk − uk〉 = 〈z − uk, xk − uk〉+ 〈uk − w, xk − uk〉
≤ ‖uk − w‖‖xk − uk‖ ≤ M‖uk − w‖

for every k = 1, 2, . . ., where M = sup{‖xk − uk‖ : k ∈ N}. Hence we have〈
z − w, zn −

1
n

n∑
k=1

uk

〉
≤ M

n

n∑
k=1

‖uk − w‖.

Taking n = ni, from ‖un − w‖ → 0, we obtain 〈z − w, z − w〉 ≤ 0 as i → ∞ and
hence z = w. Therefore, we obtain zn ⇀ z. �

4. Applications

In this section, we prove some weak convergence theorems in a Hilbert space by
using Theorem 3.1. We first prove a nonlinear ergodic theorem which was obtained
by Baillon [1].

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H and let
S be a nonexpansive mapping of C into itself such that F (S) 6= ∅. Let {zn} be a
sequence generated by 

x1 = x ∈ C,

zn =
1
n

n∑
k=1

Sk−1x

for every n = 1, 2, . . .. Then {zn} converges weakly to z ∈ F (S).



WEAK CONVERGENCE THEOREMS BY CESÁRO MEANS 111

Proof. In Theorem 3.1, put Ax = 0 for all x ∈ C. Then A is inverse-strongly-
monotone. We have C = V I(C,A) and

xn+1 = SPC(xn − λnAxn)
= Sxn = Snx.

So, by Theorem 3.1, we obtain the desired result. �

Let C be a closed convex subset of a real Hilbert space H. Then a mapping
T : C → C is called strictly pseudocontractive if there exists p with 0 ≤ p < 1 such
that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + p‖(I − T )x− (I − T )y‖2

for all x, y ∈ C; see [11]. Put A = I − T . Then A is (1 − p)/2-inverse-strongly-
monotone; for the proof, see [16]. Using Theorem 3.1, we consider the problem of
finding a common fixed point of a nonexpansive mapping and a strictly pseudocon-
tractive mapping.

Theorem 4.2. Let C be a closed convex subset of a real Hilbert space H. Let T be
a p-strictly pseudocontractive mapping of C into itself and let S be a nonexpansive
mapping of C into itself such that F (S)∩F (T ) 6= ∅. Let {zn} be a sequence generated
by 

x1 = x ∈ C,
xn+1 = S((1− λn)xn + λnTxn),

zn =
1
n

n∑
k=1

xk

for every n = 1, 2, . . ., where {λn} is chosen so that λn ∈ [a, b] for some a, b with
0 < a < b < 1− p. Then {zn} converges weakly to z ∈ F (S) ∩ F (T ).

Proof. Put A = I − T . Then A is (1 − p)/2-inverse-strongly-monotone. We have
F (T ) = V I(C,A) and

xn+1 = SPC(xn − λnAxn)

= SPC(xn − λn(I − T )xn)

= S((1− λn)xn + λnTxn).

So, by Theorem 3.1, we obtain the desired result. �

Using Theorem 3.1, we also have the following:

Theorem 4.3. Let H be a real Hilbert space. Let A be an α-inverse-strongly-
monotone mapping of H into itself and let S be a nonexpansive mapping of H into
itself such that F (S) ∩A−10 6= ∅. Let {zn} be a sequence generated by

x1 = x ∈ H,
xn+1 = S(xn − λnAxn),

zn =
1
n

n∑
k=1

xk

for every n = 1, 2, . . ., where {λn} is chosen so that λn ∈ [a, b] for some a, b with
0 < a < b < 2α. Then {zn} converges weakly to z ∈ F (S) ∩A−10.
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Proof. We have A−10 = V I(H,A). So, putting PH = I, by Theorem 3.1, we obtain
the desired result. �

Remark. If A is strongly monotone and Lipschitz continuous, then A is inverse-
strongly-monotone. See Yamada [17] for the case when S is a nonexpansive map-
ping of a Hilbert space H into itself and A is a strongly monotone and Lipschitz
continuous mapping of H into itself.

Let f be a continuously Fréchet differentiable convex functional on H and let
∇f be the gradient of f . If ∇f is 1/α-Lipschitz continuous, then ∇f is α-inverse-
strongly-monotone; see [2]. Using Theorem 3.1, we have the following:

Theorem 4.4. Let C be a closed convex subset of a real Hilbert space H. Let f
be a continuously Fréchet differentiable convex functional on H and let ∇f be the
gradient of f such that C ∩ (∇f)−10 6= ∅. Suppose ∇f is 1/α-Lipschitz continuous.
Let {zn} be a sequence generated by

x1 = x ∈ H,
xn+1 = PC(xn − λn∇f(xn)),

zn =
1
n

n∑
k=1

xk

for every n = 1, 2, . . ., where {λn} is chosen so that λn ∈ [a, b] for some a, b with
0 < a < b < 2α. Then {zn} converges weakly to z ∈ C ∩ (∇f)−10.

Proof. We know from [2] that ∇f is an α-inverse-strongly-monotone mapping and
(∇f)−10 = V I(H,∇f). We also have C = F (PC). So, putting PH = I, by Theorem
3.1, we obtain the desired result. �
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