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PROXIMAL POINT ALGORITHMS WITH BREGMAN
FUNCTIONS IN BANACH SPACES

FUMIAKI KOHSAKA AND WATARU TAKAHASHI

Abstract. The proximal point algorithm is a well-known method for approxi-
mating a zero point of a given maximal monotone operator in Hilbert spaces. In
this paper, we propose two proximal-type algorithms with Bregman functions in
Banach spaces and, then, discuss the weak and strong convergence of the proposed
methods. Our results generalize the recently obtained weak and strong conver-
gence theorems due to Kohsaka–Takahashi and Kamimura–Kohsaka–Takahashi.
Applications to a convex minimization problem and a variational inequality prob-
lem are also included.

1. Introduction

A well-known method for approximating a zero point of a maximal monotone
operator defined in a Hilbert space is the proximal point algorithm first introduced
by Martinet [25] and generally studied by Rockafellar [37]. This is an iterative
procedure, which generates {xn} by x1 = x ∈ E and

(1) xn+1 = Jrnxn (n = 1, 2, . . . ),

where {rn} ⊂ (0,∞), T ⊂ E ×E is a maximal monotone operator in a real Hilbert
space E and Jr is the resolvent of T defined by Jr = (I + rT )−1 for all r > 0.
In 1976, Rockafellar [37] proved that if T−10 6= ∅ and lim infn rn > 0, then the
sequence generated by this method converges weakly to an element of T−10. In
particular, if T is the subdifferential ∂f of a proper lower semicontinuous convex
function f : E → (−∞,∞], then (1) is reduced to

(2) xn+1 = arg min
y∈E

{
f(y) +

1
2rn

‖y − xn‖2
}

(n = 1, 2, . . . ).

In this case, {xn} converges weakly to a minimizer of f .
Later, many researchers have studied the convergence of the proximal point al-

gorithms in Hilbert spaces; see, for instance, [6, 7, 15, 18, 23, 26, 27, 30, 39] and
the references mentioned there. In particular, Motivated by the iterative meth-
ods for nonexpansive mappings of Halpern’s type [16, 38, 44] and Mann’s type
[24, 32], Kamimura and Takahashi [18] introduced the following two proximal-type
algorithms in Hilbert spaces:

(3) xn+1 = αnx1 + (1− αn)Jrnxn (n = 1, 2, . . . )

and

(4) xn+1 = αnxn + (1− αn)Jrnxn (n = 1, 2, . . . ),
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where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞). They showed that the sequence generated
by (3) is strongly convergent to Px and the sequence generated by (4) is weakly
convergent to the strong limn Pxn, where P denotes the metric projection (the
nearest point projection) from E onto T−10 defined by

(5) P (x) = arg min
y∈T−10

‖y − x‖

for all x ∈ E. Subsequently, these results were generalized to accretive operators in
Banach spaces [19, 20]; see also Takahashi [40, 41].

Recently, Kamimura and Takahashi [21] generalized Solodov and Svaiter’s strong
convergence theorem [39] in a Hilbert space to that in a more general Banach space
including Lp (1 < p < ∞); see also Ohsawa and Takahashi [28] for another general-
ization of Solodov and Svaiter’s theorem. More recently, motivated by Kamimura
and Takahashi [21] and the convex combination based on Bregman distances due to
Censor and Reich [12], Kohsaka and Takahashi [22] and Kamimura, Kohsaka and
Takahashi [17] introduced the following proximal-type algorithms in a smooth and
uniformly convex Banach space:

(6) xn+1 = J−1(αnJ(x1) + (1− αn)J(Jrnxn)) (n = 1, 2, . . . )

and

(7) xn+1 = J−1(αnJ(xn) + (1− αn)J(Jrnxn)) (n = 1, 2, . . . ),

where J is the normalized duality mapping from E into E∗ and Jr = (J+rT )−1J for
all r > 0. If E is a Hilbert space, then J = I, where I is the identity operator on E,
and hence (6) and (7) are reduced to (3) and (4), respectively. Then they generalized
the previous results due to Rockafellar [37] and Kamimura and Takahashi [18] to
maximal monotone operators in Banach spaces. They made use of the generalized
projection P from E onto T−10 defined by

(8) P (x) = arg min
y∈T−10

{‖y‖2 − 2〈y, Jx〉+ ‖x‖2}

for all x ∈ E. If E is a Hilbert space, then (8) is reduced to (5).
On the other hand, many researchers have studied the proximal point algorithm

with Bregman functions [5]; see, for instance, [3, 4, 7, 8, 9, 10, 13, 29, 33] and
the references mentioned there. In particular, Otero and Svaiter [29] dealt with a
hybrid proximal-type method with Bregman functions in reflexive Banach spaces.
Their result extends the previous results according to Solodov and Svaiter [39] and
Kamimura and Takahashi [21]. They made use of the Bregman projection P from
E onto T−10 is defined by

(9) P (x) = arg min
y∈T−10

{g(y)− g(x)− 〈y − x,∇g(x)〉}

for all x ∈ E, where g is a Bregman function. In the case where g = ‖ · ‖2 in a
smooth and uniformly convex Banach space, (9) is reduced to (8).

The purpose of the present paper is to generalize the weak and strong convergence
theorems in [17, 22] with Bregman functions in reflexive Banach spaces. We propose
the following proximal-type algorithms:

(10) xn+1 = ∇g∗(αn∇g(x1) + (1− αn)∇g(Jrnxn)) (n = 1, 2, . . . )
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and

(11) xn+1 = ∇g∗(αn∇g(xn) + (1− αn)∇g(Jrnxn)) (n = 1, 2, . . . ),

where {αn} ⊂ [0, 1], {rn} ⊂ (0,∞), g : E → R is a Bregman function defined in a
reflexive Banach space E and Jr = (∇g + rT )−1∇g for all r > 0. In the particular
case where g = ‖ · ‖2/2 in a smooth and uniformly convex Banach space, (10) and
(11) are reduced to the (6) and (7), respectively.

Our paper is organized as follows. In Section 2, we state several definitions and
known results. In Section 4, using some lemmas proved in Section 3, we prove that
the sequence generated by (10) converges strongly to P (x), where P is the Bregman
projection from E onto T−10 (Theorem 4.1). In Section 5, we also prove that the
sequence generated by (11) converges weakly to the strong limn P (xn) (Theorem
5.2). The obtained results generalize the corresponding results due to Kohsaka and
Takahashi [22] and Kamimura, Kohsaka and Takahashi [17]. In Section 6, we apply
our results to a convex minimization problem and a variational inequality problem.
In Section 7, we give another proof of a lemma used in the definition of the resolvent
of a maximal monotone operator.

2. Preliminaries

Throughout this paper, we denote the set of real numbers and the set of positive
integers by R and N, respectively. Let E be a (real) Banach space with the dual
space E∗. We denote the value of x∗ ∈ E∗ at x ∈ E by 〈x, x∗〉. We denote the
strong convergence and the weak convergence of a sequence {xn} of E to x ∈ E
by xn → x and xn ⇀ x, respectively. We also denote the weak* convergence of a
sequence {x∗n} of E∗ to x∗ ∈ E∗ by x∗n

∗
⇀ x∗. For p ∈ (1,∞), the duality mapping

Jp from E into 2E∗
corresponding to the weight function ω(t) = tp−1 is defined by

(12) Jp(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x∗‖ = ‖x‖p−1}
for all x ∈ E. The mapping J2 is called the normalized duality mapping from E
into 2E∗

and it is denoted by J . If E is a Hilbert space, then J is coincident with
the identity operator I on E. A Banach space E is said to be strictly convex if
‖(x + y)/2‖ < 1 whenever x, y ∈ S and x 6= y, where S = {z ∈ E : ‖z‖ = 1}. The
space E is also said to be uniformly convex if for all ε ∈ (0, 2], there exists δ > 0
such that x, y ∈ S and ‖x− y‖ ≥ ε imply ‖(x+ y)/2‖ ≤ 1− δ. It is well-known that
every uniformly convex Banach space is strictly convex and reflexive. A Banach
space E is said to be smooth if

(13) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for all x, y ∈ S. The space E is also said to be uniformly smooth if the limit
(13) is attained uniformly in x, y ∈ S. It is known that E is uniformly convex if
and only if E∗ is uniformly smooth. It is also known that if E is reflexive, then E
is strictly convex if and only if E∗ is smooth; see, for instance, Cioranescu [14] or
Takahashi [43] for more details.

For a set-valued mapping T : E → 2E∗
with domain D(T ) = {x ∈ E : Tx 6=

∅} and range R(T ) =
⋃

x∈E Tx, we identify T with its graph G(T ) defined by
G(T ) = {(x, x∗) ∈ E × E∗ : x∗ ∈ Tx}. The mapping T ⊂ E × E∗ is said to be
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monotone if 〈x− y, x∗ − y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ T . It is also said to be
maximal monotone if its graph is not contained in the graph of any other monotone
operator on E. If T ⊂ E × E∗ is maximal monotone, then we can show that the
set T−10 = {z ∈ E : 0 ∈ Tz} is closed and convex. A function f : E → (−∞,∞] is
said to be proper if the domain D(f) = {x ∈ E : f(x) < ∞} is nonempty. It is also
said to be lower semicontinuous if {x ∈ E : f(x) ≤ r} is closed for all r ∈ R. The
function f is also said to be convex if

(14) f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y)

for all x, y ∈ E and α ∈ (0, 1). It is also said to be strictly convex if the strict
inequality holds in (14) for all x, y ∈ D(f) with x 6= y and α ∈ (0, 1). For a proper
lower semicontinuous convex function f : E → (−∞,∞], the subdifferential ∂f of
f is defined by

∂f(x) = {x∗ ∈ E∗ : f(x) + 〈y − x, x∗〉 ≤ f(y) (∀y ∈ E)}
for all x ∈ E. Rockafellar’s theorem [34, 35] ensures that ∂f ⊂ E × E∗ is maximal
monotone. If p ∈ (1,∞) and g is defined by g(x) = ‖x‖p/p for all x ∈ E, then
∂g = Jp. The following theorem is also well-known: If f : E → (−∞,∞] is a
proper lower semicontinuous convex function and g : E → R is a continuous convex
function, then ∂(f + g) = ∂f + ∂g. For a proper lower semicontinuous convex
function f : E → (−∞,∞], the conjugate function f∗ of f is defined by

f∗(x∗) = sup
x∈E

{〈x, x∗〉 − f(x)}

for all x∗ ∈ E∗. It is known that f(x) + f∗(x∗) ≥ 〈x, x∗〉 for all (x, x∗) ∈ E×E∗. It
is also known that (x, x∗) ∈ ∂f is equivalent to

(15) f(x) + f∗(x∗) = 〈x, x∗〉.
We also know that if f : E → (−∞,∞] is a proper lower seimicontinuous function,
then f∗ : E∗ → (−∞,∞] is a proper weak* lower semicontinuous convex function;
see Phelps [31] or Takahashi [42] for more details on convex analysis.

Let g : E → R be a convex function. Then the directional derivative d+g(x)(y)
of g at x ∈ E with the direction y ∈ E is defined by

d+g(x)(y) = lim
t↓0

g(x + ty)− g(x)
t

.

The function g is said to be Gâteaux differentiable at x if d+g(x) ∈ E∗ for all x ∈ E.
In this case, we denote d+g(x) by ∇g(x). The function g is also said to be Fréchet
differentiable at x ∈ E if for all ε > 0, there exists δ > 0 such that ‖y − x‖ ≤ δ
implies

|g(y)− g(x)− 〈y − x,∇g(x)〉| ≤ ε‖y − x‖.
A convex function g : E → R is said to be Gâteaux differentiable (Fréchet differ-
entiable, respectively) if it is Gâteaux differentiable everywhere (Fréchet differen-
tiable at everywhere, respectively). We know that if a continuous convex function
g : E → R is Gâteaux differentiable, then ∇g is norm-to-weak* continuous. We
also know that if g is Fréchet differentiable, then ∇g is norm-to-norm continuous;
see Butnariu and Iusem [10]. The mapping ∇g is said to be weakly sequentially
continuous if zn ⇀ z implies ∇g(zn) ∗

⇀ ∇g(z).



PROXIMAL POINT ALGORITHMS WITH BREGMAN FUNCTIONS 509

Let E be a Banach space and let g : E → R be a convex and Gâteaux differentiable
function. Then the Bregman distance [5, 11] corresponding to g is defined by

D(x, y) = g(x)− g(y)− 〈x− y,∇g(y)〉

for all x, y ∈ E. It is obvious that D(x, y) ≥ 0 for all x, y ∈ E. The function g is
also said to be strongly coercive if

‖zn‖ → ∞ =⇒ g(zn)
‖zn‖

→ ∞.

It is also said to be bounded on bounded sets if g(U) is bounded for each bounded
subset U of E. The following definition is slightly different from that in Butnariu
and Iusem [10]:

Definition 2.1. Let E be a Banach space. Then a function g : E → R is said to
be a Bregman function if the following conditions are satisfied:

(1) g is continuous, strictly convex and Gâteaux differentiable;
(2) the set {y ∈ E : D(x, y) ≤ r} is bounded for all x ∈ E and r > 0.

The following lemma follows from Butnariu and Iusem [10] and Zălinescu [46]:

Lemma 2.2. Let E be a reflexive Banach space and let g : E → R be a strongly
coercive Bregman function. Then

(1) ∇g : E → E∗ is one-to-one, onto and norm-to-weak* continuous;
(2) 〈x− y,∇g(x)−∇g(y)〉 = 0 if and only if x = y;
(3) {x ∈ E : D(x, y) ≤ r} is bounded for all y ∈ E and r > 0;
(4) D(g∗) = E∗, g∗ is Gâteaux differentiable and ∇g∗ = (∇g)−1;

If C is a nonempty closed convex subset of a reflexive Banach space E and
g : E → R is a strongly coercive Bregman function, then for each x ∈ E, there
exists a unique x0 ∈ C such that

D(x0, x) = min
y∈C

D(y, x).

The Bregman projection PC from E onto C is defined by PC(x) = x0 for all x ∈ E.
It is well-known that x0 = PC(x) if and only if

(16) 〈y − x0,∇g(x)−∇g(x0)〉 ≤ 0

for all y ∈ C. It is also known that PC has the following property:

(17) D(u, PCx) + D(PCx, x) ≤ D(u, x)

for all u ∈ C and x ∈ E; see, for instance, Butnariu and Iusem [10] for more details.
Let E be a Banach space. The closed unit ball and the unit sphere of E are

denoted by B and S, respectively. We also denote rB the set {z ∈ E : ‖z‖ ≤ r} for
all r > 0. Then a function g : E → R is said to be uniformly convex on bounded sets
[46, pp.203, 221] if ρr(t) > 0 for all r, t > 0, where ρr : [0,∞) → [0,∞] is defined by

(18) ρr(t) = inf
x,y∈rB, ‖x−y‖=t, α∈(0,1)

αg(x) + (1− α)g(y)− g(αx + (1− α)y)
α(1− α)
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for all t ≥ 0. It is known that ρr is a nondecreasing function. The function g is also
said to be uniformly smooth on bounded sets [46, pp.207, 221] if limt↓0 σr(t)/t = 0
for all r > 0, where σr : [0,∞) → [0,∞] is defined by

(19) σr(t) = sup
x∈rB, y∈S, α∈(0,1)

αg(x + (1− α)ty) + (1− α)g(x− αty)− g(x)
α(1− α)

for all t ≥ 0. We know the following theorems; see Zălinescu [46, Propositions 3.6.3,
3.6.4]:

Theorem 2.3. Let E be a reflexive Banach space and let g : E → R be a continuous
convex function which is strongly coercive. Then the following are equivalent:

(1) g is bounded on bounded sets and uniformly smooth on bounded sets;
(2) g is Fréchet differentiable and ∇g is uniformly norm-to-norm continuous on

bounded sets;
(3) D(g∗) = E∗, g∗ is strongly coercive and uniformly convex on bounded sets.

Theorem 2.4. Let E be a reflexive Banach space and let g : E → R be a continuous
convex function which is bounded on bounded sets. Then the following are equivalent:

(1) g is strongly coercive and uniformly convex on bounded sets;
(2) D(g∗) = E∗, g∗ is bounded on bounded sets and uniformly smooth on

bounded sets;
(3) D(g∗) = E∗, g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-norm

continuous on bounded sets.

We also know the following theorem; see Zălinescu [46, Theorems 3.7.7, 3.7.8]:

Theorem 2.5. Let E be a Banach space, let p ∈ (1,∞) and let g = ‖ · ‖p/p. Then
(1) E is uniformly convex if and only if g is uniformly convex on bounded sets;
(2) E is uniformly smooth if and only if g is uniformly smooth on bounded sets.

Let E be a reflexive Banach space, let T ⊂ E × E∗ be a maximal monotone
operator and let g : E → R be a convex, continuous, strongly coercive and Gâteaux
differentiable function which is bounded on bounded sets. Applying Lemma 7.1 in
Section 7, for all x ∈ E and r > 0, there exists z ∈ E such that

(20) ∇g(x) ∈ ∇g(z) + rTz;

see also Otero and Svaiter [29]. If g is additionally assumed to be strictly convex,
then ∇g is strictly monotone, that is 〈x− y,∇g(x)−∇g(y)〉 = 0 implies x = y; see
Butnariu and Iusem [10, p.13]. Hence such a z is uniquely determined and hence
we can define the resolvent Jr : E → D(T ) of T corresponding to g by Jrx = z
for all x ∈ E. In other words, Jr = (∇g + rT )−1∇g. The Yosida approximation
Ar : E → E is also defined by

Ar(x) = (∇g(x)−∇g(Jrx))/r

for all x ∈ E. It is obvious that (Jrx,Arx) ∈ T for all x ∈ E and r > 0. It is also
known that if T−10 is nonempty, then each Jr has the following property:

(21) D(u, Jrx) + D(Jrx, x) ≤ D(u, x)

for all u ∈ T−10 and x ∈ E.
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3. Lemmas

Using an idea by Kamimura and Takahashi [21], we first prove the following
lemma:

Lemma 3.1. Let E be a Banach space and let g : E → R be a Gâteaux differentiable
function which is uniformly convex on bounded sets. If {xn} and {yn} are bounded
sequences in E and limn D(xn, yn) = 0, then limn ‖xn − yn‖ = 0.

Proof. Let r be a positive real number such that ‖xn‖ ≤ r and ‖yn‖ ≤ r for all
n ∈ N. Let ρr be the function defined as in (18). Then we have

g(αx + (1− α)y) + α(1− α)ρr(‖x− y‖) ≤ αg(x) + (1− α)g(y)

for all x, y ∈ rB and α ∈ (0, 1). If x, y ∈ rB and α ∈ (0, 1), then we have

g(y + α(x− y))− g(y)
α

≤ g(x)− g(y)− (1− α)ρr(‖x− y‖).

Tending α → 0, we have

〈x− y,∇g(y)〉 ≤ g(x)− g(y)− ρr(‖x− y‖).
This implies that ρr(‖xn − yn‖) ≤ D(xn, yn) for all n ∈ N. Thus

lim
n→∞

ρr(‖xn − yn‖) = 0.

Then we can show that limn ‖xn − yn‖ = 0. In fact, if not, we have ε0 > 0 and
a subsequence {ni} of {n} such that ‖xni − yni‖ ≥ ε0 for all i ∈ N. Since ρr is
nondecreasing, we have ρr(‖xni − yni‖) ≥ ρr(ε0) for all i ∈ N. Tending i → ∞,
we have 0 ≥ ρg,r(ε0). This contradicts to the uniform convexity of g on bounded
sets. �

We can also prove the following lemmas:

Lemma 3.2. Let E be a reflexive Banach space, let g : E → R be a strongly coercive
Bregman function and let V be the function defined by

(22) V (x, x∗) = g(x)− 〈x, x∗〉+ g∗(x∗)

for all x ∈ E and x∗ ∈ E∗. Then

D(x,∇g∗(x∗)) = V (x, x∗)

for all x ∈ E and x∗ ∈ E∗.

Proof. Let x ∈ E and x∗ ∈ E∗. Since x∗ = ∇g(∇g∗(x∗)) = ∂g(∇g∗(x∗)), it follows
from from (15) that

g(∇g∗(x∗)) + g∗(x∗) = 〈∇g∗(x∗), x∗〉.
Thus we have

D(x,∇g∗(x∗)) = g(x)− g(∇g∗(x∗))− 〈x−∇g∗(x∗), x∗〉
= g(x) + g∗(x∗)− 〈∇g∗(x∗), x∗〉 − 〈x−∇g∗(x∗), x∗〉
= g(x)− 〈x, x∗〉+ g∗(x∗) = V (x, x∗).

This completes the proof. �
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Lemma 3.3. Let E be a reflexive Banach space, let g : E → R be a strongly coercive
Bregman function and let V be the function defined as in (22). Then

V (x, x∗) + 〈∇g∗(x∗)− x, y∗〉 ≤ V (x, x∗ + y∗)

for all x ∈ E and x∗, y∗ ∈ E∗.

Proof. Let x ∈ E be given and let p be the function defined p(x∗) = V (x, x∗) for
all x∗ ∈ E∗. Then we have ∂p(x∗) = −x +∇g∗(x∗) for all x∗ ∈ E∗. Hence we have
the desired inequality. �

4. Strongly Convergent Proximal-Type Algorithm

Now, we can prove the following strong convergence theorem:

Theorem 4.1. Let E be a reflexive Banach space, let T ⊂ E × E∗ be a maximal
monotone operator and let g : E → R be a strongly coercive Bregman function which
is uniformly convex on bounded sets and bounded on bounded sets. Let Jr be the
resolvent of T for all r > 0 and let {xn} be a sequence generated by x1 = x ∈ E and

xn+1 = ∇g∗(αn∇g(x) + (1− αn)∇g(Jrnxn)) (n = 1, 2, . . . ),

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy limn αn = 0,
∑∞

n=1 αn = ∞ and
limn rn = ∞. If T−10 6= ∅, then the sequence {xn} converges strongly to P (x),
where P is the Bregman projection from E onto T−10.

Proof. Put yn = Jrnxn for all n ∈ N. By Lemma 3.2, we have

(23) D(Px, xn+1) = V (Px, αn∇g(x) + (1− αn)∇g(yn))

for all n ∈ N. By Lemma 3.2 and the convexity of V in the second variable, we have

V (Px, αn∇g(x) + (1− αn)∇g(yn)) ≤ αnV (Px,∇g(x)) + (1− αn)V (Px,∇g(yn))
(24)

= αnD(Px, x) + (1− αn)D(Px, yn)

Using (21), we have

(25) D(Px, yn) ≤ D(Px, xn).

It follows from (23), (24) and (25) that

D(Px, xn+1) ≤ αnD(Px, x) + (1− αn)D(Px, xn)

for all n ∈ N. Thus we have

D(Px, xn) ≤ D(Px, x)

for all n ∈ N. By assumption, the set {y ∈ E : D(Px, y) ≤ D(Px, x)} is bounded
and hence {xn} is bounded. It also follows from (25) that {yn} is bounded.

Put zn = xn+1 for all n ∈ N. We next show that

(26) lim sup
n→∞

〈xn − Px,∇g(x)−∇g(Px)〉 ≤ 0.

In fact, we have a subsequence {zni} of {zn} and z ∈ E such that zni ⇀ z and

lim sup
n→∞

〈xn − Px,∇g(x)−∇g(Px)〉 = 〈z − Px,∇g(x)−∇g(Px)〉.



PROXIMAL POINT ALGORITHMS WITH BREGMAN FUNCTIONS 513

In view of (16), to show (26), it is sufficient to show that z is an element of T−10.
By the definition of {xn}, we have

∇g(zn)−∇g(yn) = αn(∇g(x)−∇g(yn))

for all n ∈ N. Since g is bounded on bounded sets, ∇g is also bounded on bounded
sets; see Butnariu and Iusem [9, p.16]. This implies that {∇g(yn)} is bounded.
Hence

lim
n→∞

‖∇g(zn)−∇g(yn)‖ = 0.

Since g is strongly coercive and uniformly convex on bounded sets, it follows from
Theorem 2.4 that ∇g∗ is uniformly norm-to-norm continuous on every bounded
subset of E∗. Thus we have

lim
n→∞

‖zn − yn‖ = lim
n→∞

‖∇g∗(∇g(zn))−∇g∗(∇g(yn))‖ = 0.

This implies that {yni} also converges weakly to z. On the other hand, we have
from limn rn = ∞ that

lim
n→∞

‖Arnxn‖ = lim
n→∞

1
rn
‖∇g(xn)−∇g(yn)‖ = 0.

If (w,w∗) ∈ T , then it follows from (yn, Arnxn) ∈ T and the monotonicity of T that

〈w − yn, w∗ −Arnxn〉 ≥ 0

for all n ∈ N. Tending ni →∞, we have

〈w − z, w∗〉 ≥ 0.

By the maximality of T , we have z ∈ T−10.
Fix ε > 0. Then, using (26), we have m ∈ N such that

(27) 〈xn − Px,∇g(x)−∇g(Px)〉 < ε

for all n ≥ m. By Lemma 3.3, (25) and (27) we have

D(Px, xn+1)

= V (Px, αn∇g(x) + (1− αn)∇g(yn))

≤ V (Px, αn∇g(x) + (1− αn)∇g(yn)− αn(∇g(x)−∇g(Px)))

− 〈xn+1 − Px,−αn(∇g(x)−∇g(Px))〉
≤ V (Px, αn∇g(Px) + (1− αn)∇g(yn)) + αnε

≤ αnV (Px,∇g(Px)) + (1− αn)V (Px,∇g(yn)) + αnε

= (1− αn)D(Px, yn) + αnε

≤ ε{1− (1− αn)}+ (1− αn)D(Px, xn)

for all n ≥ m. Using this, we can show that

D(Px, xn+1)

≤ ε{1− (1− αn)}+ (1− αn)
[
ε{1− (1− αn−1)}+ (1− αn−1)D(Px, xn−1)

]
= ε{1− (1− αn)(1− αn−1)}+ (1− αn)(1− αn−1)D(Px, xn−1)
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≤ · · · ≤ ε
{

1−
n∏

i=m

(1− αi)
}

+
n∏

i=m

(1− αi)D(Px, xm)

for all n ≥ m. On the other hand,
∑∞

i=1 αi = ∞ implies
∏∞

i=1(1 − αi) = 0. Hence
we obtain

lim sup
n→∞

D(Px, xn) ≤ ε.

and hence lim supn D(Px, xn) ≤ 0. Thus limn D(Px, xn) = 0. Using Lemma 3.1,
we have limn ‖Px− xn‖ = 0. This completes the proof. �

Using Theorem 4.1, we can prove the following strong convergence theorem in a
smooth and uniformly convex Banach space. In the case of p = 2, this corollary is
reduced to the strong convergence theorem due to Kohsaka and Takahashi [22].

Corollary 4.2. Let E be a smooth and uniformly convex Banach space and let
T ⊂ E ×E∗ be a maximal monotone operator. Let p ∈ (1,∞), let Jp be the duality
mapping from E into E∗ corresponding to the weight function ω(t) = tp−1 and let
Qr = (Jp + rT )−1Jp for all r > 0. Let {xn} be a sequence generated by x1 = x ∈ E
and

xn+1 = J−1
p (αnJp(x) + (1− αn)Jp(Qrnxn)) (n = 1, 2, . . . ),

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy limn αn = 0,
∑∞

n=1 αn = ∞ and
limn rn = ∞. If T−10 6= ∅, then the sequence {xn} converges strongly to P (x),
where P is the Bregman projection from E onto T−10 corresponding to the Bregman
function g = ‖ · ‖p/p.

Proof. Since E is strictly convex and smooth, g is also strictly convex and Gâteaux
differentiable. It is obvious that g is bounded on bounded sets and strongly coercive.
Let x ∈ E and r > 0. Then we next show that A = {y ∈ E : D(x, y) ≤ r} is
bounded. In fact, if not, then A contains a sequence {yn} such that limn ‖yn‖ = ∞.
On the other hand, we have

D(x, yn) = ‖x‖p/p− ‖yn‖p/p− 〈x− yn, Jp(yn)〉
= ‖x‖p/p− ‖yn‖p/p− 〈x, Jp(yn)〉+ ‖yn‖‖Jpyn‖
≥ ‖x‖p/p + (1− 1/p)‖yn‖p − ‖x‖‖yn‖p−1

= ‖x‖p/p + ‖yn‖p−1{(1− 1/p)‖yn‖ − ‖x‖}

for all n ∈ N. This implies that limn D(x, yn) = ∞. This is a contradiction.
Hence A is bounded and hence g is a Bregman function in the sense of Definition
2.1. By Theorem 2.5, g is uniformly convex on bounded sets. We also know that
∇g∗ = (∇g)−1 = J−1

p . Therefore, we have the desired result from Theorem 4.1. �

5. Weakly Convergent Proximal-Type Algorithm

In this section, we first prove the following lemma:

Lemma 5.1. Let E be a reflexive Banach space, let T ⊂ E×E∗ be a maximal mono-
tone operator such that T−10 6= ∅ and let g : E → R be a strongly coercive Bregman
function which is uniformly convex on bounded sets and bounded on bounded sets.
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Let P be the Bregman projection from E onto T−10, let Jr be the resolvent of T for
all r > 0 and let {xn} be a sequence generated by x1 = x ∈ E and

xn+1 = ∇g∗(αn∇g(xn) + (1− αn)∇g(Jrnxn)) (n = 1, 2, . . . ),

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞). Then the sequence {P (xn)} converges
strongly to an element of T−10, which is the unique element z satisfying

lim
n→∞

D(z, xn) = min
y∈T−10

lim
n→∞

D(y, xn).

Proof. Let u ∈ T−10 be given. As in the proof of Theorem 4.1, we can show that

D(u, xn+1) ≤ αnD(u, xn) + (1− αn)D(u, yn)(28)

≤ D(u, xn)

for all n ∈ N. Hence the limit limn D(u, xn) exists and hence {xn} and {yn} are
bounded. By the definition of P and (28), we can show that

D(Pxn+1, xn+1) ≤ D(Pxn, xn)

for all n ∈ N and hence the limit limn D(Pxn, xn) exits. If m > n, then it follows
from (17) and (28) that

D(Pxn, Pxm) ≤ D(Pxn, xm)−D(Pxm, xm)(29)

≤ D(Pxn, xn)−D(Pxm, xm).

Then we show that {Pxn} is a Cauchy sequence. In fact, if not, we have ε0 > 0
and subsequences {ni} and {mi} of {n} such that

(30) ‖Pxni − Pxmi‖ ≥ ε0

for all i ∈ N. It follows from (17) that {Pxn} is bounded. Let r = supn ‖Pxn‖.
Then, as in the proof of Lemma 3.1, we have

(31) ρr(‖Pxn − Pxm‖) ≤ D(Pxn, Pxm)

for all m,n ∈ N. On the other hand, by the existence of limn D(Pxn, xn) and (29),
we have n0 ∈ N such that

(32) D(Pxn, Pxm) < ρr(ε0)

for all m,n ∈ N with m > n ≥ n0. Thus it follows from (31) and (32) that

ρr(‖Pxn − Pxm‖) < ρr(ε0)

for all m,n ∈ N with m > n ≥ n0. This contradicts to (30) and hence {Pxn} is a
Cauchy sequence. Since T−10 is closed, {Pxn} converges strongly to an element z
of T−10.

We next show that z is a minimizer of the continuous convex function h : T−10 →
R defined by

h(y) = lim
n→∞

D(y, xn)

for all y ∈ T−10. If n ∈ N and y ∈ T−10, then we have

h(Pxn) = lim
m→∞

D(Pxn, xm) ≤ D(Pxn, xn) ≤ D(y, xn).
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Tending n →∞, we have

h(z) ≤ lim
n→∞

D(y, xn) = h(y).

Thus z is a minimizer of h. We finally show that z is the unique minimizer of g. If
not, there exists y1, y2 ∈ T−10 such that y1 6= y2 and

h(y1) = h(y2) = min
y∈T−10

h(y) = `.

Then we have

g
(y1 + y2

2

)
≤ 1

2
(g(y1) + g(y2))−

1
4
ρs(‖y1 − y2‖),

where s = max{‖y1‖, ‖y2‖}. This implies that

h
(y1 + y2

2

)
= lim

n→∞
D

(y1 + y2

2
, xn

)
= lim

n→∞

{
g
(y1 + y2

2

)
− g(xn)−

〈y1 + y2

2
− xn,∇g(xn)

〉}
≤ lim

n→∞

{1
2
(D(y1, xn) + D(y2, xn))− 1

4
ρs(‖y1 − y2‖)

}
= `− 1

4
ρs(‖y1 − y2‖).

Therefore we have h((y1 + y2)/2) < ` ≤ h((y1 + y2)/2). This is a contradiction. �

Using Lemma 5.1, we next show the following weak convergence theorem:

Theorem 5.2. Let E be a reflexive Banach space, let T ⊂ E × E∗ be a maximal
monotone operator and let g : E → R be a strongly coercive Bregman function which
is uniformly smooth on bounded sets, uniformly convex on bounded sets and bounded
on bounded sets. Let Jr be the resolvent of T for all r > 0 and let {xn} be a sequence
generated by x1 = x ∈ E and

xn+1 = ∇g∗(αn∇g(xn) + (1− αn)∇g(Jrnxn)) (n = 1, 2, . . . ),

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy lim supn αn < 1 and lim infn rn > 0.
If T−10 6= ∅, then the sequence {xn} is bounded and each weak subsequential limit of
{xn} belongs to T−10. Further, if ∇g is weakly sequentially continuous, then {xn}
converges weakly to the strong limn P (xn), where P is the Bregman projection from
E onto T−10.

Proof. Let u ∈ T−10 be given and put yn = Jrnxn for all n ∈ N. Then, as in the
proof of Lemma 5.1, we can show that limn D(u, xn) exists and {xn} is bounded.
Using (21) and Lemmas 3.2 and 3.3, we can also show that

D(u, xn+1) ≤ αnD(u, xn) + (1− αn)D(u, yn)

≤ αnD(u, xn) + (1− αn)(D(u, xn)−D(yn, xn))

= D(u, xn)− (1− αn)D(yn, xn)

for all n ∈ N. Hence we have

(1− αn)D(yn, xn) ≤ D(u, xn)−D(u, xn+1)
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for all n ∈ N. By the existence of limn D(u, xn) and lim supn αn < 1, we have
limn D(yn, xn) = 0. Using Lemma 3.1, we obtain

(33) lim
n→∞

‖yn − xn‖ = 0.

Since g is bounded on bounded sets and uniformly smooth on bounded sets, by
Theorem 2.3, ∇g is uniformly norm-to-norm continuous on every bounded subsets
of E and hence

lim
n→∞

‖∇g(yn)−∇g(xn)‖ = 0.

By lim infn rn > 0, we have

lim
n
‖Arnxn‖ = lim

n→∞

1
rn
‖∇g(xn)−∇g(yn)‖ = 0.

Let {xni} be a subsequence of {xn} converging weakly to an element w of E. Then
it follows from (33) that {yni} is also weakly convergent to w. If (v, v∗) ∈ T , then
we have from (yn, Arnxn) ∈ T and the monotonicity of T that

〈v − yn, v∗ −Arnxn〉 ≥ 0

for all n ∈ N. Tending ni → ∞, we have 〈v − w, v∗〉 ≥ 0. Since T is maximal, we
obtain w ∈ T−10.

We finally show that if ∇g is weakly sequentially continuous, then {xn} converges
weakly to w = limn Pxn. By (16) and w ∈ T−10, we have

〈w − Pxn,∇g(xn)−∇g(Pxn)〉 ≤ 0

for all n ∈ N. Lemma 5.1 implies that {Pxn} is strongly convergent to an element
z of T−10. Since {xni} is weakly convergent to w and ∇g is weakly sequentially
continuous, {∇g(xni)} is also weakly convergent to ∇g(w). Thus we have

〈w − z,∇g(w)−∇g(z)〉 ≤ 0.

Using Lemma 2.2, we have w = z. Therefore {xn} converges weakly to z =
limn Pxn. �

If αn = 0 for all n ∈ N in Theorem 5.2, we have the following corollary for the
proximal point algorithm of Rockafellar’s type [37]:

Corollary 5.3. Let E be a reflexive Banach space, let T ⊂ E × E∗ be a maximal
monotone operator and let g : E → R be a strongly coercive Bregman function which
is uniformly smooth on bounded sets, uniformly convex on bounded sets and bounded
on bounded sets. Let Jr be the resolvent of T for all r > 0 and let {xn} be a sequence
generated by x1 = x ∈ E and

xn+1 = Jrnxn (n = 1, 2, . . . ),

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy lim supn αn < 1 and lim infn rn > 0.
If T−10 6= ∅, then the sequence {xn} is bounded and each weak subsequential limit of
{xn} belongs to T−10. Further, if ∇g is weakly sequentially continuous, then {xn}
converges weakly to the strong limn P (xn), where P is the Bregman projection from
E onto T−10.
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As in the proof of Corollary 4.2, we can deduce the following corollary from
Theorem 5.2. In the case of p = 2, this corollary is reduced to the weak convergence
theorem due to Kamimura, Kohsaka and Takahashi [17].

Corollary 5.4. Let E be a uniformly smooth and uniformly convex Banach space
and let T ⊂ E ×E∗ be a maximal monotone operator. Let p ∈ (1,∞), let Jp be the
duality mapping from E into E∗ corresponding to the weight function ω(t) = tp−1

and let Qr = (Jp + rT )−1Jp for all r > 0. Let {xn} be a sequence generated by
x1 = x ∈ E and

xn+1 = J−1
p (αnJp(xn) + (1− αn)Jp(Qrnxn)) (n = 1, 2, . . . ),

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy lim supn αn < 1 and lim infn rn > 0.
If T−10 6= ∅, then the sequence {xn} is bounded and each weak subsequential limit
of {xn} belongs to T−10. Further, if Jp is weakly sequentially continuous, then {xn}
converges weakly to the strong limn P (xn), where P is the Bregman projection from
E onto T−10 corresponding to the Bregman function g = ‖ · ‖p/p.

6. Applications

Using Theorem 4.1, we first study a convex minimization problem in a Banach
space.

Corollary 6.1. Let E be a reflexive Banach space, let f : E → (−∞,∞] be a
proper lower semicontinuous convex function and let g : E → R be a strongly
coercive Bregman function which is uniformly convex on bounded sets and bounded
on bounded sets. Let {xn} be a sequence generated by x1 = x ∈ E andyn = arg miny∈E

{
f(y) +

1
rn

D(y, xn)
}

;

xn+1 = ∇g∗(αn∇g(x) + (1− αn)∇g(yn)) (n = 1, 2, . . . ),

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy limn αn = 0,
∑∞

n=1 αn = ∞ and
limn rn = ∞. If (∂f)−1(0) 6= ∅, then the sequence {xn} converges strongly to
P(∂f)−1(0)(x).

Proof. By Rockafellar’s theorem [34, 35], ∂f is a maximal monotone operator. Let
r > 0 and let Jr be the resolvent of ∂f . Then xr = Jrx is equivalent to

0 ∈ ∂f(xr) +
1
r
(∇g(xr)−∇g(x))

= ∂
(
f +

1
r
(g −∇g(x))

)
(xr),

which is also equivalent to

xr = arg min
y∈E

{
f(y) +

1
r
(g(y)− 〈y,∇g(x)〉)

}
= arg min

y∈E

{
f(y) +

1
r
D(y, x)

}
.

This implies that yn = Jrnxn for all n ∈ N. Thus, by Theorem 4.1, we have the
desired result. �
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We next study a variational inequality problem in a Banach space. Let C be a
nonempty closed convex subset of a Banach space E and let A be a single-valued
monotone operator form C into E∗. The operator A is said to be hemicontinuous
if it is continuous along each line segment contained in C with respect to the weak*
topology of E∗. A point u of C is said to be a solution to the variational inequality
for A if

〈y − u, Au〉 ≥ 0

for all y ∈ C. We denote the set of all solutions to the variational inequality for A
by V I(C,A). The normal cone for C at x ∈ C is also defined by

NC(x) = {x∗ ∈ E∗ : 〈y − x, x∗〉 ≤ 0 (∀y ∈ C)}.

Corollary 6.2. Let C be a nonempty closed convex subset of a reflexive Banach
space E, let A : C → E∗ be a single-valued, monotone and hemicontinuous operator
and let g : E → R be a strongly coercive Bregman function which is uniformly convex
on bounded sets and bounded on bounded sets. Let {xn} be a sequence generated by
x1 = x ∈ E andyn = V I

(
C,A +

1
rn

(∇g −∇g(xn))
)
;

xn+1 = ∇g∗(αn∇g(x) + (1− αn)∇g(yn)) (n = 1, 2, . . . ),

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy limn αn = 0,
∑∞

n=1 αn = ∞ and
limn rn = ∞. If V I(C,A) 6= ∅, then the sequence {xn} converges strongly to
PV I(C,A)(x).

Proof. Let T ⊂ E × E∗ be a set-valued mapping defined by

(34) Tx =

{
Ax + NC(x) (x ∈ C);
∅ (otherwise).

By Rockafellar’s theorem [36], T is a maximal monotone operator and T−10 =
V I(C,A). Let r > 0 and let Jr be the resolvent of T . Then xr = Jrx is equivalent
to

−Axr −
1
r
∇g(xr) +

1
r
∇g(x) ∈ NC(xr),

which is also equivalent to〈
y − xr, Axr +

1
r
∇g(xr)−

1
r
∇g(x)

〉
≥ 0

for all y ∈ C. Thus we have

xr = V I
(
C,A +

1
r
(∇g −∇g(x))

)
.

Hence yn = Jrnxn for all n ∈ N. Thus, by Theorem 4.1, we have the desired
result. �

As in the proofs of Corollaries 6.1 and 6.2, we have the following corollaries from
Theorem 5.2:
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Corollary 6.3. Let E be a reflexive Banach space, let f : E → (−∞,∞] be a proper
lower semicontinuous convex function and let g : E → R be a strongly coercive
Bregman function which is uniformly smooth on bounded sets, uniformly convex on
bounded sets and bounded on bounded sets. Let {xn} be a sequence generated by
x1 = x ∈ E andyn = arg miny∈E

{
f(y) +

1
rn

D(y, xn)
}

;

xn+1 = ∇g∗(αn∇g(xn) + (1− αn)∇g(yn)) (n = 1, 2, . . . ),

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy lim supn αn < 1 and lim infn rn > 0.
If (∂f)−1(0) 6= ∅, then the sequence {xn} is bounded and each weak subsequential
limit of {xn} belongs to (∂f)−1(0). Further, if ∇g is weakly sequentially continuous,
then {xn} converges weakly to the strong limn P(∂f)−1(0)(xn).

Corollary 6.4. Let C be a nonempty closed convex subset of a reflexive Banach
space E, let A : C → E∗ be a single-valued, monotone and hemicontinuous operator
and let g : E → R be a strongly coercive Bregman function which is uniformly
smooth on bounded sets, uniformly convex on bounded sets and bounded on bounded
sets. Let {xn} be a sequence generated by x1 = x ∈ E andyn = V I

(
C,A +

1
rn

(∇g −∇g(xn))
)
;

xn+1 = ∇g∗(αn∇g(xn) + (1− αn)∇g(yn)) (n = 1, 2, . . . ),

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy lim supn αn < 1 and lim infn rn > 0.
If V I(C,A) 6= ∅, then the sequence {xn} is bounded and each weak subsequential
limit of {xn} belongs to V I(C,A). Further, if ∇g is weakly sequentially continuous,
then {xn} converges weakly to the strong limn PV I(C,A)(xn).

7. Appendix

In this section, we give another proof of the existence of a solution to the equation
(20). Let E be a Banach space and let B : E → E∗ be a single-valued operator.
Then B is said to be coercive if

‖zn‖ → ∞ =⇒ 〈zn, Bzn〉
‖zn‖

→ ∞.

We know the following lemma; see Barbu [2] and Takahashi [42]:

Lemma 7.1. Let K be a nonempty closed convex subset of a reflexive Banach space
E and let A ⊂ E×E∗ be a monotone operator such that D(A) ⊂ K and 0 ∈ D(A).
Let B : E → E∗ be a single-valued, monotone and hemicontinuous operator such
that B is bounded on bounded sets and coercive. Then there exists x0 ∈ K such that
〈z − x0, z

∗ + Bx0〉 ≥ 0 for all (z, z∗) ∈ A.

Using Lemma 7.1, we prove the following:

Lemma 7.2. Let E be a reflexive Banach space and let T ⊂ E ×E∗ be a maximal
monotone operator. Let g : E → R be a convex, continuous, strongly coercive and
Gâteaux differentiable function which is bounded on bounded sets. Then

R(∇g + rT ) = E∗
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for all r > 0.

Proof. Let r > 0 and x∗ ∈ E∗ be given. Since T is maximal monotone, the graph of
T is nonempty. Fix (q, q∗) ∈ T . Then we can define a maximal monotone operator
A ⊂ E × E∗ by A(x) = T (x + q) for all x ∈ E. We can also define a single-valued
monotone hemicontinuous operator B : E → E∗ by

B(x) =
1
r
(∇g(x + q)− x∗)

for all x ∈ E. By Butnariu and Iusem [9], ∇g is bounded on bounded sets if and
only if g is bounded on bounded sets. Hence B is also bounded on bounded sets.
We next show that B is coercive. If ‖zn‖ → ∞, then we have

g(zn + q) + 〈y − (zn + q),∇g(zn + q)〉 ≤ g(y)

for all y ∈ E and n ∈ N. Putting y = q, we have

(35) 〈zn,∇g(zn + q)〉 ≥ g(zn + q)− g(q)

for all n ∈ N. Then it follows from (35) and the strong coercivity of g that

〈zn, Bzn〉
‖zn‖

=
1
r
· 〈zn,∇g(zn + q)− x∗〉

‖zn‖

=
1
r

{‖zn + q‖
‖zn‖

· 〈zn,∇g(zn + q)〉
‖zn + q‖

− 〈zn, x∗〉
‖zn‖

}
≥ 1

r

{‖zn + q‖
‖zn‖

· g(zn + q)− g(q)
‖zn + q‖

− 〈zn, x∗〉
‖zn‖

}
→∞

as n →∞. Thus B is coercive. By Lemma 7.1, we have x0 ∈ E such that

〈z − x0, z
∗ + Bx0〉 ≥ 0

for all (z, z∗) ∈ A. Since A is maximal monotone, we have (x0,−Bx0) ∈ A. Thus

x∗ ∈ ∇g(x0 + q) + rT (x0 + q).

Therefore we obtain R(∇g + rT ) = E∗. �
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