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PARTIAL REGULARIZATION METHOD FOR EQUILIBRIUM
PROBLEMS

IGOR V. KONNOV

Abstract. We consider a general equilibrium problem with a monotone cost
bifunction in a reflexive Banach space setting and investigate partial Browder-
Tikhonov regularization techniques for this problem. We establish several con-
vergence results of solutions of perturbed auxiliary problems to a solution of the
initial problem which generalize the convergence results for the full regularization
method.

1. Introduction

Let U be a nonempty subset of a Banach space E and let f : U × U → R be an
equilibrium bifunction, i.e. f(u, u) = 0 for every u ∈ U . Then one can define the
general equilibrium problem (EP for short) that is to find a point u∗ ∈ U such that

(1) f(u∗, v) ≥ 0 ∀v ∈ U.

This problem represents a very common format for investigation and solution of
various applied problems and is closely related with other general problems in Non-
linear Analysis, such as fixed point, game equilibrium, and variational inequality
problems; see e.g. [1, 2] and references therein. It is well known that most ap-
proaches to obtaining joint existence and uniqueness results and to constructing ef-
fective solution methods require strengthened monotonicity type conditions on the
bifunction f , whereas these conditions seem too restrictive for applications. One
of the most popular approaches to overcome this drawback consists in applying
regularization techniques. Usually, the standard regularization involves an addition
of a regularization term with respect to all the variables (see e.g. [3, 4]), however,
the partial regularization may be also sufficient for convergence of perturbed prob-
lems and it also often leads to simpler auxiliary problems. Some instances of such
problems can be found in [5]. Motivated by these facts, we intend to investigate con-
vergence properties of the partial regularization method applied to EP(1) with the
monotone bifunction f . We suppose that the initial space E admits the partition
E = X × Y , i.e. it can be represented as a Cartesian product of spaces. Then, the
partial regularization involves an addition of a regularization term with strength-
ened monotonicity properties only with respect to X. We consider conditions which
provide convergence properties for such a method.
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2. Definitions and Preliminary Results

We now recall several definitions. The equilibrium bifunction f : U × U → R is
said to be

(i) monotone, if for all u, v ∈ U , we have

f(u, v) + f(v, u) ≤ 0;

(ii) strictly monotone, if for all u, v ∈ U, u 6= v, we have

f(u, v) + f(v, u) < 0;

(see [1]). Also, we say that f : U × U → R is a uniformly monotone bifunction, if
for all u, v ∈ U , we have

f(u, v) + f(v, u) ≤ −θ(‖u− v‖)‖u− v‖,
where θ : R → R is a continuous increasing function such that θ(0) = 0 and
θ(τ) → +∞ as τ → +∞. If θ(τ) = µτ for some µ > 0, then f is a strongly monotone
bifunction. We recall that a function ϕ : U → R is said to be hemicontinuous if its
restriction on linear segments of U is continuous.

In what follows, we shall use the following basic assumptions on the EP(1).
(A1) U is a nonempty, convex, and closed subset of a reflexive Banach space

E which can be represented as a Cartesian product of reflexive Banach spaces, i.e.
E = X × Y .

(A2) f : U × U → R is a monotone equilibrium bifunction such that f(·, v) is
hemicontinuous for each v ∈ U and that f(u, ·) is convex and lower semicontinuous
for each u ∈ U .

(A3) The solutions set U∗ of EP(1) is nonempty.
We now recall several useful properties of EPs.

Proposition 2.1. [1, Theorem 10.1] If (A1) and (A2) are fulfilled, then U∗ coin-
cides with the solutions set of the dual (Minty) EP: Find v∗ ∈ U such that

(2) f(u, v∗) ≤ 0 ∀u ∈ U,

and it is convex and closed.

Observe that the second part of (A1) means that each element u of E admits
the corresponding partition, i.e. u = (x, y) where x ∈ X and y ∈ Y . Then we can
introduce bifunctions on subspaces and investigate existence and uniqueness results
for corresponding EPs. Namely, let us consider the perturbed EP: Find uε ∈ U
such that

(3) f(uε, u) + εh(xε, x) ≥ 0 ∀u ∈ U,

where uε = (xε, yε), h : X ×X → R is an equilibrium bifunction such that h(·, x) is
hemicontinuous for each x ∈ X and that h(x, ·) is convex and lower semicontinuous
for each x ∈ X, ε > 0. For brevity, set

fε(u, v) = f(u, v) + εh(x, x′)

where u = (x, y), v = (x′, y′). If (A1) and (A2) are fulfilled, then fε(·, v) is hemi-
continuous for each v ∈ U and fε(u, ·) is convex and lower semicontinuous for each
u ∈ U . We denote by U ε the solutions set of EP(3).
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Lemma 2.1. Suppose (A1) and (A2) are fulfilled and h : X ×X → R is strictly
monotone. Then the solutions set U ε is of the form

(4) U ε = {xε} × L, where L ⊆ Y.

Proof. Take arbitrary elements u = (x, y) ∈ U ε and v = (x′, y′) ∈ U ε. Then, by
definition, we have

fε(u, v) ≥ 0 and fε(v, u) ≥ 0.

Adding these inequalities and taking into account the monotonicity of f and h, we
obtain

ε[h(x, x′) + h(x′, x)] ≥ f(u, v) + f(v, u) + ε[h(x, x′) + h(x′, x)] ≥ 0.

If x 6= x′, this inequality leads to the contradiction:

0 > h(x, x′) + h(x′, x) ≥ 0,

and the result follows. �

Set

XU = {x | ∃y ∈ Y, (x, y) ∈ U} and YU = {y | ∃x ∈ X, (x, y) ∈ U}.
We now present existence and uniqueness results for EPs (1) and (3). First we
specialize the existence result from [2] for EP(1).

Proposition 2.2. Suppose that (A1) and (A2) are fulfilled and the monotonicity
of f is replaced with its uniform monotonicity. Then U∗ is a nonempty singleton.

Proof. We apply Theorem 1 in [2] with coercivity condition d) where h ≡ 0, i.e. we
have to show that

[f(u, ṽ) + f(ṽ, u)]/‖u− ṽ‖ → −∞ if ‖u− ṽ‖ → +∞, u ∈ U

for a fixed ṽ ∈ U . However, this property follows from the uniform monotonicity of
f . Therefore, EP(1) is solvable. The uniqueness follows from the fact that f is also
strictly monotone. �

A modification of this result for EP(3) can be formulated as follows.

Proposition 2.3. Suppose that (A1) and (A2) are fulfilled, h is uniformly mono-
tone, and that YU is bounded. Then EP(3) is solvable and (4) holds.

Proof. Clearly, (4) follows from Lemma 2.1, since h is now strictly monotone. Again,
we apply Theorem 1 in [2] with coercivity condition d) and h ≡ 0. It means that
we have to only show that

(5) [fε(u, ṽ) + fε(ṽ, u)] / ‖u− ṽ‖ → −∞ if ‖u− ṽ‖ → +∞, u ∈ U

for a fixed ṽ in U . Note that

fε(u, ṽ) + fε(ṽ, u) = f(u, ṽ) + f(ṽ, u) + ε[h(x, x̃) + h(x̃, x)]

≤ −εθ(‖x− x̃‖)‖x− x̃‖,

where u = (x, y), ṽ = (x̃, ỹ). However, ‖u − ṽ‖ =
√
‖x− x̃‖2 + ‖y − ỹ‖2 and ‖y −

ỹ‖ ≤ C < ∞ for all y ∈ YU . It means that ‖u − ṽ‖ → +∞ is equivalent to
‖x− x̃‖ → +∞ and it implies that (5) holds. The proof is complete. �
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3. Convergence Results

In this section, we establish the basic approximation properties of the partial
regularization method represented by the perturbed problem (3). We say that
the equilibrium bifunction h : X × X → R is uniformly bounded if there exists a
nondecreasing function σ : R → R with σ(0) = 0, and σ(τ) > 0 for every τ > 0
such that for all x, x′ ∈ X we have

|h(x, x′)| ≤ σ(‖x‖)‖x− x′‖.

We now collect all the assumptions on the perturbation bifunction h.
(H1) h : X ×X → R is an equilibrium bifunction which is uniformly monotone

with function θ and uniformly bounded with function σ, h(·, x) is hemicontinuous
for each x ∈ X and h(x, ·) is convex and lower semicontinuous for each x ∈ X.

We first establish a convergence result under the boundedness condition on YU .

Theorem 3.1. Suppose that assumptions (A1) – (A3) and (H1) are fulfilled, YU is
bounded, and that the sequence {uεk}, uεk = (xεk , yεk), is constructed in conformity
with (3), where {εk} ↘ 0. Then {xεk} converges strongly to the point x∗n and {yεk}
has weak limit points and all these points belong to Y ∗ such that {x∗n} × Y ∗ ⊆ U∗

and

(6) h(x∗n, x) ≥ 0 for every x such that ∃y ∈ Y, (x, y) ∈ U∗.

Proof. First we note that the set U∗ is nonempty, convex and closed due to Propo-
sition 2.1. Also, along the lines of the proof of Proposition 2.3, we see that problem
(6) is solvable and its solutions set Un is of the form

Un = {x∗n} × L ⊆ U∗, where L ⊆ Y.

Next, due to Proposition 2.3, EP(3) is solvable for each ε > 0 and its solutions set
is of the form

{xε} × Lε ⊆ U and Lε ⊆ Y.

Take any u∗ = (x∗, y∗) ∈ U∗, then

f(u∗, uε) ≥ 0 and f(uε, u∗) + εh(xε, x∗) ≥ 0.

Adding these inequalities gives

εh(xε, x∗) ≥ −[f(u∗, uε) + f(uε, u∗)] ≥ 0.

Since h is uniformly monotone, it follows that

(7) −εh(x∗, xε) = −ε[h(x∗, xε) + h(xε, x∗)] + εh(xε, x∗)
≥ εθ(‖x∗ − xε‖)‖x∗ − xε‖,

and, by the uniform boundedness of h, we have

σ(‖x∗‖) ≥ θ(‖xε − x∗‖).

It means that the sequence {xεk} is bounded, but so is {yεk}, hence these sequences
have weak limit points. Note that fε is clearly monotone, and, in view of Proposition
2.1, we have

fε(u, uε) ≤ 0 ∀u ∈ U.
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Since fε(u, ·) is also convex and lower semicontinuons, it is weakly lower semicon-
tinuons, and, for each pair of weak limit points (x′, y′) of {(xεk , yεk)}, we obtain

0 ≥ lim sup
k→∞

[f(u, uεk) + εkh(x, xεk)] = lim sup
k→∞

f(u, uεk) ≥ f(u, u′)

for every u ∈ U , i.e. u′ = (x′, y′) solves EP(1) due to Proposition 2.1. Therefore,
all the weak limit points of {uεk} belong to U∗. Using (7) with ε = εk and x∗ = x∗n,
we have

−h(x∗n, xεk) ≥ θ(‖x∗n − xεk‖)‖x∗n − xεk‖,
Setting k →∞ in this inequality gives

0 ≥ −h(x∗n, x′) ≥ θ(‖x∗n − x′‖)‖x∗n − x′‖,

where x′ is an arbitrary weak limit of {xεk}. It means that x′ coincides with x∗n and
that {xεk} converges strongly to x∗n. The proof is complete. �

This result extends the known convergence properties of the full regularization
methods (see [6, 4]).

We can somewhat strengthen the above assertion under the additional properties
of f .

Corollary 3.1. Suppose that all the assumptions of Theorem 3.1 are fulfilled and
that f is strictly monotone with respect to y, i.e. for each pair of points u = (x, y)
and v = (x′, y′) in U , we have

f(u, v) + f(v, u) < 0 if y 6= y′.

Then, {xεk} converges strongly to the point x∗n and {yεk} converges weakly to the
point y∗ such that (x∗n, y∗) ∈ U∗ and (6) holds.

Proof. In this case, using the argument as that in the proof of Lemma 2.1, we see
that

U∗ = K × {y∗},
i.e. Y ∗ = {y∗}. Hence, all the weak limit points of {yεk} coincide with y∗ and the
result follows. �

We now establish the convergence result for the unbounded case, which utilizes
partial uniform monotonicity properties of f .

Theorem 3.2. Suppose that assumptions (A1) – (A3) and (H1) are fulfilled and
that f is uniformly monotone with respect to y, i.e. for each pair of points u = (x, y)
and v = (x′, y′) in U , it holds that

f(u, v) + f(v, u) ≤ −β(‖y − y′‖)‖y − y′‖,

where β : R → R is a continuous increasing function such that β(0) = 0 and
β(τ) → +∞ as τ → ∞. Then the sequence {uεk}, uεk = (xεk , yεk), constructed in
conformity with (3), where {εk} ↘ 0, converges strongly to the point u∗ = (x∗n, y∗)
such that u∗ ∈ U∗ and (6) holds with y = y∗.
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Proof. Since f is now strictly monotone in y, using the argument as that in the
proof of Lemma 2.1, we conclude that

U∗ = K × {y∗},

whereas Proposition 2.1 implies that U∗ is convex and closed. Next, along the lines
of the proof of Proposition 2.3, we obtain that (6) has the unique solution x∗n ∈ K
where y = y∗. We now show that each auxiliary EP (3) has a unique solution if
ε > 0. We apply Theorem 1 in [2] with coercivity condition d) and h ≡ 0. In other
words, we proceed to show that (5) holds. Note that, for a fixed ṽ = (x̃, ỹ) ∈ U , we
have

fε(u, ṽ) + fε(ṽ, u) ≤ −εθ(‖x− x̃‖)‖x− x̃‖ − β(‖y − ỹ‖)‖y − ỹ‖,
where u = (x, y). Let us consider two cases.

Case 1. Let ‖u − ṽ‖ → +∞ and ‖y − ỹ‖ ≤ C < ∞. Then, setting τ = ‖x − x̃‖
and a = ‖y − ỹ‖, we have

fε(u, ṽ) + fε(ṽ, u)
‖u− ṽ‖

≤ −εθ(τ)τ + β(a)a√
τ2 + a2

= −εθ(τ) + β(a)a /τ√
1 + a2 / τ2

→ −∞,

i.e. (5) holds. The case when ‖u − ṽ‖ → +∞ and ‖x − x̃‖ ≤ C < ∞ can be
considered similarly.

Case 2. Let ‖u − ṽ‖ → +∞, but ‖x − x̃‖ → +∞ and ‖y − ỹ‖ → +∞. Then,
setting τ = ‖x− x̃‖ and σ = ‖y − ỹ‖, we have

fε(u, ṽ) + fε(ṽ, u)
‖u− ṽ‖

≤ −εθ(τ)τ + β(σ)σ√
τ2 + σ2

≤ −min{εθ(τ), β(σ)} τ + σ√
τ2 + σ2

≤ −min{εθ(τ), β(σ)} → −∞,

i.e. (5) also holds. It means that EP (3) is solvable. Using the argument as
that in the proof of Lemma 2.1, we conclude that EP (3) has the unique solution
uε = (xε, yε), i.e. the regularization method is also well defined.

Take any point ũ = (x̃, y∗) ∈ U∗, then f(ũ, uε) ≥ 0 and f(uε, ũ) + εh(xε, x̃) ≥ 0.
Adding these inequalities gives

εh(xε, x̃) ≥ −[f(ũ, uε) + f(uε, ũ)] ≥ β(‖yε − y∗‖)‖yε − y∗‖,

therefore, for each ε ≤ 1, we obtain

h(xε, x̃) ≥ β(‖yε − y∗‖)‖yε − y∗‖.

Since h is uniformly monotone, we have

−h(x̃, xε) = −[h(x̃, xε) + h(xε, x̃)] + h(xε, x̃)

≥ θ(‖xε − x̃‖)‖xε − x̃‖+ β(‖yε − y∗‖)‖yε − y∗‖.

Using the fact that h is also uniformly bounded, we obtain

σ(‖x̃‖)‖x̃− xε‖ ≥ θ(‖xε − x̃‖)‖xε − x̃‖+ β(‖yε − y∗‖)‖yε − y∗‖.
≥ θ(‖xε − x̃‖)‖xε − x̃‖.
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It follows that both {xεk} and {yεk} are bounded, i.e. they have weak limit points.
Next, similar to the proof of Theorem 3.1, we obtain that all the weak limit points
of {uεk} coincide with u∗ = (x∗n, y∗), i.e. {uεk} converges weakly to u∗, and that
{xεk} converges strongly to x∗n. By the above, we conclude that {yεk} also converges
strongly to y∗. The proof is complete. �

It is well known that the regularization method may be treated as a penalty
method for solving sequential (lexicographic) problems in optimization; see [3, 4]
and references therein. Mathematical programs with equilibrium constraints (see
e.g. [7]) and bi-level variational inequalities (see e.g. [8]) having a great number
of various applications represent further extensions of such problems. Nevertheless,
they also fall into format (6) so that the above results reveal new opportunities in
solving partial sequential (lexicographic) problems.
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