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A CLASS OF MULTI-VALUED QUASI-VARIATIONAL
INEQUALITIES

K. R. KAZMI, M. I. BHAT, AND F. A. KHAN

Abstract. In this paper, we prove the existence of solution and discuss the
convergence criteria of iterative algorithms for a class of multi-valued quasi-
variational inequalities in Banach spaces. The theorems presented in this paper
generalize, improve and unify the known results in the literature.

1. Introduction

Iterative algorithms play a central role in the approximation-solvability, especially
of nonlinear variational inequalities as well as of nonlinear equations in several fields
such as applied mathematics, mathematical programming, mathematical finance,
control theory and optimization, engineering sciences, see for example [4].

Recently, Noor et al. [9] considered a class of multi-valued quasi-variational in-
equalities in Banach spaces and suggested an iterative algorithm using retraction
mapping. They proved the existence of solution and discussed the convergence
criteria of an iterative algorithm for the class of multi-valued quasi-variational in-
equalities. It is remarked that the main result, Theorem 3.2, of Noor et al. [9] does
not serve the purpose, which is to be discussed in Section 3.

Very recently, He [6] has shown that if a multi-valued mapping S defined on a
Banach space is lower semicontinuous and φ-strongly accretive then the value of S
at any point of its domain is a singleton set, see Lemma 2.3 below.

In view of above result of He [6], one can observe that the results of Noor [7,8] are,
in reality, for single-valued variational inequalities inspite of involving multi-valued
mappings. Therefore, the improvement of the methods developed by Noor [7,8] is
needed to study the existence of solution and the convergence criteria of iterative
algorithms for monotone multi-valued variational inequalities.

In this paper, we consider a class of multi-valued quasi-variational inequalities (in
short, MQVI) in uniformly smooth Banach space and suggest iterative algorithms
for MQVI. Further, we prove the existence of solution and discuss the convergence
criteria for the iterative algorithms for MQVI. The theorems presented in this paper
generalize, improve and unify the results given in [7,8,9].

2. Preliminaries

We assume that E is a real Banach space equipped with norm ‖ · ‖; E? is the
topological dual space of E; 〈·, ·〉 is the dual pair between E and E?; 2E is the
family of all nonempty subsets of E. CB(E) is the family of all nonempty closed
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and bounded subsets of E; H(·, ·) is the Hausdorff metric on CB(E) defined by

H(A,B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}, A,B ∈ CB(E);

and J : E → 2E?
is the normalized duality mapping defined by

J(u) = {f ∈ E? 〈u, f〉 = ‖u‖2 = ‖f‖2
E?}, ∀u ∈ E.

We note that if E is a smooth Banach space then the J becomes single-valued
mapping, and if E ≡ H, a Hilbert space, then J becomes identity mapping.

From now onwards, unless or otherwise stated, we assume that E is a real uni-
formly smooth Banach space. Let T,A, S : E → CB(E) be three multi-valued map-
pings; let g : E → E be a single-valued mapping and let N(·, ·, ·) : E ×E ×E → E
be a nonlinear single-valued mapping. Let K : E → 2E be a multi-valued mapping
such that for any x ∈ E, K(x) is a closed convex set in E, then MQVI problem is
to find x ∈ E, u ∈ T (x), v ∈ A(x), w ∈ S(x) such that g(x) ∈ K(x) and

(1) 〈N(u, v, w), J(y − g(x))〉 ≥ 0, ∀y ∈ K(x).

Some special cases.
(1) If S is single-valued mapping, S ≡ g and N(u, v, g(x)) ≡ g(x) + M(u, v),

∀u, v, x ∈ E, where M : E × E → E, MQVI (1) reduces to the problem of
finding x ∈ E, u ∈ T (x), v ∈ A(x) such that g(x) ∈ K(x) and

(2) 〈g(x) + M(u, v), J(y − g(x))〉 ≥ 0, ∀y ∈ K(x).

Problem (2) in the setting of Hilbert space has been considered by Noor [7].
(2) If N(u, v, w) = M(u, v), ∀u, v, w ∈ E, where M : E × E → E, MQVI (1)

reduces to the problem of finding x ∈ E, u ∈ T (x), v ∈ A(x) such that
g(x) ∈ K(x) and

(3) 〈M(u, v), J(y − g(x))〉 ≥ 0, ∀y ∈ K(x).

Problem (3) in the setting of Hilbert space has been considered by Noor [8].
(3) If K(x) ⊆ Range(g), ∀x ∈ E then for each z ∈ K(x), ∃y ∈ E such that

z = g(y) and if N(u, v, w) = M(u, v) ∀u, v, w ∈ E, where M : E × E → E,
MQVI (1) reduces to the problem of finding x ∈ E, u ∈ T (x), v ∈ A(x)
such that g(x) ∈ K(x) and

(4) 〈M(u, v), J(g(y)− g(x))〉 ≥ 0, ∀g(y) ∈ K(x).

Problem (4) has been considered by Noor et al. [9].
(4) If E ≡ H, a real Hilbert space, then MQVI (1) reduces to the problem of

finding x ∈ H, u ∈ T (x), v ∈ A(x), w ∈ S(x) such that g(x) ∈ K(x) and

(5) 〈N(u, v, w), y − g(x)〉 ≥ 0, ∀y ∈ K(x).

For the applications and numerical methods of special cases of MQVI(1), see
[7,8,9,3,4] and the references therein.

Now, we give the following concepts and results which are needed in the sequel:

Definition 2.1. A single-valued mapping g : E → E is said to be
(a) k-strongly accretive, if there exists k > 0 such that

〈g(x)− g(y), J(x− y)〉 ≥ k‖x− y‖2, ∀x, y ∈ E ;
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(b) δ-Lipschitz continuous, if there exists δ > 0 such that

‖g(x)− g(y)‖ ≤ δ‖x− y‖, ∀x, y ∈ E.

It is remarked that if g is k-strongly accretive, then g satisfies

(6) ‖g(x)− g(y)‖ ≥ k‖x− y‖, ∀x, y ∈ E.

The mapping g with condition (6) is called k-expanding.

Definition 2.2. A multi-valued mapping T : E → CB(E) is said to be
(a) σ-strongly accretive, if there exists σ > 0 such that

〈u− v, J(x− y)〉 ≥ σ‖x− y‖2, ∀x, y ∈ E, u ∈ T (x), v ∈ T (y);

(b) η-H-Lipschitz continuous, if there exists η > 0 such that

H(T (x), T (y)) ≤ η‖x− y‖, ∀x, y ∈ E.

Definition 2.3. Let g : E → E; T,A, S : E → CB(E). A mapping N(·, ·, ·) :
E × E × E → E is said to be

(a) α-strongly g-accretive, with respect to T,A and S, if there exists α > 0 such
that

〈N(u1, v1, w1)−N(u2, v2, w2), J(g(x)− g(y))〉 ≥ α‖x− y‖2, ∀x, y ∈ E,

u1 ∈ T (x), u2 ∈ T (y); v1 ∈ A(x), v2 ∈ A(y), w1 ∈ S(x), w2 ∈ S(y);

(b) (β, γ, ξ)-Lipschitz continuous, if there exist β, γ, ξ > 0 such that

‖N(x1, y1, z1)−N(x2, y2, z2)‖ ≤ β‖x1 − x2‖+ γ‖y1 − y2‖+ ξ‖z1 − z2‖,
∀x1, x2, y1, y2, z1, z2 ∈ E.

Remark 2.1 ([9]).
(a) Let E be a real Banach space. Let G : E → CB(E) and let ε > 0 be any

real number, then for every x, y ∈ E and u1 ∈ G(x), there exists u2 ∈ G(y)
such that

‖u1 − u2‖ ≤ H(G(x), G(y)) + ε‖x− y‖.
(b) Let G : E → CB(E) and let δ > 1 be any real number, then for every

x, y ∈ E and u1 ∈ G(x), there exists u2 ∈ G(y) such that

‖u1 − u2‖ ≤ δH(G(x), G(y)).

We note that if G : E → C(E), where C(E) denotes the family of all nonempty
compact subsets of E, then Remark 2.1(a)-(b) is true for ε = 0 and δ = 1, respec-
tively.

Definition 2.4 ([1,2,5]). Let K ⊂ E be a nonempty closed convex set. A mapping
PK : E → K is said to be

(a) retraction, if
P 2

K = PK ;
(b) nonexpansive, if

‖PKx− PKy‖ ≤ ‖x− y‖, ∀x, y ∈ E;
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(c) sunny, if

PK(PKx− t(x− PKx)) = PKx, ∀x ∈ E, t ∈ R.

Lemma 2.1 ([5]). A retraction PK is sunny and nonexpansive if and only if

〈x− PK(x), J(PK(x)− y)〉 ≥ 0, ∀x, y ∈ E.

Lemma 2.2 ([1,2,5]). Let J : E → E? be a normalized duality mapping. Then for
all x, y ∈ E, we have

(i) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, J(x + y)〉,
(ii) 〈x−y, Jx−Jy〉 ≤ 2d2ρE(4‖x−y‖/d), where d =

√
(‖x‖2 + ‖y‖2)/2 ρE(t) =

sup{‖x‖+‖y‖2 − 1 : ‖x‖ = 1, ‖y‖ = t} is called the modulus of smoothness of
E.

Definition 2.5. A mapping F : E → 2E is said to be φ-strongly accretive if there
exists a strictly increasing continuous function. Let φ : R+ → R+ with φ(0) = 0
such that, for any x, y ∈ E,

〈u1 − u2, J(x− y)〉 ≥ φ(‖x− y‖)‖x− y‖, ∀u1 ∈ F (x), u2 ∈ F (y).

Lemma 2.3 ([6]). Let E be a real Banach space and F : E → 2E \ {∅} be a
lower semicontinuous and φ-strongly accretive mapping, then for any x ∈ E,Fx is
a one-point set.

Lemma 2.4. MQVI (1) has a solution x ∈ E, u ∈ T (x), v ∈ A(x), w ∈ S(x), g(x) ∈
K(x) if and only if x ∈ E, u ∈ T (x), v ∈ A(x), w ∈ S(x), g(x) ∈ K(x) satisfies the
relation

g(x) = PK(x)[g(x)− ρN(u, v, w)],
where ρ > 0 is a constant.

Proof. Proof is directly followed from Lemma 2.1. �

Assumption 2.1. For all x, y, z ∈ E, the operator PK(x) satisfies the condition:

‖PK(x)(z)− PK(y)(z)‖ ≤ ν‖x− y‖,
where ν > 0 is a constant.

3. Main results

Using Lemma 2.4 and Remark 2.1(a)–(b), we give the following iterative algo-
rithms for MQVI (1) in Banach spaces.

Algorithm 3.1. For given x0 ∈ E, u0 ∈ T (x0), v0 ∈ A(x0), w0 ∈ S(x0), and given
ε ∈ (0, 1), compute the sequences {xn}, {un}, {vn}, {wn} defined by the iterative
schemes:

(7) g(xn+1) = PK(xn)[g(xn)− ρN(un, vn, wn)], n = 0, 1, 2, ...,

(8) un ∈ T (xn) : ‖un+1 − un‖ ≤ H(T (xn+1), T (xn)) + εn+1‖xn+1 − xn‖,

(9) vn ∈ A(xn) : ‖vn+1 − vn‖ ≤ H(A(xn+1), A(xn)) + εn+1‖xn+1 − xn‖,

(10) wn ∈ S(xn) : ‖wn+1 − wn‖ ≤ H(S(xn+1), S(xn)) + εn+1‖xn+1 − xn‖,
where ρ > 0 is a constant.
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Algorithm 3.2. For given x0 ∈ E, u0 ∈ T (x0), v0 ∈ A(x0), w0 ∈ S(x0), and given
ε ∈ (0, 1), compute the sequences {xn}, {un}, {vn}, {wn} defined by the iterative
schemes:

g(xn+1) = PK(xn)[g(xn)− ρN(un, vn, wn)], n = 0, 1, 2, ...,

un ∈ T (xn) : ‖un+1 − un‖ ≤ (1 + (1 + n)−1)H(T (xn+1), T (xn)),
vn ∈ A(xn) : ‖vn+1 − vn‖ ≤ (1 + (1 + n)−1)H(A(xn+1), A(xn)),
wn ∈ S(xn) : ‖wn+1 − wn‖ ≤ (1 + (1 + n)−1)H(S(xn+1), S(xn)),

where ρ > 0 is a constant.

Special cases. If N(u, v, w) ≡ M(u, v), ∀u, v, w ∈ E, where M : E×E → E, then
Algorithm 3.1 reduces to the following algorithm:

Algorithm 3.3 ([9]). For given x0 ∈ E, u0 ∈ T (x0), v0 ∈ A(x0), and given ε ∈
(0, 1), compute the sequences {xn}, {un}, {vn} defined by the iterative schemes:

g(xn+1) = PK(xn)[g(xn)− ρM(un, vn)], n = 0, 1, 2, ...,

un ∈ T (xn) : ‖un+1 − un‖ ≤ H(T (xn+1), T (xn)) + εn+1‖xn+1 − xn‖,
vn ∈ A(xn) : ‖vn+1 − vn‖ ≤ H(A(xn+1), A(xn)) + εn+1‖xn+1 − xn‖,

where ρ > 0 is a constant.

For appropriate choices of the mappings T, S, A, g, K,N , and space E, one can
obtain many new and known algorithms as special case from Algorithms 3.1 & 3.2,
see [2,7-9] and the references therein.

Now, we recall the main result (Theorem 3.2) of Noor et al. [9]:

Theorem 3.1 ([9]). Let E be a real uniformly smooth Banach space. Let the
operator M(·, ·) be β-Lipschitz continuous and γ-Lipschitz continuous in the first
and second arguments, respectively. Let the operator g be δ-Lipschitz continuous
and k-strongly accretive. Assume that the operators T,A : E → CB(E) are µ-H-
Lipschitz continuous and η-H-Lipschitz continuous, respectively. If the Assumption
2.1 holds and

(11) 0 < ρ <

√
2k − 1− (δ + ν)

βµ + γη
; k > 1/2,

then there exist x ∈ E, u ∈ T (x), v ∈ A(x), satisfying (4) and the iterative se-
quences {xn}, {un} and {vn} generated by Algorithm 3.3 converge to x, u, and v,
respectively.

Remark 3.1. The condition (11) of Theorem 3.1 does not serve the convergence
criteria for the sequences {xn}, {un}, and {vn} generated by Algorithm 3.3. Evi-
dently k ≤ δ. Next claim that

√
2k − 1 < (δ + ν). On the contrary, we assume that√

2k − 1 ≥ (δ + ν),

2k − 1 ≥ (δ + ν)2 ≥ (k + ν)2

−(k − 1)2 ≥ (2k + ν)ν

(k − 1)2 ≤ −(2k + ν)ν,

which is not possible, since (2k + ν)ν ≥ 0.
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Hence,
√

2k − 1 < (δ + ν). Thus (11) yields 0 < ρ < 0 which is impossible.

Next, we prove the main result of the paper.

Theorem 3.2. Let E be a real uniformly smooth Banach space with ρE(t) ≤ ct2

for some c > 0. Let the mappings T,A, S : E → CB(E) be µ-H-Lipschitz, η-H-
Lipschitz and σ-H-Lipschitz continuous, respectively and let the mapping N(·, ·, ·) be
α-strongly g-accretive with respect to T,A and S, and (β, γ, ξ)-Lipschitz continuous.
Let the mapping g be δ-Lipschitz continuous and let the mapping (g − I) : E → E
be k-strongly accretive, where I : E → E is an identity mapping. If Assumption 2.1
holds and there exists a constant ρ > 0 such that

(12)
∣∣∣ρ− α

64cλ2

∣∣∣ <

√
α2 − (δ2 − t2)64cλ2

64cλ2
; α2 > (δ2 − t2)64cλ2,

where λ = βµ + γη + ξσ; t =
√

2k + 1 − ν, then there exist x ∈ E, u ∈ T (x), v ∈
A(x), w ∈ S(x), satisfying (1) and the iterative sequences {xn}, {un}, {vn} and
{wn} generated by Algorithm 3.1 converge strongly to x, u, v, w, respectively, in E.

Proof. From Algorithm 3.1, we estimate, using Assumption 2.1,

‖g(xn+2)− g(xn+1)‖(13)

≤ ‖PK(xn+1)[g(xn+1)− ρN(un+1, vn+1, wn+1)]

− PK(xn)[g(xn)− ρN(un, vn, wn)]‖
≤ ‖g(xn+1)− g(xn)− ρ[N(un+1, vn+1, wn+1)−N(un, vn, wn)]‖

+ ν‖xn+1 − xn‖.

Next, using Lemma 2.2; α-strongly g-accretiveness and (β, γ, ξ)-Lipschitz conti-
nuity of N(·, ·, ·); δ-Lipschitz continuity of g; µ-H-Lipschitz continuity of T ; η-H-
Lipschitz continuity of A and σ-H-Lipschitz continuity of S, we have

‖g(xn+1)− g(xn)− ρ[N(un+1, vn+1, wn+1)−N(un, vn, wn)]‖2(14)

≤ ‖g(xn+1)− g(xn)‖2 − 2ρ〈N(un+1, vn+1, wn+1)−N(un, vn, wn),

J(g(xn+1)− g(xn)− ρ[N(un+1, vn+1, wn+1)−N(un, vn, wn)])〉
≤ ‖g(xn+1)− g(xn)‖2

− 2ρ〈N(un+1, vn+1, wn+1)−N(un, vn, wn), J(g(xn+1)− g(xn))〉
− 2ρ〈N(un+1, vn+1, wn+1)−N(un, vn, wn), J(g(xn+1)− g(xn)

− ρ[N(un+1, vn+1, wn+1)−N(un, vn, wn)])− J(g(xn+1)− g(xn))〉
≤ ‖g(xn+1)− g(xn)‖2

− 2ρ〈N(un+1, vn+1, wn+1)−N(un, vn, wn), J(g(xn+1)− g(xn))〉
+ 64cρ2‖N(un+1, vn+1, wn+1)−N(un, vn, wn)‖2,

and

‖N(un+1, vn+1, wn+1)−N(un, vn, wn)‖(15)

≤ β‖un+1 − un‖+ γ‖vn+1 − vn‖+ ξ‖wn+1 − wn‖
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≤ β[H(T (xn+1), T (xn)) + εn+1‖xn+1 − xn‖]
+ γ[H(A(xn+1), A(xn)) + εn+1‖xn+1 − xn‖]
+ ξ[H(S(xn+1), S(xn)) + εn+1‖xn+1 − xn‖]

≤
[
βµ + γη + ξσ + (β + γ + ξ)εn+1

]
‖xn+1 − xn‖.

From (13), (14) and (15), we have

‖g(xn+2)− g(xn+1)‖ ≤
{(

δ2 − 2ρα + 64cρ2[βµ + γη + ξσ(16)

+ (β + γ + ξ)εn+1]2
) 1

2 + ν
}
‖xn+1 − xn‖.

Since (g − I) is k-strongly accretive, we have

‖xn+2 − xn+1‖2

= ‖g(xn+2)− g(xn+1) + xn+2 − xn+1 − (g(xn+2)− g(xn+1))‖2

≤ ‖g(xn+2)− g(xn+1)‖2 − 2〈(g − I)xn+2 − (g − I)xn+1, J(xn+2 − xn+1)〉
≤ ‖g(xn+2)− g(xn+1)‖2 − 2k‖xn+2 − xn+1‖2,

which implies

‖xn+2 − xn+1‖ ≤
1√

2k + 1
‖g(xn+2)− g(xn+1)‖.

The preceding inequality with inequality (16) gives

(17) ‖xn+2 − xn+1‖ ≤ θn‖xn+1 − xn‖,
where

θn :=
1√

2k + 1

{(
δ2 − 2ρα + 64cρ2[βµ + γη + ξσ + (β + γ + ξ)εn+1]2

) 1
2 + ν

}
.

Since ε ∈ (0, 1), it follows that εn+1 → 0 and θn → θ as n →∞, where

θ :=
1√

2k + 1

{(
δ2 − 2ρα + 64cρ2(βµ + γη + ξσ)2

) 1
2 + ν

}
.

Since θ < 1 by condition (12). Hence θn < 1 for sufficiently n large. Therefore,
(17) implies that {xn} is a Cauchy sequence in E. Hence there exists x ∈ E such
that xn → x as n →∞. By H-Lipschitz continuity of T and (8), we have

‖un+1 − un‖ ≤ H(T (xn+1), T (xn)) + εn+1‖xn+1 − xn‖(18)

≤ (µ + εn+1)‖xn+1 − xn‖.
Since {xn} is a Cauchy sequence in E, (18) implies that {un} is a Cauchy sequence

in E. Hence there exists u ∈ E such that un → u as n → ∞. Similarly, we can
show that {vn}, {wn} are Cauchy sequences and hence there exist v, w ∈ E such
that vn → v and wn → w as n →∞. Further, since un ∈ T (xn), we have

d(u, T (x)) ≤ ‖u− un‖+ d(un, T (xn))

≤ ‖u− un‖+ H(T (xn), T (x))

≤ ‖u− un‖+ µ‖xn − x‖ → 0,
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as n →∞ and hence u ∈ T (x). Similarly, we can show that v ∈ A(x) and w ∈ S(x).
Furthermore, continuity of the mappings N(·, ·, ·), T, A, S, PK(x) and g, Assump-

tion 2.1 and (7) give that

g(x) = PK(x)[g(x)− ρN(u, v, w)]

and hence, from Lemma 2.4, it follows that x ∈ E, u ∈ T (x), v ∈ A(x), w ∈ S(x) is
a solution of MQVI (1). This completes the proof. �
Remark 3.2.

(a) It is clear that α ≤ δλ. Further condition θ ∈ (0, 1) and (12) hold for some
suitable values of cofficients, for example, α = 3, β = 1, γ = 2, ξ = 2, δ =
1, k = 1, µ = 1, η = 1, σ = 1, ν = 1, ρ ∈

[
1
10 , 5

4

]
, c = 1

320 .
(b) Theorem 3.2 also serves the convergence criteria for Algorithm 3.2.

If we take N(u, v, w) ≡ M(u, v), ∀u, v, w ∈ E, where M : E × E → E, Theorem
3.2 reduces to the following result which is improved form of Theorem 3.2[9]:

Corollary 3.1. Let E be a real uniformly smooth Banach space with ρE(t) ≤ ct2

for some c > 0. Let the mappings T,A : E → CB(E) be µ-H-Lipschitz and
η-H-Lipschitz continuous, respectively and let the mapping M(·, ·) be α-strongly
g-accretive with respect to T,A and (β, γ)-Lipschitz continuous. Let the mapping
g be δ-Lipschitz continuous and let the mapping (g − I) : E → E be k-strongly
accretive, where I : E → E is an identity mapping. If Assumption 2.1 holds and
there exists a constant ρ > 0 such that (12) holds with λ = βµ+γη, then there exist
x ∈ E, u ∈ T (x), v ∈ A(x), satisfying (3) and the iterative sequences {xn}, {un}
and {vn} generated by Algorithm 3.3 converge strongly to x, u,v, respectively, in E.

If E ≡ H, a real Hilbert space, then Theorem 3.2 reduces to the following result:

Corollary 3.2. Let H be a real Hilbert space. Let the mappings T,A, S : E →
CB(E) be µ-H-Lipschitz, η-H-Lipschitz and σ-H-Lipschitz continuous, respectively
and let the mapping N(·, ·, ·) be α-strongly g-accretive with respect to T,A and S,
and (β, γ, ξ)-Lipschitz continuous. Let the mapping g be δ-Lipschitz continuous and
let the mapping (g − I) : E → E be k-strongly accretive, where I : E → E is an
identity mapping. If Assumption 2.1 holds and there exists a constant ρ > 0 such
that (12) holds, then there exist x ∈ H, u ∈ T (x), v ∈ A(x) w ∈ S(x) satisfying
(5) and the iterative sequences {xn}, {un}, {vn} and {wn} generated by Algorithm
3.2 converge strongly to x, u, v, w, respectively, in H.

Remark 3.3. Corollary 3.2 generalizes and improves the results given in [2,7-9].
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