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SOME LIMIT RESULTS FOR INTEGRANDS AND
HAMILTONIANS WITH APPLICATION TO VISCOSITY

C. CASTAING, A. JOFRE, AND A. SYAM

1. Introduction

The present work is essentially a continuation of [9], [6], [7] dealing with Control
problems where the dynamics are driven by ordinary differential equations (ODE)
[9] and evolution inclusions (EI) governed by nonconvex sweeping process and m-
accretive operators [6], [7] via the fiber product of Young measures [9], associated
with the Hamilton-Jacobi-Bellman equation

∂u

dt
+H(t, x,Dxu) = 0

where the Hamiltonian is given by

H(t, x, y) = inf
µ∈M1

+(Y )
sup

ν∈M1
+(Z)

{〈y, g(t, x, µ, ν)〉}+G(t, x, y),

M1
+(Y ) (resp. M1

+(Z)) is the compact metrizable space of the set of all probability
Radon measures on a compact metric space Y (resp. Z) endowed with the vague
topology, g : [0, 1]×Rd×M1

+(Y )×M1
+(Z) → Rd is a bounded continuous mapping,

uniformly Lipschitzean with respect to the variable x ∈ Rd, and G : [0, 1] ×Rd ×
Rd → R is an upper semicontinuous integrand. Given a bounded continuous cost
function J : [0, 1]×Rd × Y × Z → R and the lower value function

VJ(τ, x) = max
ν∈K

min
µ∈H

{
∫ 1

τ
[
∫

Y
[
∫

Z
J(t, ux,µ,ν(t), y, z)µt(dy)]νt(dz)]dt}

where τ ∈ [0, 1], H (resp. K) is the space of Young measures Y([0, 1], Y ), (resp.
Y([0, 1], Z)), ux,µ,ν denotes the unique absolutely continuous solution associated
with the control (µ, ν) ∈ H ×K of the dynamic control

u̇x,µ,ν(t) = g(t, ux,µ,ν(t), µt, νt);ux,µ,ν(τ) = x.

Under some suitable conditions, VJ is a viscosity solution of the associated HJB
under consideration, we refer to [9], [7] for details. In the present paper, we provide
some limit results for both normal integrands and Hamitonians. In particular,
we show some viscosity properties of the value function according to the lower
semicontinuity (resp. upper semicontinuity) in time of the dynamic. In Section 2,
we prove two existence theorems of viscosity solutions in a control problem with
Young measures for an ODE in R where the family (g(., ., µ, ν))(µ,ν)∈M1

+(Y )×M1
+(Z)

is equi-lower (resp. equi-upper) semicontinuous with respect to the variables (t, x).
In Section 3, we present some limit results for normal integrands via the Lebesgue
derivation theorem. In Section 4, we provide a lim inf (resp. lim sup) result for the
Hamiltonians when the dynamic is globally lower (resp. upper) semicontinuous by
using the results obtained in Section 3. We refer to [17], [3], [20] for the study of
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time-measurable Hamiltonians, to [2], [3], [15], [16] for viscosity solutions in ordinary
differential equations (ODE), to [6], [7] for viscosity solutions in evolution inclusions
(EI) with Young measure controls, to [12], [21], [22], for convex sweeping process,
to [4], [13], [11], [25] for nonconvex sweeping process, to [1], [10], [26], [27] for Young
measures.

Throughout E is the finite dimensional space Rd, L([0, 1]) is the σ-algebra of all
Lebesgue-measurable sets in [0, 1].

2. Control problem governed by ordinary differential equations

We present a study of viscosity solutions to ODE where the controls are Young
measures. We recall and summarize some results given in [9]. We assume that
(K1) f : [0, 1] × E × Y × Z → E is bounded, say, ||f(t, x, y, z)|| ≤ M for some
M > 0, for all (t, x, y, z) ∈ [0, 1]×E×Y ×Z; for all t ∈ [0, 1], f(t, ., ., .) is continuous
on E × Y × Z; for all (x, y, z) ∈ E × Y × Z, f(., x, y, z) is Lebesgue-measurable on
[0, 1] and uniformly Lipschitzean in x ∈ E, that is,

||f(t, x1, y, z)− f(t, x2, y, z)|| ≤ η||x1 − x2||
for some η > 0, for all (t, x1, y, z), (t, x2, y, z) ∈ [0, 1]× E × Y × Z.
(K2) J : [0, 1] × E × Y × Z → R is bounded, say, |J(t, x, y, z)| ≤ N , for some
N > 0, for all (t, x, y, z) ∈ [0, 1]×E×Y ×Z; for all t ∈ [0, 1], J(t, ., ., .) is continuous
on E × Y × Z; for all (x, y, z) ∈ E × Y × Z, J(., x, y, z) is Lebesgue-measurable on
[0, 1].

We will need three technical results which are borrowed from [6], [7], [9].

Lemma 2.1. Let f : [0, 1]×E×Y ×Z → E satisfying (K1). Let (t0, x0) ∈ [0, 1]×E.
Assume that Λ : [0, 1]× E ×M1

+(Y )×M1
+(Z) → R is a mapping satisfying

(i) the family (Λ(., ., µ, ν))(µ,ν)∈M1
+(Y )×M1

+(Z) is equi-lower semicontinuous on
[0, 1]× E,

(ii) for every fixed (t, x) ∈ [0, 1] × E, Λ(t, x, ., .) is upper semicontinuous on
M1

+(Y )×M1
+(Z),

(iii) for any bounded subset B of E, the restriction Λ|[0,1]×B×M1
+(Y )×M1

+(Z) is
bounded.

If infµ∈M1
+(Y ) maxν∈M1

+(Z) Λ(t0, x0, µ, ν) > η > 0 for some η > 0, then there is
σ > 0 such that, for each µ ∈ H, we have

sup
ν∈K

∫ t0+σ

t0

Λ(t, ux0,µ,ν(t), µt, νt)dt > ση/2,

where ux0,µ,ν denotes the unique trajectory solution of{
u̇x0,µ,ν(t) =

∫
Z [

∫
Y f(t, ux0,µ,ν(t), y, z)µt(dy)] νt(dz)

ux0,µ,ν(t0) = x0 ∈ E,

associated with the controls (µ, ν) ∈ H ×K.

Proof. By the equi-lower semicontinuity hypothesis (i), there is ζ > 0 such that, for
all (µ, ν) ∈M1

+(Y )×M1
+(Z), if 0 ≤ t− t0 ≤ ζ and ||x− x0|| ≤ ζ, then

Λ(t, x, µ, ν) > Λ(t0, x0, µ, ν)−
η

2
.
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It is worthy to mention that, from (i)–(ii), Λ is Borel on [0, 1]×E×M1
+(Y )×M1

+(Z).
Let µ ∈ H. By (ii) there exists a Lebesgue-measurable mapping νµ : [0, 1] →M1

+(Z)
such that

Λ(t0, x0, µt, ν
µ
t ) = max

ν′∈M1
+(Z)

Λ(t0, x0, µt, ν
′)

for all t ∈ [0, 1], because the nonempty Borelian-valued multifunction

t→ {ν ∈M1
+(Z) : Λ(t0, x0, µt, ν) = max

ν′∈M1
+(Z)

Λ(t0, x0, µt, ν
′)

has its graph in L([0, 1]) ⊗ B(M1
+(Z)). Take σ > 0 such that σ ≤ min{ ζ

M , ζ}, we
get

||ux0,µ,ν(t)− ux0,µ,ν(t0)|| ≤ ζ,

for all t ∈ [t0, t0 + σ] and for all ν ∈ R. Furthermore, thank to the above remark,
the function t 7→ Λ(t, ux0,µ,νµ(t), µt, ν

µ
t ) is Lebesgue-mesurable and integrable by

using (iii). By integrating,∫ t0+σ

t0

Λ(t, ux0,µ,νµ(t), µt, ν
µ
t )dt ≥

∫ t0+σ

t0

[Λ(t0, x0, µt, ν
µ
t )− η

2
]dt

>

∫ t0+σ

t0

η

2
dt =

ση

2
. �

Lemma 2.2. Let f : [0, 1]×E×Y ×Z → E satisfying (K1). Let (t0, x0) ∈ [0, 1]×E.
Assume that Λ : [0, 1]× E ×M1

+(Y )×M1
+(Z) → R is a mapping satisfying

(i) the family (Λ(., ., µ, ν))(µ,ν)∈M1
+(Y )×M1

+(Z) is equi-upper semicontinuous on
[0, 1]× E,

(ii) for every fixed (t, x) ∈ [0, 1] × E, Λ(t, x, ., .) is lower semicontinuous on
M1

+(Y )×M1
+(Z),

(iii) for any bounded subset B of E, the restriction Λ|[0,1]×B×M1
+(Y )×M1

+(Z) is
bounded.

If minµ∈M1
+(Y ) maxν∈M1

+(Z) Λ(t0, x0, µ, ν) < −η < 0 for some η > 0, then there is
µ ∈ H and σ > 0 such that,

sup
ν∈K

∫ t0+σ

t0

Λ(t, ux0,µ,ν(t), µt, νt)dt < −ση/2,

where ux0,µ,ν denotes the unique trajectory solution of{
u̇x0,µ,ν(t) =

∫
Z [

∫
Y f(t, ux0,µ,ν(t), y, z)µt(dy)] νt(dz)

ux0,µ,ν(t0) = x0 ∈ E,

associated with the controls (µ, ν) ∈ H ×K.

Proof. By hypothesis, there is µ ∈M1
+(Y ) such that

max
ν∈M1

+(Z)
Λ(t0, x0, µ, ν) < −η < 0.

By the equi-upper semicontinuous hypothesis (i), there is ζ > 0 such that

max
ν∈M1

+(Z)
Λ(t, x, µ, ν) < −η/2,



468 C. CASTAING, A. JOFRE, AND A. SYAM

for 0 < t− t0 ≤ ζ and ||x− x0|| ≤ ζ. Thus for σ > 0 such that σ ≤ min{ζ, ζ
M }, we

get
||ux0,µ,ν(t)− ux0,µ,ν(t0)|| ≤ ζ,

for all t ∈ [t0, t0 + σ] and for all ν ∈ R. Denote by µ the constant Young measure
t 7→ µt = µ. Using (i) − −(iii) we see that the functions t 7→ Λ(t, ux0,µ,ν(t), µt, νt)
are Lebesgue-measurable and integrable on [t0, t0 + σ]. Then by integrating∫ t0+σ

t0

Λ(t, ux0,µ,ν(t), µt, νt)dt ≤
∫ t0+σ

t0

[ max
ν′∈M1

+(Z)
Λ(t, ux0,µ,ν′(t), µ, ν ′)]dt

< −ση/2,

for all ν ∈ K and the result follows. �

Remarks. In Lemma 2.1-2.2, we have used the fact that any function defined on the
product of two separable metric spaces which is separately upper semicontinuous in
one variable and lower semicontinuous in the other variable is globally Borel. This
was already proved in [18]. This property is no more true for a function which is
separately upper (or lower) semicontinuous in both variables: see a counterexample
by Sierpinski [23], where a non Borel function f is defined on the plane R×R such
that the restriction of f to any line of R×R is the indicator function of two points.

We will need a variant of Lemma 2.1-2.2 dealing with globally upper semicontin-
uous integrands. The following is borrowed from ([7], Lemma 4.1).

Lemma 2.3. Let f : [0, 1] × E × Y × Z → E satisfying (K1). Let (t0, x0) ∈
[0, 1]×E. Assume that Λ1 : [0, 1]×E ×M1

+(Y )×M1
+(Z) → R is continuous and

Λ2 : [0, 1] × E ×M1
+(Z) → R is upper semicontinuous such that, for any bounded

subset B of E, Λ2|[0,1]×B×M1
+(Z) is bounded, and assume that Λ := Λ1 +Λ2 satisfies

the following condition

min
µ∈M1

+(Y )
max

ν∈M1
+(Z)

Λ(t0, x0, µ, ν) < −η < 0 for some η > 0.

Then there is µ ∈M1
+(Y ) and σ > 0 such that

sup
ν∈K

∫ t0+σ

t0

Λ(t, ux0,µ,ν(t), µ, νt)dt < −ση/2,

where ux0,µ,ν denotes the unique trajectory solution of{
u̇x0,µ,ν(t) =

∫
Z [

∫
Y f(t, ux0,µ,ν(t), y, z)µ(dy)] νt(dz)

ux0,µ,ν(t0) = x0 ∈ E,

associated with the controls (µ, ν) ∈ H ×K.

Proof. By hypothesis,

min
µ∈M1

+(Y )
max

ν∈M1
+(Z)

Λ(t0, x0, µ, ν) < −η < 0,

that is,
min

µ∈M1
+(Y )

max
ν∈M1

+(Z)
[Λ1(t0, x0, µ, ν) + Λ2(t0, x0, ν)] < −η < 0.
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As the function Λ1 is continuous, so is the function

µ 7→ max
ν∈M1

+(Z)
[Λ1(t0, x0, µ, ν) + Λ2(t0, x0, ν)].

Hence there exists µ ∈M1
+(Y ) such that

max
ν∈M1

+(Z)
Λ(t0, x0, µ, ν) = min

µ∈M1
+(Y )

max
ν∈M1

+(Z)
Λ(t0, x0, µ, ν).

As the function (t, x, ν) 7→ Λ1(t, x, µ, ν) is continuous and the function (t, x, ν) 7→
Λ2(t, x, ν) is upper semicontinuous, (t, x, ν) 7→ Λ1(t, x, µ, ν) + Λ2(t, x, ν) is upper
semicontinuous, so is the function

(t, x) 7→ max
ν∈M1

+(Z)
Λ(t, x, µ, ν).

Hence there is ζ > 0 such that

max
ν∈M1

+(Z)
Λ(t, x, µ, ν) < −η/2,

for 0 < t− t0 ≤ ζ and ||x− x0|| ≤ ζ. Thus for σ > 0 such that σ ≤ min{ζ, ζ
M }, we

get
||ux0,µ,ν(t)− ux0,µ,ν(t0)|| ≤ ζ,

for all t ∈ [t0, t0 + σ] and for all ν ∈ R. Hence the functions Λ(t, ux0,µ,ν(t), µ, νt)
bounded and Lebesgue-measurable on [t0, t0 + σ]. Then by integrating∫ t0+σ

t0

Λ(t, ux0,µ,ν(t), µ, νt)dt ≤
∫ t0+σ

t0

[ max
ν′∈M1

+(Z)
Λ(t, ux0,µ,ν′(t), µ, ν ′)]dt

< −ση/2 < 0,

for all ν ∈ R and the result follows. �

Let us recall the following dynamic programming principle theorem [9], using the
fiber product lemma for Young measures.

Theorem 2.1. Assume that (K1)–(K2) are satisfied. Let us consider the upper
value function

UJ(τ, x) := min
µ∈H

max
ν∈K

{
∫ 1

τ
[
∫

Z
[
∫

Y
J(t, ux,µ,ν(t), y, z)µt(dy)]νt(dz)] dt},

where ux,µ,ν is the unique trajectory solution of{
u̇x,µ,ν(t) =

∫
Z [

∫
Y f(t, ux,µ,ν(t), y, z)µt(dy)] νt(dz), a.e. t ∈ [τ, 1],

ux,µ,ν(τ) = x ∈ E.

Then for any σ ∈]0, 1[ with τ + σ < 1,

UJ(τ, x) = min
µ∈H

max
ν∈K

{
∫ τ+σ

τ
[
∫

Z
[
∫

Y
J(t, ux,µ,ν(t), y, z)µt(dy)] νt(dz)] dt

+ UJ(τ + σ, ux,µ,ν(τ + σ))},
where

UJ(τ + σ, ux,µ,ν(τ + σ))
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= min
β∈H

max
γ∈K

∫ 1

τ+σ
[
∫

Z
[
∫

Y
J(t, vx,β,γ(t), y, z)βt(dy)] γt(dz)] dt,

where vx,β,γ denotes the trajectory solution of the above dynamic associated with the
controls (β, γ) ∈ H ×K with initial condition vx,β,γ(τ + σ) = ux,µ,ν(τ + σ).

For simplicity we present some viscosity properties for the value function in the
particular case of one space of Young measure controls K. We would like to mention
that, even in this case, new details of proofs are necessary. We will consider the
value function

VJ(τ, x) := max
ν∈K

{
∫ 1

τ
[
∫

Z
J(t, ux,ν(t), z) νt(dz)] dt},

where ux,ν is the unique trajectory solution of{
u̇x,ν(t) =

∫
Z f(t, ux,ν(t), z) νt(dz), a.e. t ∈ [τ, 1],

ux,ν(τ) = x ∈ E,
in the particular case where E is R, and f and J satisfy the following assumptions.
(H1)(a) f : [0, 1]×E×Z → R+ is bounded, say, f(t, x, z) ≤M , for some M > 0,
for all (t, x, z) ∈ [0, 1] × E × Z; uniformly Lipschitz with respect to the variable
x ∈ E, f(t, ., .) is continuous on E × Z for every t ∈ [0, 1] and the family

(f̂(., ., ν))ν∈M1
+(Z)

is equi-lower semicontinuous on [0, 1]× E, where

f̂(t, x, ν) :=
∫

Z
f(t, x, z)ν(dz)

∀(t, x, ν) ∈ [0, 1]× E ×M1
+(Z).

(H2)(a) J : [0, 1]× E × Z → R is bounded, say, |J(t, x, z)| ≤ N ,for some N > 0,
for all (t, x, z) ∈ [0, 1] × E × Z; J(t, ., .) is continuous on E × Z for every t ∈ [0, 1]
and the family

(Ĵ(., ., ν))ν∈M1
+(Z)

is equi-lower semicontinuous on [0, 1]× E, where

Ĵ(t, x, ν) :=
∫

Z
J(t, x, z)ν(dz),

∀(t, x, ν) ∈ [0, 1]× E ×M1
+(Z).

Similarly we consider the assumptions.
(H1)(b) f : [0, 1]×E×Z → R+ is bounded, say, f(t, x, z) ≤M , for some M > 0,
for all (t, x, z) ∈ [0, 1] × E × Z, uniformly Lipschitz with respect to the variable
x ∈ E, f(t, ., .) is continuous on E × Z for every t ∈ [0, 1] and the family

(f̂(., ., ν))ν∈M1
+(Z)

is equi-upper semicontinuous on [0, 1]× E.
(H2)(b) J : [0, 1]×E × Z → R is bounded, say, |J(t, x, z)| ≤ N , for some N > 0,
for all (t, x, z) ∈ [0, 1] × E × Z; J(t, ., .) is continuous on E × Z for every t ∈ [0, 1]
and the family

(Ĵ(., ., ν))ν∈M1
+(Z)
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is equi-upper semicontinuous on [0, 1]× E.

Theorem 2.2 (Existence of viscosity supersolutions). Assume that (H1)(a) and
(H2)(a) are satisfied. Let us consider the value function VJ

VJ(τ, x) := max
ν∈K

{
∫ 1

τ
[
∫

Z
J(t, ux,ν(t), z) νt(dz)] dt},

where ux,ν is the unique trajectory solution of{
u̇x,ν(t) =

∫
Z f(t, ux,ν(t), z) νt(dz), a.e. t ∈ [τ, 1],

ux,ν(τ) = x ∈ E.

Let us consider the upper Hamiltonian

H+(t, x, y) = max
ν∈M1

+(Z)
{y.f̂(t, x, ν) + Ĵ(t, x, ν)}.

Then VJ is a semi-viscosity supersolution of the Hamilton-Jacobi-Bellman equation

Ut +H+(t, x,∇U) = 0,

that is, if for any ϕ ∈ C1
R([0, 1]× E) for which ∇ϕ is ≥ 0 and bounded and VJ − ϕ

reaches a local minimum at (t0, x0) ∈ [0, 1]× E, then
∂ϕ

∂t
(t0, x0) +H+(t0, x0,∇ϕ(t0, x0)) ≤ 0.

Proof. We will make use of some arguments developed in [16], [15], [9],[6], [7]. This
needs a careful look because f and J are not globally continuous. Assume by
contradiction that there exists a ϕ ∈ C1

R([0, 1] × E) for which ∇ϕ is ≥ 0 and
bounded and a point (t0, x0) ∈ [0, 1]× E for which

∂ϕ

∂t
(t0, x0) +H+(t0, x0,∇ϕ(t0, x0)) > η,

for some η > 0. As both f̂ and ∇ϕ are ≥ 0 and bounded, by using (H1)(a) and
(H2)(a) we may apply Lemma 2.1 to the integrand Λ defined by on [0, 1] × E ×
M1

+(Z) by

Λ(t, x, ν) = Ĵ(t, x, ν) +∇ϕ(t, x).f̂(t, x, ν) +
∂ϕ

∂t
(t, x),

for all (t, x, ν) ∈ [0, 1]× E ×M1
+(Z) because the family

(∇ϕ(., .).f̂(., ., ν))ν∈M1
+(Z)

inherits the equi-lower semicontinuity property of the family

(f̂(., ., ν))ν∈M1
+(Z).

This provides σ > 0 such that,

(2.2.1) max
ν∈K

{
∫ t0+σ

t0

[
∫

Z
J(t, ux0,ν(t), z)νt(dz)] dt

+
∫ t0+σ

t0

[
∫

Z
[∇ϕ(t, ux0,ν(t)).f(t, ux0,ν(t), z)]νt(dz)] dt
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+
∫ t0+σ

t0

∂ϕ

∂t
(t, ux0,ν(t))dt} > ση/2,

where ux0,ν is the trajectory solution associated with the control ν ∈ K of{
u̇x0,ν(t) =

∫
Z f(t, ux0,ν(t), z)νt(dz), a.e. t ∈ [0, 1],

ux0,ν(t0) = x0 ∈ E.

From Theorem 2.1 (of dynamic programming) (see e.g [9], Theorem 3.2.1) we deduce

(2.2.2) VJ(t0, x0) = max
ν∈K

{
∫ t0+σ

t0

[
∫

Z
J(t, ux0,ν(t), z)νt(dz)] dt

+ VJ(t0 + σ, ux0,ν(t0 + σ))}.
Since VJ − ϕ has a local minimum at (t0, x0), so for σ small enough

(2.2.3) VJ(t0, x0)− ϕ(t0, x0) ≤ VJ(t0 + σ, ux0,ν(t0 + σ))− ϕ(t0 + σ, ux0,ν(t0 + σ))

for all ν ∈ K. It follows that

(2.2.4) max
ν∈K

{
∫ t0+σ

t0

[
∫

Z
J(t, ux0,ν(t), z)νt(dz)] dt

+ VJ(t0 + σ, ux0,ν(t0 + σ))}+ max
ν∈K

{ϕ(t0 + σ, ux0,ν(t0 + σ))− ϕ(t0, x0)

− VJ(t0 + σ, ux0,ν(t0 + σ))} ≤ 0.

From (2.2.4) we get

(2.2.5) max
ν∈K

{
∫ t0+σ

t0

[
∫

Z
J(t, ux0,ν(t), z) νt(dz)]dt

+ ϕ(t0 + σ, ux0,ν(t0 + σ))− ϕ(t0, x0)} ≤ 0.

As ϕ is C1 and ux0,ν is the trajectory solution of our dynamic

(2.2.6) ϕ(t0 + σ, ux0,ν(t0 + σ))− ϕ(t0, x0)

=
∫ t0+σ

t0

[
∫

Z
[∇ϕ(t, ux0,ν(t)).f(t, ux0,ν(t), z)]νt(dz)] dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ux0,ν(t)) dt.

Using (2.2.6) and coming back to (2.2.5), we have a contradiction to (2.2.1). There-
fore we must have

∂ϕ

∂t
(t0, x0) +H+(t0, x0,∇ϕ(t0, x0)) ≤ 0. �

Similarly repeating the techniques of the preceding proof and using Lemma 2.2,
we have

Theorem 2.3 (Existence of viscosity subsolutions). Assume that (H1)(b) and
(H2)(b) are satisfied. Let us consider the value function VJ

VJ(τ, x) := max
ν∈K

{
∫ 1

τ
[
∫

Z
J(t, ux,ν(t), z) νt(dz)] dt},
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where ux,ν is the unique trajectory solution of{
u̇x,ν(t) =

∫
Z f(t, ux,ν(t), z) νt(dz), a.e. t ∈ [τ, 1],

ux,ν(τ) = x ∈ E.

Let us consider the upper Hamiltonian

H+(t, x, y) = max
ν∈M1

+(Z)
{y.f̂(t, x, ν) + Ĵ(t, x, ν)}.

Then VJ is a semiviscosity subsolution of the HJB equation

Ut +H+(t, x,∇U) = 0,

that is, if for any ϕ ∈ C1
R([0, 1]× E) for which ∇ϕ is ≥ 0 and bounded and VJ − ϕ

reaches a local maximum at (t0, x0) ∈ [0, 1]× E, then
∂ϕ

∂t
(t0, x0) +H+(t0, x0,∇ϕ(t0, x0)) ≥ 0.

Proof. The proof is somewhat different from the ones of Theorem 2.2. Assume by
contradiction that there exists a ϕ ∈ C1

R([0, 1]×E) for which ∇ϕ is ≥ 0 and bounded
and a point (t0, x0) ∈ [0, 1]× E for which

∂ϕ

∂t
(t0, x0) +H+(t0, x0,∇ϕ(t0, x0)) < −η,

for some η > 0. As both f̂ and ∇ϕ are ≥ 0 and bounded, by using (H1)(b) and
(H2)(b) we may apply Lemma 2.2 to the integrand Λ defined by on [0, 1]×E×M1

+(Z)
by

Λ(t, x, ν) = Ĵ(t, x, ν) +∇ϕ(t, x).f̂(t, x, ν) +
∂ϕ

∂t
(t, x),

for all (t, x, ν) ∈ [0, 1]× E ×M1
+(Z) because the family

(∇ϕ(., .).f̂(., ., ν))ν∈M1
+(Z)

inherits the equi-upper semicontinuity property of the family

(f̂(., ., ν))ν∈M1
+(Z).

This provides σ > 0 such that,

(2.3.1) max
ν∈K

{
∫ t0+σ

t0

[
∫

Z
J(t, ux0,ν(t), z)νt(dz)] dt

+
∫ t0+σ

t0

[
∫

Z
[∇ϕ(t, ux0,ν(t)).f(t, ux0,ν(t), z)]νt(dz)] dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ux0,ν(t))dt} < −ση/2,

where ux0,ν is the trajectory solution associated with the control ν ∈ K of{
u̇x0,ν(t) =

∫
Z f(t, ux0,ν(t), z)νt(dz), a.e. t ∈ [0, 1],

ux,ν(t0) = x0 ∈ E.

From Theorem 2.1 (of dynamic programming) (see e.g [9], Theorem 3.2.1) we deduce
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(2.3.2) VJ(t0, x0) = max
ν∈K

{
∫ t0+σ

t0

[
∫

Z
J(t, ux0,ν(t), z)νt(dz)] dt

+ VJ(t0 + σ, ux0,ν(t0 + σ))}.

Since VJ − ϕ has a local maximum at (t0, x0), so for σ small enough

(2.3.3) VJ(t0, x0)− ϕ(t0, x0) ≥ VJ(t0 + σ, ux0,ν(t0 + σ))− ϕ(t0 + σ, ux0,ν(t0 + σ))

for all ν ∈ K. For each n ∈ N, there is νn ∈ K such that

(2.3.4) VJ(t0, x0) ≤
∫ t0+σ

t0

[
∫

Z
J(t, ux0,νn(t), z)νn

t (dz)] dt

+ VJ(t0 + σ, ux0,νn(t0 + σ)) + 1/n.

From (2.3.3) and (2.3.4) we deduce that

VJ(t0 + σ, ux0,νn(t0 + σ))− ϕ(t0 + σ, ux0,νn(t0 + σ))

≤
∫ t0+σ

t0

[
∫

Z
J(t, ux0,νn(t), z)νn

t (dz)] dt+ 1/n

− ϕ(t0, x0) + VJ(t0 + σ, ux0,νn(t0 + σ)).

Whence we have

(2.3.4) 0 ≤
∫ t0+σ

t0

[
∫

Z
J(t, ux0,νn(t), z)νn

t (dz)] dt

+ ϕ(t0 + σ, ux0,νn(t0 + σ))− ϕ(t0, x0) + 1/n.

As ϕ is C1 and ux0,νn is the trajectory solution of our dynamic

(2.3.5) ϕ(t0 + σ, ux0,νn(t0 + σ))− ϕ(t0, x0)

=
∫ t0+σ

t0

[
∫

Z
[∇ϕ(t, ux0,νn(t)).f(t, ux0,νn(t), z)]νn

t (dz)] dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ux0,νn(t)) dt.

By (2.3.4) and (2.3.5) we have, for each n,

(2.3.6) 0 ≤
∫ t0+σ

t0

[
∫

Z
J(t, ux0,νn(t), z)νn

t (dz)] dt

+
∫ t0+σ

t0

[
∫

Z
[∇ϕ(t, ux0,νn(t)).f(t, ux0,νn(t), z)]νn

t (dz)] dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ux0,νn(t))dt+ 1/n.

As K is compact metrisable for the stable topology, we may assume that (νn) stably
converges to a Young measure ν ∈ K. This implies that ux0,νn converges uniformly
to ux0,ν that is a trajectory solution of our dynamic associated to the control ν and
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δux0,νn ⊗ νn stably converges to δux0,ν ⊗ ν (see [9] and [10] for details). It follows
that

lim
n→∞

∫ t0+σ

t0

[
∫

Z
J(t, ux0,νn(t), z)νn

t (dz)] dt =
∫ t0+σ

t0

[
∫

Z
J(t, ux0,ν(t), z)νt(dz)] dt

lim
n→∞

∫ t0+σ

t0

[
∫

Z
[∇ϕ(t, ux0,νn(t)).f(t, ux0,νn(t), z)]νn

t (dz)] dt =∫ t0+σ

t0

[
∫

Z
[∇ϕ(t, ux0,ν(t)).f(t, ux0,ν(t), z)]νt(dz)] dt,

lim
n→∞

∫ t0+σ

t0

∂ϕ

∂t
(t, ux0,νn(t))dt =

∫ t0+σ

t0

∂ϕ

∂t
(t, ux0,ν(t))dt.

Finally by passing to the limit in (2.3.6) when n→∞ we get

(2.3.7) 0 ≤
∫ t0+σ

t0

[
∫

Z
J(t, ux0,ν(t), z)νt(dz)] dt

+
∫ t0+σ

t0

[
∫

Z
[∇ϕ(t, ux0,ν(t)).f(t, ux0,ν(t), z)]νt(dz)] dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ux0,ν(t))dt.

This contradicts (2.3.1) and the proof is therefore complete. �

3. Some limit results using the Lebesgue derivation theorem

Now we are going to discuss other variants of Theorem 2.2-2.3 regarding the vis-
cosity solutions when the dynamics are NOT globally continuous. For this purpose,
we will exploit some ideas given in [8] concerning the use of Lebesgue derivation
theorem for normal integrands. Before going further we present two lemmas which
allow to study the limits for the Hamiltonians under consideration. In the sequel,
(rn) denotes a sequence of positive numbers such that limn→∞ rn = 0.

Lemma 3.1. Assume that (X, dX) and (Y, dY ) are two Polish spaces and f : [0, 1]×
X × Y → R be a mapping satisfying:

1) |f(t, x1, y1) − f(t, x2, y2)| ≤ η[dX(x1, x2) + dY (y1, y2)], for some η > 0, for
all (t, x1, y1), (t, x2, y2) ∈ [0, 1]×X × Y ,

2) f(., x, y) is Lebesgue-measurable for all (x, y) ∈ X × Y ,
3) f is bounded, say, |f(t, x, y)| ≤M for all (t, x, y) ∈ [0, 1]×X ×Y , for some

positive constant M .
If (µn) (resp. (νn)) is a sequence of Young measures in Y([0, 1], X) (resp. Y([0, 1], Y ))
which pointwisely converges on [0, 1] to a Young measure µ∞ ∈ Y([0, 1], X) (resp.
ν∞ ∈ Y([0, 1], Y )) for the narrow topology on M1

+(X) (resp. M1
+(Y )), then

lim
n→∞

1
2rn

∫
It,rn

〈fs, µ
n
t ⊗ νn

t 〉ds = 〈ft, µ
∞
t ⊗ ν∞t 〉

for almost all t ∈ [0, 1]; here It,rn = [t− rn, t+ rn] ∩ [0, 1].
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Proof. Let us recall that M1
+(X) and M1

+(Y ) endowed with the narrow topology
are Polish spaces. Let DX and DY be a countable dense subset of M1

+(X) and
M1

+(Y ) respectively. By 1)– 3), it is clear that for each (µ, ν) ∈M1
+(X)×M1

+(Y )
the real-valued function

s 7→ 〈fs, µ⊗ ν〉 :=
∫

Y
[
∫

X
f(s, x, y)µ(dx)]ν(dy)

is bounded and Lebesgue-measurable on [0, 1]. We begin to prove that

(3.1.1) lim
n→∞

1
2rn

∫
It,rn

〈fs, µ⊗ ν〉ds = 〈ft, µ⊗ ν〉

for almost all t ∈ [0, 1], namely, there is a Lebesgue-negligible set N in [0, 1] which
does not depend on (µ, ν) ∈ M1

+(X) × M1
+(Y ) such that (3.1.1) holds for all

t ∈ [0, 1]\N . Let µ and ν be arbitrary but fixed inM1
+(X) andM1

+(Y ) respectively
and let (µk) and (νk) be a sequence in DX and DY respectively which narrowly
converges to µ and ν respectively. By Lebesgue derivation theorem, there is a
Lebesgue-negligible set N in [0, 1] such that

(3.1.2) lim
n→∞

1
2rn

∫
It,rn

〈fs, µ
k ⊗ νk〉ds = 〈ft, µ

k ⊗ νk〉

for all k and for all t ∈ [0, 1] \ N . As (µk) and (νk) narrowly converge to µ and
ν respectively, the product (µk ⊗ νk) narrowly converges to µ ⊗ ν. By virtue of
Dudley embedding theorem [14], (µk ⊗ νk) converges to µ ⊗ ν in the strong dual
BLIP (X × Y )′ of the Banach space BLIP (X × Y ) of all real-valued bounded
Lipschitzean functions defined on X × Y endowed with the norm ||f ||BLIP (X×Y )

given by

||f ||BLIP (X×Y ) := ||f ||∞ + sup{ |f(x1, y1)− f(x2, y2)|
dX×Y ((x1, y1), (x2, y2))

: (x1, y1) 6= (x2, y2},

here X × Y is endowed with the usual distance

dX×Y ((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2)

for (x1, y1), (x2, y2) ∈ X × Y . Taking account into assumptions 1)– 3) and the
preceding consideration we have

K := sup
s∈[0,1]

||fs||BLIP (X×Y ) < +∞.

Consequently we have

|〈fs, µ
k ⊗ νk〉 − 〈fs, µ⊗ ν〉| ≤ K||µk ⊗ νk − µ⊗ ν||BLIP (X×Y )′

for all s ∈ [0, 1]. Let us write
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| 1
2rn

∫
It,rn

〈fs, µ⊗ ν〉ds− 〈ft, µ⊗ ν〉|

≤ | 1
2rn

∫
It,rn

〈fs, µ⊗ ν〉ds− 1
2rn

∫
It,rn

〈fs, µ
k ⊗ νk〉ds|

+ | 1
2rn

∫
It,rn

〈fs, µ
k ⊗ νk〉ds− 〈ft, µ

k ⊗ νk〉|

+ |〈ft, µ
k ⊗ νk〉 − 〈ft, µ⊗ ν〉|.

It follows that

| 1
2rn

∫
It,rn

〈fs, µ⊗ ν〉ds− 〈ft, µ⊗ ν〉| ≤ 2K||µk ⊗ νk − µ⊗ ν||BLIP (X×Y )′

+ | 1
2rn

∫
It,rn

〈fs, µ
k ⊗ νk〉ds− 〈ft, µ

k ⊗ νk〉|.

Let ε > 0. There is Nε ∈ N such that

||µk ⊗ νk − µ⊗ ν||BLIP (X×Y )′ ≤ ε

for all k ≥ Nε. By (3.1.2) there is a Lebesgue-negligible set N in [0, 1] such that

lim
n

1
2rn

∫
It,rn

〈fs, µ
k ⊗ νk〉ds = 〈ft, µ

k ⊗ νk〉

for all k ∈ N and for all t ∈ [0, 1] \N , so that

lim sup
n

1
2rn

∫
It,rn

〈fs, µ⊗ ν〉ds ≤ 〈ft, µ⊗ ν〉+ 2Kε

for all t ∈ [0, 1] \N . Hence

lim sup
n

1
2rn

∫
It,rn

〈fs, µ⊗ ν〉ds ≤ 〈ft, µ⊗ ν〉

for all t ∈ [0, 1] \N and similarly,

lim inf
n

1
2rn

∫
It,rn

〈fs, µ⊗ ν〉ds ≥ 〈ft, µ⊗ ν〉

for all t ∈ [0, 1] \N . Let us write

| 1
2rn

∫
It,rn

〈fs, µ
n
t ⊗ νn

t 〉ds− 〈ft, µ
∞
t ⊗ ν∞t 〉|

≤ | 1
2rn

∫
It,rn

[〈fs, µ
n
t ⊗ νn

t 〉 − 〈fs, µ
∞
t ⊗ ν∞t 〉]ds|

+ | 1
2rn

∫
It,rn

〈fs, µ
∞
t ⊗ ν∞t 〉ds− 〈ft, µ

∞
t ⊗ ν∞t 〉|.

Repeating the preceding arguments, we see that the product µn
t ⊗ µn

t converges to
µ∞t ⊗ ν∞t in the strong dual BLIP (X × Y )′ of the Banach space BLIP (X × Y ).
Using the estimate

|〈fs, µ
n
t ⊗ νn

t 〉 − 〈fs, µ
∞
t ⊗ ν∞t 〉| ≤ K||µn

t ⊗ νn
t − µ∞t ⊗ ν∞t ||BLIP (X×Y )′ ,
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we get

| 1
2rn

∫
It,rn

〈fs, µ
n
t ⊗ νn

t 〉ds− 〈ft, µ
∞
t ⊗ ν∞t 〉|

≤ K||µn
t ⊗ νn

t − µ∞t ⊗ ν∞t ||BLIP (X×Y )′

+ | 1
2rn

∫
It,rn

〈fs, µ
∞
t ⊗ ν∞t 〉ds− 〈ft, µ

∞
t ⊗ ν∞t 〉|.

As
lim
n
||µn

t ⊗ νn
t − µ∞t ⊗ ν∞t ||BLIP (X×Y )′ = 0

for all t ∈ [0, 1] and

lim
n

1
2rn

∫
It,rn

〈fs, µ
∞
t ⊗ ν∞t 〉ds = 〈ft, µ

∞
t ⊗ ν∞t 〉|

for almost all t ∈ [0, 1], we conclude that

lim
n

1
2rn

∫
It,rn

〈fs, µ
n
t ⊗ νn

t 〉ds = 〈ft, µ
∞
t ⊗ ν∞t 〉

for almost all t ∈ [0, 1]. �

Lemma 3.2. Assume that (X, dX) and (Y, dY ) are two Polish spaces and f : [0, 1]×
X × Y → R is a mapping satisfying:

1) f is L([0, 1])⊗ B(X)⊗ B(Y )-measurable,
2) f(t, ., .) is upper semicontinuous (resp. lower semicontinuous) on X × Y ,
3) f is bounded, say, |f(t, x, y)| ≤M , for all (t, x, y) ∈ [0, 1]×X×Y , for some

positive constant M .
If (µn) (resp. (νn)) is a sequence of Young measures in Y([0, 1], X) (resp. Y([0, 1], Y ))
which pointwisely converges on [0, 1] to a Young measure µ∞ ∈ Y([0, 1], X) (resp.
ν∞ ∈ Y([0, 1], Y )) for the narrow topology on M1

+(X) (resp.M1
+(Y )), then

lim sup
n→∞

1
2rn

∫
It,rn

〈fs, µ
n
t ⊗ νn

t 〉ds ≤ 〈ft, µ
∞
t ⊗ ν∞t 〉

(resp. lim inf
n→∞

1
2rn

∫
It,rn

〈fs, µ
n
t ⊗ νn

t 〉ds ≥ 〈ft, µ
∞
t ⊗ ν∞t 〉)

for almost all t ∈ [0, 1].

Proof. We need only to prove the case when f(t, ., .) is upper semicontinuous. For
each positive integer k, set

fk(t, x, y) := inf
(u,v)∈X×Y

{M − f(t, u, v) + kdX×Y ((x, y), (u, v))}

for all (t, x, y) ∈ [0, 1]×X × Y . By measurable projection theorem, ([12], Theorem
III.23), fk(., x, y) is Lebesgue-measurable. Further 0 ≤ fk ≤M−f for all k and (fk)
is nondecreasing with supk f

k(t, x, y) = M−f(t, x, y) for all (t, x, y) ∈ [0, 1]×X×Y .
And

|fk(t, x, y)− fk(t, u, v)| ≤ kdX×Y ((x, y), (u, v))
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for all (t, x, y), (t, u, v) ∈ [0, 1]×X × Y . By Lemma 3.1, we have

(3.2.1) lim
n→∞

1
2rn

∫
It,rn

〈fk
s , µ

n
t ⊗ νn

t 〉ds = 〈fk
t , µ

∞
t ⊗ ν∞t 〉

for all k and all t ∈ [0, 1] \ N , where N is a Lebesgue-negligible set in [0, 1]. For
each t ∈ [0, 1], we have

1
2rn

∫
It,rn

〈fk
s , µ

n
t ⊗ νn

t 〉ds ≤M − 1
2rn

∫
It,rn

〈fs, µ
n
t ⊗ νn

t 〉ds.

Hence

lim inf
n→∞

1
2rn

∫
It,rn

〈fk
s , µ

n
t ⊗ νn

t 〉ds ≤M − lim sup
n→∞

1
2rn

∫
It,rn

〈fs, µ
n
t ⊗ νn

t 〉ds.

According to (3.2.1) and the preceding inequality we get

(3.2.2) 〈fk
t , µ

∞
t ⊗ ν∞t 〉 ≤M − lim sup

n→∞

1
2rn

∫
It,rn

〈fs, µ
n
t ⊗ νn

t 〉ds

for all t ∈ [0, 1] \N . Taking the supremum over k in (3.2.2) we get

(3.2.3) M − 〈ft, µ
∞
t ⊗ ν∞t 〉 ≤M − lim sup

n→∞

1
2rn

∫
It,rn

〈fs, µ
n
t ⊗ νn

t 〉ds

for almost all t ∈ [0, 1]. From (3.2.3) it is immediate that

lim sup
n→∞

1
2rn

∫
It,rn

〈fs, µ
n
t ⊗ νn

t 〉ds ≤ 〈ft, µ
∞
t ⊗ ν∞t 〉

for almost all t ∈ [0, 1]. �

Let us mention a useful corollary of the preceding results.

Corollary 3.1. Assume that f : R×X×Y → R is bounded, upper semicontinuous
(resp. lower semicontinuous) mapping and the hypotheses and notations of Lemma
4.2 are satisfied. If (µn) (resp. (νn)) is a sequence of Young measures in Y([0, 1], X)
(resp. Y([0, 1], Y )) which pointwisely converges on [0, 1] to a Young measure µ∞ ∈
Y([0, 1], X) (resp. ν∞ ∈ Y([0, 1], Y )) for the narrow topology on M1

+(X) (resp.
M1

+(Y )) and (tn) is a sequence in [0, 1] converging to t ∈ [0, 1], then we have

lim sup
n→∞

1
2rn

∫ tn+rn

tn−rn

〈fs, µ
n
t ⊗ νn

t 〉ds ≤ 〈ft, µ
∞
t ⊗ ν∞t 〉

(resp. lim inf
n→∞

1
2rn

∫ tn+rn

tn−rn

〈fs, µ
n
t ⊗ νn

t 〉ds ≥ 〈ft, µ
∞
t ⊗ ν∞t 〉)

for almost all t ∈ [0, 1].

Proof. It is enough to prove the case when f is upper semicontinuous. By an easy
change of variable we have∫ tn+rn

tn−rn

〈fs, µ
n
t ⊗ νn

t 〉ds =
∫ t+rn

t−rn

〈fs+(tn−t), µ
n
t ⊗ νn

t 〉ds.
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Then the arguments of Lemma 3.2 can be applied to δtn−t⊗µn
t ⊗νn

t (which narrowly
converges to δ0 ⊗ µ∞t ⊗ ν∞t ). Hence we have

lim sup
n→∞

1
2rn

∫ t+rn

t−rn

〈fs+(tn−t), µ
n
t ⊗ νn

t 〉ds ≤ 〈ft, µ
∞
t ⊗ ν∞t 〉

for almost all t ∈ [0, 1]. �

4. Some limit results for Hamiltonians using the Lebesgue derivation
theorem

Now we are able to formulate some results regarding the viscosity solutions for
control problems when the dynamics are not globally continuous. For shortness,
we introduce the following convergence. Let X be a compact metric space. Let
(ψn, ψ∞) be a sequence of mappings fromX into a metric spaceW , (ψn) C-converges
to ψ∞, if for any sequence (xn) in X and for any x ∈ ls{xn} and for any subsequence
(xnk) converging to x, we have limk ψ

nk(xnk) = ψ∞(x).
We begin with a sub-viscosity property of the value function VJ associated with

upper semicontinuous dynamic f and continuous cost function J . Compare with
Theorem 2.3.

Proposition 4.1. Assume that J : [0, 1] × R × Z → R is bounded and globally
continuous, f : R×R×Z → R is bounded, globally upper semicontinous and such
that, for every t ∈ [0, 1], f(t, ., .) is continuous on R×Z, and satisfying a Lipschitz
condition: |f(t, x1, z) − f(t, x2, z)| ≤ k|x1 − x2| for all (t, x1, z) and (t, x2, z) in
[0, 1]×R× Z. Let us consider the value function

V n
J (τ, x) := max

ν∈K
{
∫ 1

τ
[
∫

Z
J(t, ux,ν(t), z) νt(dz)] dt}

associated with the dynamic (Drn){
u̇x,ν(t) = 1

2rn

∫ t+rn

t−rn [
∫
Z f(s, ux,ν(t), z) νt(dz)]ds, a.e. t ∈ [τ, 1],

ux,ν(τ) = x.

Let ϕn, ϕ∞ ∈ C1([0, 1]×R) for which V n
J −ϕn reaches a local maximum at (tn, xn).

Assume further that (xn) is bounded, ∇ϕn is ≥ 0 for all n ∈ N, and (∇ϕn, ∂ϕn

∂t )
C-converges to (∇ϕ∞, ∂ϕ∞

∂t ). Then there is a Lebesgue-negligible set N such that
for (t, x) ∈ ls{tn} \ N × ls{xn}, and for every subsequence (tnk , xnk) of (tn, xn)
converging to (t, x), we have

0 ≤ lim sup
k

[
∂ϕnk

∂t
(tnk , xnk) +H+

rnk
(tnk , xnk ,∇ϕnk(tnk , xnk))]

≤ ∂ϕ∞

∂t
(t, x) +H+(t, x,∇ϕ∞(t, x)).

Proof. Let us set f̂(t, x, ν) =
∫
Z f(t, x, z)ν(dz) for all (t, x, ν) ∈ [0, 1]×R×M1

+(Z),
and for each n ∈ N,

f̂rn(t, x, ν) :=
1

2rn

∫ t+rn

t−rn

f̂(s, x, ν)ds
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for all (t, x, ν) ∈ [0, 1]×R×M1
+(Z).Then it is not difficult to see that the function

f̂rn is globally continuous on [0, 1]×E×M1
+(Z) and uniformly Lipschitzean on R.

Consequently, by virtue of ([9], Theorem 3.2.3, [7], Theorem 4.3), the function V n
J

associated with the dynamic (Drn) is a viscosity subsolution of the HJB equation

Ut(t, x) +H+
rn

(t, x,∇U(t, x)) = 0,

that implies
∂ϕn

∂t
(tn, xn) +H+

rn(tn, xn,∇ϕn(tn, xn)) ≥ 0.

To simplify the notations, we may assume that (tn, xn) → (t, x). By the continuity
of the function

ν 7→ ∇ϕn(tn, xn).f̂rn(tn, xn, ν) + Ĵ(tn, xn, ν)

and by the compactness of M1
+(Z) there is νn ∈M1

+(Z) such that

H+
rn

(tn, xn,∇ϕn(tn, xn)) = max
ν∈M1

+(Z)
{∇ϕn(tn, xn).f̂rn(tn, xn, ν) + Ĵ(tn, xn, ν)}

= ∇ϕn(tn, xn).f̂rn(tn, xn, νn) + Ĵ(tn, xn, νn).

We may assume that (νn) narrowly converges to ν ∈ M1
+(Z). By Corollary 3.1,

there is a Lebesgue-negligible set N such that

lim sup
n

f̂rn(tn, xn, νn) = lim sup
n

1
2rn

∫ tn+rn

tn−rn

〈fs, δxn ⊗ νn〉ds

= lim sup
n

1
2rn

∫ t+rn

t−rn

〈fs+(tn−t), δxn ⊗ νn〉ds

≤ 〈ft, δx ⊗ ν〉

for each t ∈ ls{tn} \N . Combining this with the continuity of Ĵ , the nonnegativity
of (∇ϕn(tn, xn))n∈N and the C-convergence of (∇ϕn, ∂ϕn

∂t ) gives

0 ≤ lim sup
n

[
∂ϕn

∂t
(tn, xn) +H+

rn(tn, xn,∇ϕn(tn, xn))]

= lim sup
n

[
∂ϕn

∂t
(tn, xn) +∇ϕn(tn, xn).f̂rn(tn, xn, νn) + Ĵ(tn, xn, νn)]

≤ ∂ϕ∞

∂t
(t, x) +∇ϕ∞(t, x).f̂(t, x, ν) + Ĵ(t, x, ν)

≤ ∂ϕ∞

∂t
(t, x) + max

ν′∈M1
+(Z)

{∇ϕ∞(t, x).f̂(t, x, ν ′) + Ĵ(t, x, ν ′)}

=
∂ϕ∞

∂t
(t, x) +H+(t, x,∇ϕ∞(t, x))

for t ∈ ls{tn} \N . �

Now is a super-viscosity property of VJ associated with lower semicontinuous
dynamic f and continuous cost function J . Compare with Theorem 2.2.
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Proposition 4.2. Let J : [0, 1]×R×Z → R be a bounded and globally continuous
function, and let f : R×R× Z → R be a bounded lower semicontinuous function
such that, for every t ∈ [0, 1], f(t, ., .) is continuous on R × Z, and satisfying
a Lipschitz condition: |f(t, x1, z) − f(t, x2, z)| ≤ k|x1 − x2| for all (t, x1, z) and
(t, x2, z) in [0, 1]×R× Z. Assume that the value function

V n
J (τ, x) := max

ν∈K
{
∫ 1

τ
[
∫

Z
J(t, ux,ν(t), z) νt(dz)] dt}

associated with the dynamic (Drn),{
u̇x,ν(t) = f̂rn(t, ux,ν(t), νt) = 1

2rn

∫ t+rn

t−rn [
∫
Z f(s, ux,ν(t), z) νt(dz)]ds, a.e. t ∈ [τ, 1],

ux,ν(τ) = x

is a viscosity supersolution of the HJB equation

Ut(t, x) +H+
rn

(t, x,∇U(t, x)) = 0.

Let ϕn, ϕ∞ ∈ C1([0, 1]×R) for which V n
J −ϕn reaches a local minimum at (tn, xn).

Assume further that (xn) is bounded, ∇ϕn is nonnegative for all n ∈ N, and
(∇ϕn, ∂ϕn

∂t ) C-converges to (∇ϕ∞, ∂ϕ∞

∂t ). Then there is a Lebesgue-negligible set
N such that for (t, x) ∈ ls{tn} \N × ls{xn}, and for every subsequence (tnk , xnk) of
(tn, xn) converging to (t, x), we have

∂ϕ∞

∂t
(t, x) +H+(t, x,∇ϕ∞(t, x))

≤ lim inf
k

[
∂ϕnk

∂t
(tnk , xnk) +H+

rnk
(tnk , xnk ,∇ϕnk(tnk , xnk))] ≤ 0.

Proof. As V n
J is a viscosity supersolution of the HJB equation

Ut(t, x) +H+
rn

(t, x,∇U(t, x)) = 0,

we have
∂ϕn

∂t
(tn, xn) +H+

rn(tn, xn,∇ϕn(tn, xn)) ≤ 0.

It follows that

lim inf
n

[
∂ϕn

∂t
(tn, xn) +∇ϕn(tn, xn).f̂rn(tn, xn, ν) + Ĵ(tn, xn, ν)]

≤ lim inf
n

[
∂ϕn

∂t
(tn, xn) +H+

rn(tn, xn,∇ϕn(tn, xn))] ≤ 0

for each ν ∈ M1
+(Z). To simplify the notations, we may assume that (tn, xn)

converges to (t, x). Recall that

f̂rn(tn, xn, ν) := 1/2rn

∫ tn+rn

tn−rn

〈fs, δxn ⊗ ν〉ds

for each ν ∈ M1
+(Z). Let Z be a countable dense subset of M1

+(Z). As f
is bounded, globally lower semicontinuous, in view of Corollary 3.1, there is a
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Lebesgue-negligible set N which does not depend on ν ∈ Z such that

lim inf
n

1/2rn

∫ tn+rn

tn−rn

〈fs, δxn ⊗ ν〉ds

= lim inf
n

1/2rn

∫ t+rn

t−rn

〈fs+(tn−t), δxn ⊗ ν〉ds ≥ 〈ft, δx ⊗ ν〉

for each ν ∈ Z and for each t ∈ ls{tn} \ N . As (∇ϕn, ∂ϕn

∂t ) C-converges to
(∇ϕ∞, ∂ϕ∞

∂t ) by hypothesis, and ∇ϕn(tn, xn) is ≥ 0 for all n ∈ N, we get

∂ϕ∞

∂t
(t, x) +∇ϕ∞(t, x).〈ft, δx ⊗ ν〉+ Ĵ(t, x, ν)

≤ lim inf
n

[
∂ϕn

∂t
(tn, xn) +∇ϕn(tn, xn).f̂rn(tn, xn, ν) + Ĵ(tn, xn, ν)]

≤ lim inf
n

[
∂ϕn

∂t
(tn, xn) +H+

rn
(tn, xn,∇ϕn(tn, xn))] ≤ 0

for each ν ∈ Z. Hence we deduce that

∂ϕ∞

∂t
(t, x) + sup

ν∈Z
{∇ϕ∞(t, x).〈ft, δx ⊗ ν〉+ Ĵ(t, x, ν)}

=
∂ϕ∞

∂t
(t, x) + sup

ν′∈M1
+(Z)

{∇ϕ∞(t, x).〈ft, δx ⊗ ν ′〉+ Ĵ(t, x, ν ′)}

=
∂ϕ∞

∂t
(t, x) +H+(t, x,∇ϕ∞(t, x))

≤ lim inf
n

[
∂ϕn

∂t
(tn, xn) +H+

rn
(tn, xn,∇ϕn(tn, xn))] ≤ 0

for t ∈ ls{tn} \N . �

Remarks. If the family (f̂rn(., ., ν))ν∈M1
+(Z) is equi lower semicontinuous on [0, 1]×R,

then

V n
J (τ, x) := max

ν∈K
{
∫ 1

τ
[
∫

n
ZJ(t, ux,ν(t), z) νt(dz)] dt}

associated with the dynamic (Drn),{
u̇x,ν(t) = f̂rn(t, ux,ν(t), νt) = 1

2rn

∫ t+rn

t−rn [
∫
Z f(s, ux,ν(t), z) νt(dz)]ds, a.e. t ∈ [τ, 1],

ux,ν(τ) = x

is a viscosity supersolution of the HJB equation

Ut(t, x) +H+
rn

(t, x,∇U(t, x)) = 0.

See ([9], Theorem 3.2.3).
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