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UNIFORM NORMAL STRUCTURE AND STRONG
CONVERGENCE THEOREMS FOR ASYMPTOTICALLY

PSEUDOCONTRACTIVE MAPPINGS

XIAN WU, JEN-CHIH YAO*, AND LU-CHUAN ZENG**

Abstract. Let K be a nonempty closed convex and bounded subset of a real Ba-
nach space E and T : K → K be uniformly L-Lipschitzian, uniformly asymptot-
ically regular with sequence {εn}, and asymptotically pseudocontractive with se-
quence {kn} where {kn} and {εn} satisfy certain mild conditions. Let a sequence
{xn} be generated from x1 ∈ K by xn+1 := (1−λn)xn +λnT nxn−λnθn(xn−x1)
for all integers n ≥ 1 where {λn} and {θn} are real sequences satisfying appro-
priate conditions, then ‖xn − Txn‖ → 0 as n → ∞. Moreover if E has uniform

normal structure with coefficient N(E), L < N(E)1/2 as well as has a uniformly
Gâteaux differentiable norm and T satisfies an additional mild condition, then
{xn} also converges strongly to a fixed point of T . The results presented in this
paper are improvements, extension and complement of some earlier and recent
ones in the literature.

1. Introduction

Let E be a real normed linear space with dual E∗ and let J : E → 2E∗
denote

the normalized duality mapping defined by

J(x) := {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}

where 〈·, ·〉 denotes the generalized duality pairing between E and E∗. It is well
known that if E is smooth then J is single-valued. In the sequel, we will denote the
single-valued normalized duality map by J .

Let E be a normed linear space; ∅ 6= K ⊂ E. A mapping T : K → K is said
to be nonexpansive if for all x, y ∈ K we have ‖Tx − Ty‖ ≤ ‖x − y‖. It is said to
be asymptotically nonexpansive if there exists a sequence {kn} with kn ≥ 1 and
limkn = 1 such that

‖Tnx− Tny‖ ≤ kn‖x− y‖
for all integers n ≥ 0 and all x, y ∈ K. Clearly every nonexpansive map is asymp-
totically nonexpansive with sequence kn = 1 ∀n ≥ 0. There exist however asymp-
totically nonexpansive mappings which are not nonexpansive (see, e.g., [5]).

The class of asymptotically nonexpansive mappings was introduced by Goebel
and Kirk [4] in 1972. Goebel and Kirk [4] proved that if K is a nonempty closed
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convex and bounded subset of a uniformly convex Banach space, then every asymp-
totically nonexpansive self-mapping of K has a fixed point. It is also remarkable
that many authors have extensively studied the iterative approximation problems of
fixed points of nonexpansive mappings and asymptotically nonexpansive mappings
(see, e.g., [6, 8, 9, 13-18, 20, 22, 23]).

An important class of nonlinear mappings generalizing the class of asymptotically
nonexpansive mappings was introduced by Schu [17] in 1991. Let K be a nonempty
subset of a real Banach space E and T : K → E be any map. T is said to be
asymptotically pseudocontractive if there exist {kn} ⊂ [1,∞) with limn→∞kn = 1
and j(x− y) ∈ J(x− y) such that the inequality

〈Tnx− Tny, j(x− y)〉 ≤ kn‖x− y‖2(1.1)

holds for all x, y ∈ K and for all integers n ≥ 1. It is trivial to see from in-
equality (1.1) that every asymptotically nonexpansive mapping is asymptotically
pseudocontractive. But the converse is not valid in general; see, e.g., Chang [13,
Example 1.1]. The mapping T is called uniformly asymptotically regular if for
each ε > 0 there exists an integer n0 ≥ 1 such that ‖Tn+1x − Tnx‖ ≤ ε for all
n ≥ n0 and all x ∈ K and it is said to be uniformly asymptotically regular with
sequence {εn} if ‖Tn+1x − Tnx‖ ≤ εn ∀n ≥ 0 and ∀x ∈ K where εn → 0 as
n → ∞. T is called uniformly L-Lipschitzian if there exists L > 0 such that
‖Tnx − Tny‖ ≤ L‖x − y‖ ∀x, y ∈ K and for each integer n ≥ 1. Also recall
that a sequence {xn} ⊂ K is called an approximate fixed point sequence for T if
‖xn − Txn‖ → 0 as n →∞.

In 1991 Schu [16] constructed approximate fixed point sequences for the class of
asymptotically pseudocontractive maps in Hilbert spaces. Furthermore Schu [17]
also contructed an iterative algorithm which converges strongly to a fixed point of
an asympotically pseudocontractive mapping in a smooth Banach space possessing
a duality mapping J : E → E∗ that is weakly sequentially continuous at 0. Unfor-
tunately, Lp space, 1 < p < ∞, p 6= 2, do not possess weakly sequentially continuous
duality maps.

Recently Chidume and Zegeye [21] put forth the following two questions on the it-
erative approximation problems of fixed points of asymptotically pseudocontractive
mappings.

Question 1. Is it possible to construct an approximate fixed point sequence for the
class of asymptotically pseudocontractive maps in spaces more general than Hilbert
spaces?

Question 2. Can an iterative algorithm be constructed which converges to a fixed
point of an asymptotically pseudocontractive mapping in Banach spaces which in-
clude Lp spaces, 1 < p < ∞?

Chidume and Zegeye [21] have given the following affirmative answers to Ques-
tions 1 and 2.

Theorem 1.1 ([21]). Let K be a nonempty closed convex and bounded subsets
of a real Banach space E. Let T : K → K be uniformly L-Lipschitzian, uniformly
asymptotically regular with sequence {εn} and asymptotically pseudocontractive with
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sequence {kn} such that for λn, θn ∈ (0, 1) ∀n ≥ 0, the following conditions are sat-
isfied: (i)

∑∞
n=1 λnθn = ∞;λn(1 + θn) ≤ 1; (ii) λn

θn
→ 0, θn → 0, ( θn−1

θn
− 1)/λnθn →

0, εn−1

λnθ2
n
→ 0; (iii) kn−1 − kn = o(λnθn)2; (iv) kn − 1 = o(θn). Let a sequence {xn}

be iteratively generated from x1 ∈ K by

xn+1 := (1− λn)xn + λnTnxn − λnθn(xn − x1), ∀n ≥ 1.

Then ‖xn − Txn‖ → 0 as n →∞.

Theorem 1.2 ([21]). Suppose E is a real reflexive Banach space with uniform nor-
mal structure and suppose E has a uniformly Gâteaux differentiable norm. Let K be
a nonempty closed convex and bounded subset of E. Let T : K → K be uniformly L-
Lipschizian with L < N(E)1/2, uniformly asymptotically regular with sequence {εn}
and asymptotically pseudocontractive with sequence {kn}. Let λn, θn ∈ (0, 1) ∀n ≥ 1
satisfy conditions (i)–(iv) of Theorem 1.1 and let limn→∞

kn−1
kn−tn

= 0 where tn =
1/(1 + θn). Suppose that

‖yn − Tmy‖2 ≤ 〈yn − Tmy, J(yn − y)〉, ∀m,n ≥ 1, ∀y ∈ C

where C = {y ∈ K : φ(y) = minz∈Kφ(z)}. Then the sequence {xn} generated from
x1 ∈ K by

xn+1 = (1− λn)xn + λnTnxn − λnθn(xn − x1), ∀n ≥ 1

converges strongly to a fixed point of T .

Remark 1.1. Lim and Xu [20, p. 1346] reminded us of the following fact: A Ba-
nach space with uniform normal structure is reflexive and all uniformly convex or
uniformly smooth Banach spaces have uniform normal structure. Therefore the
reflexivity assumption on E in Theorem 1.2 can be removed.

The purpose of this paper is to continue the study of Questions 1 and 2 and
to give also affirmative answers to them. Let K be a nonempty closed convex
and bounded subset of a real Banach space E and T : K → K be uniformly
L-Lipsdchitzian, uniformly asymptotically regular with sequence {εn} and asymp-
totically pseudocontractive with sequence {kn} where {kn} and {εn} satisfy certain
mild conditions. Let a sequence {xn} be generated from x1 ∈ K by

xn+1 := (1− λn)xn + λnTnxn − λnθn(xn − x1), ∀n ≥ 1

where {λn} and {θn} are real sequences satisfying approximate conditions, then
‖xn−Txn‖ → 0 as n →∞. This also provides an affirmative answer to Question 1.
Moreover if E has uniform normal structure with coefficient N(E) and L < N(E)1/2

and has a uniformly Gâteaux differentiable norm and T satisfies an additional mild
condition, then {xn} also converges strongly to a fixed point of T . This also provides
an affirmative answer to Question 2. Compared with those restrictions (i)-(iv) in
Chidume and Zegeye’s Theorem 1.1, our restrictions on sequences {λn}, {θn}, {kn}
and {εn} are quite concise and very convenient to test in applications. Also due to
Lim and Xu [20, p. 1346], our theorems remove the reflexivity assumption on E.



456 XIAN WU, JEN-CHIH YAO, AND LU-CHUAN ZENG

2. Preliminaries

Let K be a nonempty bounded closed convex subset of a real Banach space E
and let d(K) := sup{‖x − y‖ : x, y ∈ K} be the diameter of K. For any x ∈ K
let r(x,K) := sup{‖x − y‖ : y ∈ K} and let r(K) := inf{r(x,K) : x ∈ K} be the
Chebyshev radius of K relative to itself. The normal structure coefficient of E is
defined (e.g., [2]) as the number:

N(E) := inf{d(K)/r(K) :

K is a bounded closed convex subset of E with d(K) > 0}.

A space E such that N(E) > 1 is said to have uniform normal structure. It is
known that a space with uniform normal structure is reflexive and that all uniformly
convex Banach spaces and all uniformly smooth Banach spaces have uniform normal
structure (e.g., [1]; see also [20]).

Recall (e.g., see [19]) that a Banach limit LIM is a bounded linear functional on
l∞ such that

(2.1) ‖LIM‖ = 1, lim inf
n→∞

tn ≤ LIMntn ≤ lim sup
n→∞

tn,

and LIMntn = LIMntn+1 for all {tn} ∈ l∞.
Let K be a nonempty closed convex subset of a real Banach space E. A mapping

T : K → K is called pseudoconractive if there exists j(x− y) ∈ J(x− y) such that

(2.2) 〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2

for all x, y ∈ K. As a result of Kato [7], it follows that inequality (2.2) is equivalent
to

‖x− y‖ ≤ ‖x− y + t((I − T )x− (I − T )y)‖
for each x, y ∈ K and for all t > 0 where I is the identity operator. In order to
establish the main results of this paper, we need the following lemmas.

Lemma 2.1 (see e.g., [3, 13]). Let E be a real normed linear space. Then for any
x, y ∈ E and j(x + y) ∈ J(x + y), we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉.

Lemma 2.2 (see Lemma 2.5 in [24]). Let {λn} be a sequence of real numbers in
[0, 1], and {γn} and {µn} be sequences of nonnegative real numbers. Assume that∑∞

n=0 λn = ∞ and
∑∞

n=0 µn < ∞. Then there hold the following statements:
(i) If for any given ε > 0, there exists a positive integer n0 such that

γn+1 ≤ (1− λn)γn + ε · λn + µn, ∀n ≥ n0,(2.3)

then lim supn→∞ γn = 0;
(ii) If there exists a positive integer n1 such that

γn+1 ≤ (1− λn)γn + λn · σn + µn, ∀n ≥ n1,(2.4)

where {σn} is a sequence of nonnegative real numbers satisfying limn→∞ σn=
0, then

lim
n→∞

γn = 0.
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Lemma LX ([20, Theorem 1]). Suppose E is a Banach space with uniform normal
structure, K is a nonempty bounded subset of E and T : K → K is a uniformly
L-Lipschitizan mapping with L < N(E)1/2. Suppose also there exists a nonempty
closed convex subset C of K with the following property (P): x ∈ C ⇒ ωw(x) ⊂ C
where ωw(x) is the weak ω-limit set of T at x, i.e., the set {y ∈ E : y = weak −
limjT

njx for some nj →∞}. Then T has a fixed point in K.

Lemma SR ([12]). Let E be a Banach space with a uniformly Gateaux differentiable
norm, K be a nonempty closed convex subset of E and {xn} be a bounded sequence
in E. Let LIM be a Banach limit and y ∈ K. Then

LIMn‖xn− y‖2 = minz∈KLIMn‖xn− z‖2 ⇐⇒ LIMn〈x− y, J(xn− y)〉 ≤ 0, ∀x ∈ K.

Lemma CZ ([21, Lemma 3.1]). Let E be a real Banach space. Suppose K is a
nonempty closed convex and bounded subset of E and T : K → K is a uniformly
asymptotically regular, uniformly L-Lipschitzian and asymptotically pseudocontrac-
tive mapping with sequence {kn}. Then for u ∈ K and {tn} ⊂ (0, 1) such that tn → 1
as n →∞, there exists a sequence {yn} ⊂ K satisfying the following condition:

(2.5) yn =
tn
kn

Tnyn + (1− tn
kn

)u.

Furthermore, ‖yn − Tyn‖ → 0 as n →∞.

3. Main Results

Now we state and prove the main results of this paper.

Theorem 3.1. Let K be a nonempty closed convex and bounded subset of a real Ba-
nach space E. Let T : K → K be a uniformly L-Lipschitzian, uniformly asymptoti-
cally regular with sequence {εn} and asymptotically pseudocontractive with sequence
{kn} such that for λn, θn ∈ (0, 1) ∀n ≥ 1, the following conditions are satisfied:

(i)
∑∞

n=1 λnθn = ∞, λn(1 + θn) ≤ 1;
(ii) limn→∞

λn
θn

= 0, limn→∞θn = 0, limn→∞( θn−1

θn
− 1)/λnθn = 0;

(iii)
∑∞

n=1
εn−1

θn
< ∞,

∑∞
n=1

|kn−1−kn|
θn

< ∞,
∑∞

n=1 λn(kn − 1) < ∞.

Let a sequence {xn} be iteratively generated from x1 ∈ K by

(3.1) xn+1 := (1− λn)xn + λnTnxn − λnθn(xn − x1), ∀n ≥ 1.

Then ‖xn − Txn‖ → 0 as n →∞.

Proof. Note that (3.1) can be rewritten as

xn+1 := (1− λn − λnθn)xn + λnTnxn + λnθnx1, ∀n ≥ 1.

Since λn(1 + θn) ≤ 1, it is easy to see that the sequence {xn} is well defined.
Let {yn} denote the sequence defined as in (2.5) with tn = 1

1+θn
. Then following

the same estimate technique as in the proof of [21, Theorem 3.2] and using (3.1)
and Lemma 2.1, we get

‖xn+1 − yn‖2 = ‖xn − yn − λn((xn − Tnxn) + θn(xn − x1))‖2

(3.2)
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≤ ‖xn − yn‖2 − 2λnθn‖xn+1 − yn‖2

+ 2λn〈θn(xn+1 − xn)− (xn − Tnxn) + θn(x1 − yn), J(xn+1 − yn)〉
≤ ‖xn − yn‖2 − 2λnθn‖xn+1 − yn‖2

+ 2λn〈θn(xn+1 − xn) + [θn(x1 − yn)− (yn −
1
kn

Tnyn)]

− [(xn+1 −
1
kn

Tnxn+1)− (yn −
1
kn

Tnyn)]

+ [(xn+1 −
1
kn

Tnxn+1)− (xn − Tnxn)], J(xn+1 − yn)〉.

Observe that from the properties of yn and T we have

θn(x1 − yn)− (yn −
1
kn

Tnyn) + (1− 1
kn

)x1 = 0,(3.3)

〈(xn+1 −
1
kn

Tnxn+1)− (yn −
1
kn

Tnyn), J(xn+1 − yn)〉 ≥ 0.(3.4)

Thus from (3.2) it follows that

‖xn+1 − yn‖2 ≤ ‖xn − yn‖2 − 2λnθn‖xn+1 − yn‖2(3.5)

+ 2(2 + L)λ2
n‖xn − Tnxn + θn(xn − x1)‖ · ‖xn+1 − yn‖

+ 2λn
(kn − 1)

kn
(‖Tnxn‖+ ‖x1‖)‖xn+1 − yn‖.

But since K is bounded, {xn}, {yn} and {Tnxn} are also bounded. Thus there
exists M1 > 0 such that max{‖Tnxn‖ + ‖x1‖, ‖xn − Tnxn + θn(xn − x1)‖} ≤ M1.
Then from (3.5) we get

‖xn+1 − yn‖2 ≤ ‖xn − yn‖2 − 2λnθn‖xn+1 − yn‖2(3.6)

+ 2(2 + L)λ2
nM1‖xn+1 − yn‖

+ 2λn(kn − 1)M1‖xn+1 − yn‖.

Moreover observe that Tn := 1
kn

Tn is pseudocontractive. Thus by using (3.3), we
obtain

‖yn−1 − yn‖(3.7)

≤ ‖yn−1 − yn +
1
θn

((I − Tn)yn−1 − (I − Tn)yn)‖

≤ |θn−1

θn
− 1|(‖yn−1‖+ ‖x1‖) +

1
θn
‖ 1
kn−1

Tn−1yn−1 −
1
kn

Tnyn−1‖

≤ |θn−1

θn
− 1|(‖yn−1‖+ ‖x1‖) +

1
θnkn−1

εn−1

+
1
θn

|kn−1 − kn|
knkn−1

(‖Tnyn−1‖+ ‖x1‖).
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Thus from (3.6),(3.7) and Lemma 2.1, we derive for some M ≥ M1,

‖xn+1 − yn‖2

≤ ‖xn − yn−1‖2 − 2λnθn‖xn+1 − yn‖2 + 2(2 + L)λ2
nM

+ 2λn(kn − 1)M + M |θn−1

θn
− 1|+ M

εn−1

θnkn−1
+

1
θn

|kn−1 − kn|
kn−1kn

M

≤ ‖xn − yn−1‖2 − 2λnθn‖xn+1 − yn‖2 + 2M(2 + L)λ2
n

+ 2Mλn(kn − 1) + M |θn−1

θn
− 1|+ M

εn−1

θn
+ M

|kn−1 − kn|
θn

,

which hence implies that

‖xn+1 − yn‖2

≤ (1− 2λnθn

1 + 2λnθn
)‖xn − yn−1‖2 +

2M(2 + L)
1 + 2λnθn

· λ2
n

+
2M

1 + 2λnθn
· |θn−1

θn
− 1|+ 2M

1 + 2λnθn
(
εn−1

θn
+
|kn−1 − kn|

θn
+ λn(kn − 1)).

Since limn→∞ 2/(1 + 2λnθn) = 2, there is a positive integer n1 so that 1 < 2/(1 +
2λnθn) < 3 ∀n ≥ n1. Hence it is easy to see that there exists some M0 ≥ M such
that for all n ≥ M0,

‖xn+1 − yn‖2 ≤ (1− λnθn)‖xn − yn−1‖2 + M0(λ2
n + |θn−1

θn
− 1|)

(3.8)

+ M0(
εn−1

θn
+
|kn−1 − kn|

θn
+ λn(kn − 1))

≤ (1− λnθn)‖xn − yn−1‖2 + λnθn ·M0(
λn

θn
+ |θn−1

θn
− 1|/λnθn)

+ M0(
εn−1

θn
+
|kn−1 − kn|

θn
+ λn(kn − 1)).

Now for all n ≥ 1 we define σn = M0(λn
θn

+ | θn−1

θn
− 1|/λnθn) and

µn = M0(
εn−1

θn
+
|kn−1 − kn|

θn
+ λn(kn − 1)).

Then (3.8) reduces to

‖xn+1 − yn‖2 ≤ (1− λnθn)‖xn − yn−1‖2 + λnθn · σn + µn ∀n ≥ n1.

According to conditions (i)–(iii), we have
∞∑

n=1

λnθn = ∞, lim
n→∞

σn = 0 and
∞∑

n=1

µn < ∞.

Thus by Lemma 2.2 (ii) we infer that xn+1 − yn → 0. Consequently xn − yn → 0.
Next we prove that limn→∞‖xn − Txn‖ = 0. Indeed by Lemma CZ, we know that
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‖yn − Tyn‖ → 0 as n →∞. Hence from the uniformly L-Lipschitzian continuity of
T we obtain

‖xn − Txn‖ ≤ ‖xn − yn‖+ ‖yn − Tyn‖+ ‖Txn − Tyn‖ → 0 as n →∞.

The proof is complete. �

In what follows, for the bounded sequence {yn} defined by Eq. (2.5) with u = x1

and a Banach limit LIM, let the function φ : E → [0,∞) be defined by φ(z) =
LIMn‖yn − z‖2 for each z ∈ K ⊂ E. Clearly φ is continuous, convex and satisfies
φ(z) →∞ as ‖z‖ → ∞. For our next theorem, we need the following propositions.

Proposition 3.1 ([21, Proposition 3.5]). Suppose E is a real Banach space with
uniform normal structure and suppose E has a uniformly Gâteaux differentiable
norm. Let K be a nonempty closed convex and bounded subset of E and T : K → K
be a uniformly L-Lipschitzian mapping such that L < N(E)1/2 and asymptotically
pseudocontactive mapping with sequence {kn} such that (kn − 1)/(kn − tn) → 0 as
n →∞ where tn is as in Lemma CZ and uniformly asymptotically regular. Suppose
that

‖yn − Tmy‖2 ≤ 〈yn − Tmy, J(yn − y)〉, ∀m,n ≥ 1, ∀y ∈ C

where C = {y ∈ K : φ(y) = minz∈Kφ(z)}. Then {yn} converges strongly to a fixed
point of T .

Proposition 3.2. Suppose E is a real uniform convex Banach space which has
uniformly Gâteaux differentiable norm. Let K be a nonempty closed convex and
bounded subset of E and T : K → K be a uniformly L-Lipschitzian mapping such
that L < N(E)1/2 and asymptotically pseudocontractive mapping with sequence {kn}
such that (kn − 1)/(kn − tn) → 0 as n → ∞ where tn is as in Lemma CZ and
uniformly asymptotically regular. Then

(a) C = {y ∈ K : φ(y) = minz∈Kφ(z)} is a singleton, say {z0};
(b) the following statements are equalivalent:

(i) z0 ∈ F (T ),
(ii) ‖yn − Tmz0‖2 ≤ 〈yn − Tmz0, J(yn − z0)〉 ∀m,n ≥ 1,
(iii) Tnz0 → z0 weakly as n →∞,
(iv) yn → z0 strongly as n →∞.

Proof. (1) Since E is reflexive and φ is continuous, convex and φ(z) →∞ as ‖z‖ →
∞, φ attains its infimun over K (see e.g., [19, 20]). Hence C := {y ∈ K : φ(y) =
minz∈Kφ(z)} is nonempty, closed and convex. By Lemma SR, we infer that u ∈ C
if and only if

(3.9) LIMn〈z − u, J(yn − u)〉 ≤ 0, ∀z ∈ K.

Now we claim that C consists of one point. Indeed let u, v ∈ C and u 6= v. Then
by [10, Theorem 1], there exists δ > 0 such that

〈v − u, J(yn − u)− J(yn − v)〉
= 〈yn − u− (yn − v), J(yn − u)− J(yn − v)〉 ≥ δ > 0
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for each n ≥ 1 which implies that

LIMn〈v − u, J(yn − u)− J(yn − v)〉 ≥ δ > 0.

But it follows from (3.9) that for u, v ∈ C,

LIMn〈v − u, J(yn − u)〉 ≤ 0

and
LIMn〈u− v, J(yn − v)〉 ≤ 0.

Thus we have
LIMn〈v − u, J(yn − u)− J(yn − v)〉 ≤ 0.

This arrives at a contradiction. Hence u = v. Therefore C is a singleton, say {z0}.
(2) At first, we prove that (i)=⇒(ii)=⇒(iii)=⇒(i). Indeed if z0 is a fixed point of

T in K, then it is easy to see that for all m,n ≥ 1

‖yn − Tmz0‖2 = ‖yn − z0‖2

= 〈yn − z0, J(yn − z0)〉 = 〈yn − Tmz0, J(yn − z0)〉.
Suppose that for all m,n ≥ 1,

(3.10) ‖yn − Tmz0‖2 ≤ 〈yn − Tmz0, J(yn − z0)〉.
Then we claim that Tnz0 → z0 weakly as n → ∞. Indeed, let y = w − limjT

mjz0

be any element of the weak ω-limit set ωw(z0) of T at z0. Note that limn→∞ ‖yn −
Tyn‖ = 0 by Lemma CZ. From the weak lower semicontinuity of φ and (3.10) we
obtain

φ(y) ≤ lim inf
j→∞

φ(Tmjz0) ≤ lim sup
m→∞

φ(Tmz0)

= lim sup
m→∞

(LIMn‖yn − Tmz0‖2)

≤ lim sup
m→∞

(LIMn〈yn − Tmz0, J(yn − z0)〉)

= lim sup
m→∞

(LIMn〈yn − Tyn + (Tyn − T 2yn) + · · ·

+ (Tmyn − Tmz0), J(yn − z0)〉)
≤ lim sup

m→∞
(LIMn[‖yn − Tyn‖+ L‖yn − Tyn‖+ · · ·

+ L‖yn − Tyn‖]d + LIMnkm‖yn − z0‖2)

= φ(z0) = min
z∈K

φ(z),

where d = d(K) the diameter of K. Thus by the definition of C, we have y ∈ C =
{z0} which implies that y = z0. This shows that ωw(z0) = {z0}. Thus Tnz0 → z0

weakly as n →∞.
Since Tnz0 → z0 weakly as n →∞, C = {z0} satisfies the property (P). It follows

from Lemma LX that z0 is a fixed point of T in K.
Secondly, we prove that (i)⇐⇒(iv). Indeed if {yn} converges strongly to z0, then

according to limn→∞ ‖yn − Tyn‖ = 0, the point z0 is a fixed point of T in K.
Conversely, suppose that z0 is a fixed point of T in K. Then according to (i)=⇒(ii),
we have

‖yn − Tmz0‖2 ≤ 〈yn − Tmz0, J(yn − z0)〉, ∀m,n ≥ 1.
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Hence by Proposition 3.1 we conclude that {yn} converges strongly to some z∗ ∈
F (T ). Since

φ(z∗) = LIMn‖yn − z∗‖2 = 0 ≤ LIMn‖yn − z0‖2 = φ(z0) = minz∈Kφ(z),

it follows from C = {z0} that z∗ = z0. Thus {yn} converges strongly to z0. �

Theorem 3.2. Suppose E is a real Banach space with uniform normal structure
and suppose E has a uniformly Gâteaux differentiable norm. Let K be a nonempty
closed convex and bounded subset of E. Let T : K → K be uniformly L-Lipschitzian
with L < N(E)1/2, uniformly asymptotically regular with sequence {εn} and asymp-
totically pseudocontractive with sequence {kn}. Let λn, θn ∈ (0, 1) ∀n ≥ 1 satisfy
conditions (i)-(iii) of Theorem 3.1 and let limn→∞

kn−1
kn−tn

= 0 where tn = 1/(1+ θn).
Suppose that

‖yn − Tmy‖2 ≤ 〈yn − Tmy, J(yn − y)〉, ∀m,n ≥ 1, ∀y ∈ C

where C = {y ∈ K : φ(y) = minz∈Kφ(z)}. Then the sequence {xn} generated from
x1 ∈ K by

xn+1 := (1− λn)xn + λnTnxn − λnθn(xn − x1), ∀n ≥ 1

converges strongly to a fixed point of T .

Proof. From the proof of Theorem 3.1, we can see that ‖xn − yn‖ → 0 as n → ∞.
Moreover according to Proposition 3.1, we known that {yn} converges strongly to
a fixed point of T . Consequently, {xn} converges strongly to a fixed point of T . �

Theorem 3.3. Suppose E is a real uniformly convex Banach space which has a
uniformly Gateâux differentiable norm. Let K be a nonempty closed convex and
bounded subset of E. Let T : K → K be uniformly L-Lipschitizian with L <
N(E)1/2, uniformly asymptotically regular with sequence {εn} and asymptotically
pseudocontractive with sequence {kn}. Let λn, θn ∈ (0, 1) ∀n ≥ 1 satisfy conditions
(i)–(iii) of Theorem 3.1 and let limn→∞

kn−1
kn−tn

= 0 where tn = 1/(1 + θn). Suppose
that

‖yn − Tmz0‖2 ≤ 〈yn − Tmz0, J(yn − z0)〉, ∀m,n ≥ 1
where {y ∈ K : φ(y) = minz∈Kφ(z)} = {z0}. Then the sequence {xn} generated
from x1 ∈ K by

xn+1 := (1− λn)xn + λnTnxn − λnθn(xn − x1), ∀n ≥ 1

converges strongly to z0 and z0 ∈ F (T ).

Proof. From the proof of Theorem 3.1, we can see that ‖xn − yn‖ → 0 as n → ∞.
Moreover according to Proposition 3.2 (b), we known that {yn} converges strongly to
z0 and z0 ∈ F (T ). Therefore {xn} converges strongly to the fixed point z0 of T . �
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