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PALEY’S INEQUALITY AND HARDY’S INEQUALITY FOR THE
FOURIER-BESSEL EXPANSIONS

KUNIO SATO

Abstract. Let F (z) =
∑∞

n=0 anzn be an analytic function in the unit disc sat-

isfying sup0<r<1

∫ 2π

0
|F (reiθ)| dθ < ∞. Then, (

∑∞
k=1 |a2k |2)1/2 < ∞, which is

familiar as Paley’s inequality. Another well-known inequality is Hardy’s inequal-
ity:
∑∞

n=0 |an|/(n + 1) < ∞. In this paper, analogues of these inequalities with
respect to the Fourier-Bessel expansions are established.

1. Introduction and Results

The classical Paley inequality [7] says that there exists a constant C such that
(
∑∞

k=1 |ank
|2)1/2 ≤ C‖F‖H1 for F (z) =

∑∞
n=0 anz

n in H1(D), where {nk}∞k=1 is an
Hadamard sequence, that is, a sequence of positive integers such that
nk+1/nk ≥ ρ with a constant ρ > 1, and H1(D) is the Hardy space on the unit
disc D which consists of the analytic functions F (z) on D satisfying ‖F‖H1 =
sup0<r<1

∫ 2π
0 |F (reiθ)| dθ <∞.

Another well-known inequality for the Hardy space is Hardy’s inequality [1]: if
F (z) =

∑∞
n=0 anz

n belongs to H1(D), then
∑∞

n=0 |an|/(n+ 1) ≤ C‖F‖H1 , where C
is a constant independent of F .

For our purpose, we restate these inequalities in terms of the real Hardy space.
Let <H1 be the real Hardy space, that is, the space consisting of the boundary
functions f(θ) = limr→1<F (reiθ) of F ∈ H1(D) and ‖f‖<H1 = ‖F‖H1 with real
F (0). Then, Paley’s inequality and Hardy’s inequality turn to

{
∞∑

k=1

(|cnk
|2 + |c−nk

|2)}1/2 ≤ C‖f‖<H1 ,

and
∞∑

n=−∞

|cn|
|n|+ 1

≤ C‖f‖<H1 ,

respectively, where f(θ) ∼
∑∞

n=−∞ cne
inθ in <H1 and C is independent of f .

Kanjin and the author, [3] and [4], have established analogues of these inequalities
with respect to the Jacobi expansions. The purpose of this paper is to obtain these
types of inequalities with respect to the Fourier-Bessel expansions.

To formulate our inequalities, let us recall the Fourier-Bessel expansions, and give
the definition of the nonperiodic real Hardy space on which we shall work.
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Let ν > −1 and Jν(x) be the Bessel function of the first kind of order ν. We
denote by λn = λ

(ν)
n , n = 1, 2, . . . the successive positive zeros of Jν(x):

0 < λ1 < λ2 < . . . .

Let ψ(ν)
n (x) be the functions defined by

ψ(ν)
n (x) = d(ν)

n

√
λnxJν(λnx),

where

dn = d(ν)
n =

√
2√

λn|Jν+1(λn)|
.

Then, the system {ψ(ν)
n (x)}∞n=1 is complete orthonormal in L2(0, 1) with respect to

the ordinary Lebesgue measure dx. When ν = −1/2 and ν = 1/2, the functions
ψ

(ν)
n (x) are the cosine and the sine functions, respectively:

ψ(−1/2)
n (x) =

√
2 cos(π(n− 1/2)x), ψ(1/2)

n (x) =
√

2 sin(πnx).

For a function f(x) on (0, 1), we have the Fourier-Bessel expansion

f(x) ∼
∞∑

n=1

c(ν)
n (f)ψ(ν)

n (x), c(ν)
n (f) =

∫ 1

0
f(y)ψ(ν)

n (y) dy.

We turn to the definition of the nonperiodic real Hardy space according to [5,
Ch.5, §3]. Let ∆ = [0, 1]. A real-valued function a(x) on ∆ is a ∆-atom if there
exists a subinterval I ⊂ ∆ such that (1) supp a(x) ⊂ I; (2)

∫
I a(x) dx = 0; (3)

‖a‖∞ ≤ |I|−1, where |I| is the length of the interval I. The function a(x) = 1, x ∈ ∆
is a ∆-atom. Let H(∆) be the nonperiodic real Hardy space, that is, the space of
functions representable in the form

(1) f(x) =
∞∑

k=0

λkak(x),
∞∑

k=0

|λk| <∞,

where every ak(x) is a ∆-atom. We note that the above series converges in L1(∆)
and also a.e. The norm ‖f‖H(∆) is defined by

‖f‖H(∆) = inf
∞∑

k=0

|λk|,

where the infimum is taken over all expression (1). Then, H(∆) is a Banach space,
and ‖f‖L1(∆) ≤ ‖f‖H(∆).

Our theorem is as follows:

Theorem. Let ν ≥ −1/2. Then, the Fourier-Bessel coefficients c(ν)
n (f) of a func-

tion f ∈ H(∆) satisfy

(2)

( ∞∑
k=1

|c(ν)
nk

(f)|2
)1/2

≤ C‖f‖H(∆),
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where {nk}∞k=1 is an Hadamard sequence, and

(3)
∞∑

n=1

|c(ν)
n (f)|
n

≤ C‖f‖H(∆),

where C is independent of f .

Remark. We can not replace the space H(∆) with the space L1(∆) in our theorem,
that is, we can show the following: (1’) There exists a function f ∈ L1(∆) such that
the series

∑∞
k=1 |c

(ν)
nk (f)|2 diverges; (2’) There exists a function f ∈ L1(∆) such that

the series
∑∞

n=1 |c
(ν)
n (f)|/n diverges.

We shall give a proof here only to (1’), and (2’) can be proved in the same
way. Suppose that

∑∞
k=1 |c

(ν)
nk (f)|2 < ∞ for all f ∈ L1(∆). Then, by the closed

graph theorem, we have
∑∞

k=1 |c
(ν)
nk (f)|2 ≤ C‖f‖2

L1(∆). We consider the sequence
{fj}∞j=1 of functions such that fj(x) = jχj(x)/2 where χj(x) is the characteristic
function of the interval (x0−1/j, x0 +1/j)∩∆ with a fixed point x0 ∈ (0, 1). Then,
‖fj‖L1(∆) ≤ 1 and c(ν)

n (fj) → ψ
(ν)
n (x0) as j →∞. Thus, by Fatou’s lemma, we have

∞∑
k=1

|ψ(ν)
nk

(x0)|2 ≤ lim inf
j→∞

∞∑
k=1

|c(ν)
nk

(fj)|2 ≤ C.

Given x0 ∈ (0, 1), the asymptotic formulas (6), (7) and (9) lead to

|ψ(ν)
n (x0)| ≥

√
2| cos(λnx0 − πD(ν))| − K

n

with a positive constant K independent of n which may depend on x0 and ν. We
have

(4)
∞∑

k=1

| cos(λnk
x0 − πD(ν))|2 ≤ K ′,

where K ′ are a constant depending only on x0 and ν.
On the other hand, there exists a point x0 ∈ (0, 1) such that the set of points

{〈λnk
x0/π〉}∞k=1 is dense in (0, 1) (cf. [2, Theorem 1.40] ), where 〈t〉 denots the

fractional part of t. The inequality (4) contradicts this fact, which completes the
proof of (1’).

In our proof of (2) of Theorem, the (H1, BMO)-duality will play an essential
role. Let us explain the duality. We put

N∆(f) = sup
I

1
|I|

∫
I
|f(x)− fI | dx

for a function f(x) on ∆, where fI = (1/|I|)
∫
I f(x) dx and the supremum is taken

all subintervals I of ∆. We here remark that

1
|I|

∫
I
|f(x)− fI | dx ≤

2
|I|

∫
I
|f(x)− c| dx
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for every subinterval I ⊂ ∆ and any constant c. The nonperiodic BMO space
BMO(∆) is defined by the space of functions f ∈ L1(∆) such that

‖f‖BMO(∆) = N∆(f) +
∣∣∣∣∫

∆
f(x) dx

∣∣∣∣ <∞.

The space BMO(∆) is a Banach space with norm ‖f‖BMO(∆). The (H1, BMO)-
duality in the nonperiodic case says that (H(∆))∗ = BMO(∆) ([5, Ch.5, §3, Corol-
lary 4]). 0In particular, for b ∈ L∞(∆)(⊂ BMO(∆)) and f ∈ H(∆) we have

(5)
∣∣∣∣∫

∆
f(x)b(x) dx

∣∣∣∣ ≤ C‖f‖H(∆)‖b‖BMO(∆),

where C is an absolute constant.
We, here at the end of this section, collect some asymptotic formulas which will

be needed later.

(6) λn = π(n+D(ν) + c(ν)
n ), D(ν) = (2ν − 1)/4, c(ν)

n = O(n−1).

(7) dn =
√
π(1 + j(ν)

n ), j(ν)
n = O(n−1).

(8) Jν(z) = O(zν), z → +0.

(9) Jν(z) =

√
2
πz

cos(z − πD(ν)) +O(z−3/2), z → +∞.

(10) |ψ(ν)
n (x)| ≤ C

{
(nx)ν+1/2, 0 < x ≤ 1/n,
1, 1/n < x ≤ 1.

For the Fourier-Bessel expansions and the above facts, we may consult [8] and [6].

2. Lemmas

We devote this section to the proofs of two lemmas which will be needed in the
proof of our theorem.

Lemma 1. Let ν ≥ −1/2. Then there exists a constant C such that

(11) |ψ(ν)
n (x2)− ψ(ν)

n (x1)| ≤ Cnδ|x2 − x1|δ

for 0 ≤ x1 < x2 ≤ 1, where δ = 1 for ν = −1/2, and δ = min{1, ν + 1/2} for
ν > −1/2.

Proof. If ν = −1/2, then ψ
(−1/2)
n (x) =

√
2 cos(π(n − 1/2)x), and thus we have the

inequality (11).
Suppose that ν > −1/2. We put φν(u) =

√
uJν(u). By (6) and (7), we see that

it is enough to show that

(12) |φν(u2)− φν(u1)| ≤ C|u2 − u1|δ

for 0 ≤ u1 < u2. It follows from (8) and (9) that sup0≤u |φν(u)| ≤ C, which means
that it suffices to show (12) for 0 ≤ u1 < u2 and u2 − u1 ≤ 1. By the formula

d

du
Jν(u) =

1
2
(Jν−1(u)− Jν+1(u)),
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we have
d

du
φν(u) =

1
2
u−1/2Jν(u) +

1
2
{
√
uJν−1(u)−

√
uJν+1(u)}.

By (9) we see that sup1≤u |φ′ν(u)| ≤ C. Noting 0 < δ ≤ 1, we get (12) for 1 ≤ u1 <
u2 and u2 − u1 ≤ 1. The rest of the proof is to show (12) for 0 ≤ u1 < u2 ≤ 1. For,
if 0 ≤ u1 < 1 ≤ u2, then we can divide the matter into two parts at the point 1.
The series definition of the Bessel function leads to

φν(u) = uν+1/2hν(u), hν(u) = 2−ν
∞∑

n=0

(−1)n(u/2)2n

n!Γ(ν + n+ 1)
.

We note that hν is an entire function. We have

|φν(u2)− φν(u1)| ≤ |uν+1/2
2 ||hν(u2)− hν(u1)|+ |uν+1/2

2 − u
ν+1/2
1 ||hν(u1)|

≤ |u2 − u1| sup
0≤u≤1

|h′ν(u)|+ C|u2 − u1|δ sup
0≤u≤1

|hν(u)|

≤ C|u2 − u1|δ

where C is independent of u1 and u2. �

Lemma 2. Let ν ≥ −1/2. Then there exists a constant C such that

(13)
∣∣∣∣∫ b

a
ψ(ν)

m (x)ψ(ν)
n (x) dx

∣∣∣∣
≤ C

{
(b− a)

(m
n

)δ
+

log+ n(b− a)
n

+
1
n

}
for m ≤ n and 0 ≤ a < b ≤ 1, where δ is the same as in Lemma 1. The notation ‘
log+ x’ means that log+ x = log x for x ≥ 1 and log+ x = 0 for x < 1.

Proof. Let K be the greatest non-negative integer such that 2πK/λn ≤ b − a. We
put xk = a+ (2πk/λn) for k = 0, 1, 2, . . . ,K, and xK+1 = b. We write the integral
in the following form.∫ b

a
ψ(ν)

m (x)ψ(ν)
n (x) dx =

K∑
k=0

{∫ xk+1

xk

(
ψ(ν)

m (x)− ψ(ν)
m (xk)

)
ψ(ν)

n (x) dx

+ ψ(ν)
m (xk)

∫ xk+1

xk

ψ(ν)
n (x) dx

}

=
K∑

k=0

{A(1)
k +A

(2)
k }, say.

Noting |ψ(ν)
n (x)| ≤ C for ν ≥ −1/2, we apply Lemma 1 to the terms A(1)

k , and get

|A(1)
k | ≤ Cmδ

∫ xk+1

xk

|x− xk|δ dx ≤ Cmδ

(
2π
λn

)δ

(xk+1 − xk)

≤ C
(m
n

)δ
(xk+1 − xk).
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Here, we used (6) for the last inequality. We have

(14)
K∑

k=0

|A(1)
k | ≤ C

(m
n

)δ
(b− a).

Let us estimate A
(2)
k , k = 0, 1, . . . ,K. We first deal with A

(2)
0 and A

(2)
K . Since

|ψ(ν)
n (x)| ≤ C for ν ≥ −1/2, it follows that

(15) |A(2)
j | ≤ C

∫ xj+1

xj

dx ≤ C
2π
λn

≤ C
1
n
, j = 0,K.

For A(2)
1 , . . . , A

(2)
K−1, we use the asymptotic formulas (6), (7) and (9). For x ≥ xk ≥

x1 ≥ (2π/λn), we have

ψ(ν)
n (x) =

√
2 cos(λnx− πD(ν)) +O(1/(nx)),

where ‘O’ depens only on ν. Thus we have for k = 1, 2, . . . ,K − 1,

|A(2)
k | ≤ C

∣∣∣∣∫ xk+1

xk

(
cos(λnx− πD(ν)) +O(1/(nx))

)
dx

∣∣∣∣ .
Since

∫ xk+1

xk
cos(λnx− πD(ν)) dx = 0 for k = 1, 2, . . . ,K − 1, it follows that

|A(2)
k | ≤ C

n

∫ xk+1

xk

dx

x
=
C

n
(log xk+1 − log xk),

which leads to
K−1∑
k=1

|A(2)
k | ≤ C

n
(log xK − log x1) ≤

C

n
logK

≤ C

n
log+ λn

2π
(b− a) ≤ C

n
(1 + log+ n(b− a)).(16)

Thus, by (14), (15) and (16), we have the desired inequality (13). �

3. Proof of the theorem

We come to the proof of the theorem. Let us prove the Paley type inequality
(2) first. Let {rk}∞k=1 be a sequence such that

∑∞
k=1 |rk|2 < ∞, and put hN (x) =∑N

k=1 rkψ
(ν)
nk (x) for N = 1, 2, . . . . By (5), we have∣∣∣∣∫

∆
f(x)hN (x) dx

∣∣∣∣ ≤ C‖f‖H(∆)‖hN‖BMO(∆)

for f ∈ H(∆). Since ∫
∆
f(x)hN (x) dx =

N∑
k=1

c(ν)
nk

(f)rk,

if we prove

(17) ‖hN‖BMO(∆) ≤ C

( ∞∑
k=1

|rk|2
)1/2
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with a constant C independent of N and a sequence {rk}∞k=1, then∣∣∣∣∣
N∑

k=1

c(ν)
nk

(f)rk

∣∣∣∣∣ ≤ C

( ∞∑
k=1

|rk|2
)1/2

‖f‖H(∆),

which leads to the inequality(
N∑

k=1

|c(ν)
nk

(f)|2
)1/2

≤ C‖f‖H(∆).

Letting N →∞, we obtain the Paley type inequality (2).
We now prove (17). Since∣∣∣∣∫

∆
hN (x) dx

∣∣∣∣ ≤ ‖hN‖L2(∆) =

(
N∑

k=1

|rk|2
)1/2

,

it is enough to show N∆(hN ) ≤ C(
∑∞

k=1 |rk|2)1/2, that is, for every subinterval
I ⊂ ∆, there exists a constant cI such that

(18)
1
|I|

∫
I
|hN (x)− cI | dx ≤ C

( ∞∑
k=1

|rk|2
)1/2

,

where C is a constant independent of I,N and a sequence {rk}∞k=1. We set I =
[x1, x2] ⊂ ∆. It is enough to deal with the case where there is a positive integer M
such that 1/nM+1 < |I| ≤ 1/nM . For, if |I| > 1/n1, then

1
|I|

∫
I
|hN (x)| dx ≤

(
1
|I|

∫
I
|hN (x)|2 dx

)1/2

≤ n
1/2
1

(∫
∆
|hN (x)|2 dx

)1/2

= n
1/2
1

( ∞∑
k=1

|rk|2
)1/2

.

We show (18) with cI = hM (x1). Let

hN (x) = hM (x) +
N∑

k=M+1

rkψ
(ν)
nk

(x) = hM (x) + EM,N (x), say.

We have

(19)
1
|I|

∫
I
|hN (x)−hM (x1)| dx ≤

1
|I|

∫
I
|hM (x)−hM (x1)| dx+

1
|I|

∫
I
|EM,N (x)| dx.

Applying Schwarz’s inequality and Lemma 1 to the integrand of the first integral
on the right-hand side, we have

|hM (x)− hM (x1)|2 ≤
M∑

k=1

|rk|2
M∑

k=1

|ψ(ν)
nk

(x)− ψ(ν)
nk

(x1)|2

≤ C

M∑
k=1

|rk|2
M∑

k=1

n2δ
k |x− x1|2δ
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≤ C|I|2δ
M∑

k=1

|rk|2
M∑

k=1

n2δ
k ≤ C|I|2δn2δ

M

M∑
k=1

|rk|2,

where δ is as in Lemma 1. Here, we used the fact that
∑M

k=1 n
2δ
k is bounded by Cn2δ

M
since {nk} is an Hadamard sequence, that is, nk+1/nk ≥ ρ with some constant ρ > 1.
Our choise of M leads to |I|nM ≤ 1, and thus |hM (x) − hM (x1)|2 ≤ C

∑M
k=1 |rk|2.

The first integral on the right-hand side of (19) is estimated as follows:

1
|I|

∫
I
|hM (x)− hM (x1)| dx ≤

(
1
|I|

∫
I
|hM (x)− hM (x1)|2 dx

)1/2

≤ C

(
M∑

k=1

|rk|2
)1/2

.(20)

We come to estimating the second integral on the right-hand side of (19). We
have (

1
|I|

∫
I
|EM,N (x)| dx

)2

≤ 1
|I|

∫
I
|EM,N (x)|2 dx

≤
N∑

j,k=M+1

|rj ||rk|
|I|

∣∣∣∣∫
I
ψ(ν)

nj
(x)ψ(ν)

nk
(x) dx

∣∣∣∣ .
Under the assumption nj ≤ nk, by Lemma 2, we have

1
|I|

∣∣∣∣∫
I
ψ(ν)

nj
(x)ψ(ν)

nk
(x) dx

∣∣∣∣ ≤ C

{(
nj

nk

)δ

+
log+ nk|I|
|I|nk

+
1

|I|nk

}
.

The first term on the right-hand side of the above inequality is bounded by (1/ρδ)k−j .
We evaluate the second term as follows: We fix a positive number ν with 0 < ν < 1.
There exists a constant Cν such that

log+ nk|I|
|I|nk

≤ Cν

(
1

|I|nk

)ν

= Cν

(
1

|I|nj

nj

nk

)ν

≤ Cν

(
1
ρν

)k−j

for j ≥ M + 1. For the last inequality, we used the fact |I|nj > 1 for j ≥ M + 1.
In a similar way, we have 1/(|I|nk) ≤ (1/ρ)k−j . Therefore, we see that there exist
a constant C and γ with 0 < γ < 1 such that

1
|I|

∣∣∣∣∫
I
ψ(ν)

nj
(x)ψ(ν)

nk
(x) dx

∣∣∣∣ ≤ Cγ|k−j|

for j, k ≥M + 1. This leads to

1
|I|

∫
I
|EM,N (x)| dx ≤ C

 ∞∑
j,k=1

γ|k−j||rj ||rk|

1/2

.
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The last sum is evaluated by Schwarz’s inequality as follows:
∞∑

j,k=1

γ|k−j||rj ||rk| =
∞∑

k=1

|rk|2 + 2γ
∞∑

k=1

|rk+1||rk|

+ · · ·+ 2γp
∞∑

k=1

|rk+p||rk|+ . . .

≤ (1 + 2γ + · · ·+ 2γp + . . . )
∞∑

k=1

|rk|2 ≤ C

∞∑
k=1

|rk|2.

Thus, we have

1
|I|

∫
I
|EM,N (x)| dx ≤ C

( ∞∑
k=1

|rk|2
)1/2

.

Combining this and (20), we obtain (18) with cI = hM (x1), which completes the
proof of (2) of Theorem.

We now turn to Hardy’s inequality (3) of Theorem. Let f ∈ H(∆). There exist
a sequence {ak}∞k=0 of ∆-atoms and a sequence of {λk}∞k=0 of numbers such that

f(x) =
∞∑

k=0

λkak(x) a.e. x,

∞∑
k=0

|λk| ≤ C‖f‖H(∆),(21)

where C is independent of f . Since |ψ(ν)
n (x)| ≤ C by (10), we have

c(ν)
n (f) =

∞∑
k=0

λkc
(ν)
n (ak),

and thus
∞∑

n=1

|c(ν)
n (f)|
n

≤ C

∞∑
k=0

|λk|
∞∑

n=1

|c(ν)
n (ak)|
n

.

It follows from (21) that to show Hardy’s inequality it is enough to show

(22)
∞∑

n=1

|c(ν)
n (a)|
n

≤ C

for every ∆-atom a, where C is independent of a ∆-atom a. Let us evaluate the
coefficients c(ν)

n (a). First, if a = 1, then by Schwarz’s inequality and Parseval’s
identity we have

∞∑
n=1

|c(ν)
n (a)|
n

≤

( ∞∑
n=1

1
n2

)1/2(∫ 1

0
dx

)1/2

≤ C
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with some absolute constant C. Let us treat the othe cases of a. Let I = [b, b+ h]
be the support interval of a. We have

|c(ν)
n (a)| =

∣∣∣∣∫ b+h

b
a(y)

(
ψ(ν)

n (y)− ψ(ν)
n (b)

)
dy

∣∣∣∣
by the fact

∫
a(y) dy = 0. Our lemma leads to

|c(ν)
n (a)| ≤ C

∫ b+h

b
|a(y)|nδ(y − b)δ dy,

where δ means the one in the lemma. By Schwarz’s inequality we see that the
right-hand side of the inequality is bounded by Cnδ‖a‖2h

δ+1/2, where ‖a‖2 =
(
∫
|a(y)|2 dy)1/2. Since atoms satisfy the fact h ≤ ‖a‖−2

2 , it follows that

(23) |c(ν)
n (a)| ≤ Cnδ‖a‖−2δ

2 .

To estimate the sum on the left-hand side of (22), we choose γ as γ = ‖a‖2
2 and

write

(24)
∞∑

n=1

|c(ν)
n (a)|
n

=

∑
n≤γ

+
∑
n>γ

 |c(ν)
n (a)|
n

.

We apply (23) to estimating the sum
∑

n≤γ . It follows that

(25)
∑
n≤γ

|c(ν)
n (a)|
n

≤ C‖a‖−2δ
2

∑
n≤γ

nδ−1 ≤ C‖a‖−2δ
2 γδ ≤ C.

For the sum
∑

n>γ , we use Parseval’s identity and Schwarz’s inequality and get

(26)
∑
n>γ

|c(ν)
n (a)|
n

≤ ‖a‖2

(∑
n>γ

1
n2

)1/2

≤ C‖a‖2γ
−1/2 ≤ C.

Combining (26) and (25), we get (22), which completes the proof.

Finally, the author would like to express his sincere thanks to Professor Yuichi
Kanjin for his many helpful suggestions in this paper.
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