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A NOVEL CLASS OF OPERATORS AND SOME RELATED
CONSTANTS

SAHAR MOHAMED ALI

Abstract. In this paper we will introduce a new class of operators related to
the nuclear operators. Study some of its properties and estimate some constants
concerning an example of these operators. Define a partially ordering amoung
prenuclear operators and show that this relation is obtained by aplication of
infinite matrices on the classical Banach space of all convergent to zero sequences
c0.

1. Introduction

The close connection between the sumability properties of the eigenvalues of the
nuclear operator on the space X and the upper bounds for the norms of suitable
projections from a Banach space X onto an arbitrary finite dimensional subspace
Y of it and the close connection between the projection constant and the nuclear
norm during the trace duality theorem [3] are challenging tasks to introduce a
new class of operators related to the nuclear operators, namely prenuclear, left,
right nuclear operators define some related constants, prove parallel results to that
introduced in [7] which are for projection operators. We also define a partially
ordering amonge prenuclear operators and show that this ordering is an application
of infinite matrices on t he classical Banach space c0.

In fact, the space X is isomertic isomorphic to a Hilbert space if and only if any
nuclear operator on X has absolutely summable eigenvalues. On the other hand
the space X is isomorphic to a Hilbert space if and only if every subspace of which
is complemented.

2. Notations and basic definitions

X, Y , Z, W and E denote Banach spaces, X∗ denotes the conjugate space of X,
B(X, Y ) denotes the class of all linear bounded operators from a Banach space X
into a Banach space Y while A and B, C, D and T denote elemnts in B(X, Y ) and
[̂Y ] denotes the closed linear span of the set Y .

An operator A ∈ B(X, Y ) is said to be nuclear if and only if it has the following
representation

(2.1) A(x) =
∑
n∈N

fn(x)yn, x ∈ X, simply A =
∑
n∈N

fn ⊗ yn,

where fn ∈ X∗, yn ∈ Y and {‖fn‖‖yn‖}∞n=1 ∈ l1.
The nuclear norm ν(A) of the nuclear operator A is defined as:

ν(A) := inf{‖{‖fn‖‖yn‖}∞n=1‖l1},
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where the infimum is taken over all represntations of A given in (2.1). The operator
ideal of all nuclear operators from X into Y will be denoted by N(X, Y ), see [5].

The projective tensor product X ⊗∧ Y between the normed spaces X and Y is
defined as the completion of the largest cross norm on the space X ⊗ Y and the
norm on the space X ⊗ Y is defined by

(2.2) ‖
n∑

i=1

xi ⊗ yi‖X⊗∧Y = inf{
m∑

j=1

‖uj‖‖vj‖},

where the infimum is taken over all equivalent representations
∑m

j=1 uj⊗vj ∈ X⊗Y

of
∑n

i=1 xi ⊗ yi; see [2] and [9].
A Banach space X is said to be separably injective if and only if for every separa-

ble Banach spaces Y , every subspace Z , Z ⊂ Y and every linear bounded operator
T from Z into X there is a linear bounded operator T̂ extending T from Y into X.

We have the following theorem:

Theorem 1. [10], [11], [12] The Banach space X is separably injective if and only
if it is linearly isomorphic to the space c0 of all convergent to zero sequences. More-
over, for every separable Banach spaces Y , every subspace Z, Z ⊂ Y and every
linear bounded operator T from Z into X there a linear bounded operator T̂ extend-
ing T from Y into X such that ‖T̂‖ ≤ 2‖T‖.

The following lemma give a complete characterization of the linear bounded op-
erators on the Banach space c0:

Lemma 1. [1] An infinite matrix T = {τij}i,j∈N defines a bounded linear operator
T ∈ B(c0) if and only if it satisfies the following conditions:

(1) {τnk}∞n=1 ∈ c0 for all k ∈ N , i.e. each column is a convergent to zero
sequence.

(2)
{
{τnk}∞k=1

}∞
n=1

∈ l∞(l1), i.e. supn∈N
∑

k∈N |τnk| < ∞.
In this case, we have

(1) The operator T is given by the foll owing formula:

T ({yn}∞n=1) = {
∑
k∈N

τnkyk}∞n=1,

(2)
‖T‖ = sup

n∈N

∑
k∈N

|τnk|.

We introduce the following new definition:

Definition 1. (1) An operator A ∈ B(X, Y ) is said to be prenuclear if and
only the representation A(x) =

∑
n∈N fn(x)yn converges for every x ∈ X,

where fn ∈ X∗, yn ∈ Y . Simply we write A = {fn ⊗ yn}∞n=1.
(2) On the space of all prenuclear operators from a Banach space X into a

Banach space Y a partial ordering ≤ can be defined as follows:
We write A = {gn ⊗ yn}∞n=1 ≤ B = {fn ⊗ xn}∞n=1 if and only if there exists
a non negative real number M such that

sup
n∈N

|gn(x)f(yn)| ≤ M sup
n∈N

|fn(x)f(xn)| ∀x ∈ X, ∀f ∈ Y ∗.
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Equivalently, we can write A ≤ B if and only if there exists a non negative
real number M such that

(2.3) ‖{gn(x)f(yn)}∞n=1‖c0 ≤ M ‖{fn(x)f(xn)}∞n=1‖c0 ∀(x, f) ∈ X × Y ∗.

(3) The smallest such constants M denoted by M(A,B) is called the ordered
constant between the two prenuclear operators A and B.

We have the following:

Lemma 2. Let A = {gn ⊗ yn}∞n=1 be prenuclear operator. Then the sequence of
rank one operators {gn ⊗ yn}∞n=1 from X into Y is b ounded.

Proof. Since the sequence {gn(x)yn}∞n=1 is convergent to zero sequence for every
x ∈ X, the sequence {gn(x)yn}∞n=1 is bounded at each point x ∈ X, using the
uniform boundedness principle, the sequence {‖gn ⊗ yn‖}∞n=1 is bounded. �

Lemma 3. Let A = {gn ⊗ yn}∞n=1 be prenuclear operator. Then the operator C
defined by

C(
m∑

i=1

xi ⊗ fi) = {
m∑

i=1

gn(xi)fi(yn)}∞n=1 = {gn ⊗ yn(
m∑

i=1

xi ⊗ fi)}∞n=1,

is linear bounded operator from the projective tensor product X ⊗∧ Y ∗ into c0.

Proof. Let
∑m

i=1 xi ⊗ fi ∈ X ⊗∧ Y ∗ and
∑l

j=1 uj ⊗ hj be any of it s equivalent
representations. Using lemma (2), we see that

‖C(
m∑

i=1

xi ⊗ fi)‖c0 = ‖{gn ⊗ yn(
m∑

i=1

xi ⊗ fi)}∞n=1‖c0

= ‖{gn ⊗ yn(
l∑

j=1

uj ⊗ hj)}∞n=1‖c0

= sup
n∈N

|
l∑

j=1

gn(uj)hj(yn)|

≤ sup
n∈N

‖gn ⊗ yn‖
l∑

j=1

‖uj)‖‖hj‖.

Taking the infimum over all such equivalent representations, we see that

‖C‖ ≤ sup
n∈N

‖gn ⊗ yn‖. �

Lemma 4. For any x ∈ X the set Yx :=
{
{gn(x)f(yn)}∞n=1 : f ∈ Y ∗

}
=

{
{gn ⊗

yn(x⊗ f)}∞n=1 : f ∈ Y ∗
}

is closed linear subspace of the space c0.

Proof. Let
{
{gn(x)f i(yn)}∞n=1

}∞
i=1

be a convergent sequence in the space Yx, since
the convergent in c0 is the uniform coordinatewise convergent, gn(x)limi→∞f i(yn) =
limi→∞ f i(gn(x)yn) < ∞ uniformly for each n ∈ N . Once f i ∈ Y ∗ for each i ∈ N ,
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limi→∞ f i(x) exists for every x ∈ [̂yn]. Define the linear bounded functional f on
[̂yn] by the following formula:

f(x) := lim
i→∞

f i(x).

Using Hahn-Banach theorem, f can be extended to a linear bounded functional
g ∈ Y ∗, the sequence {gn(x)g(yn)}∞n=1 is the unique uniform coordinatewise limit
of the given sequence. �

Remark. (1) For every g ⊗ y ∈ X∗ ⊗ Y , the functional again denoted by g ⊗ y
and defined by

g ⊗ y(x× f) := g(x)f(y)

is a bounded bilinear form on the product X × Y ∗.
(2) Let T = {τij}i,j∈N ∈ B(C0) and B = {gn ⊗ yn}∞n=1 be prenuclear.

Then the operator A(x) =
∑

n∈N
∑

k∈N τnkgk(x)yk is such that∥∥{∑k∈N τnkfk(x)f(xk)}∞n=1

∥∥
c0

≤ ‖T‖
∥∥‖{gn(x)f(yn)}∞n=1

∥∥
c0

for every
(x, f) ∈ X × Y ∗.

We also give the follwing interesting result:

Theorem 2. Let A = {fn ⊗ xn}∞n=1 and B = {gn ⊗ yn}∞n=1 be two prenuclear
operators and A ≤ B. Then for every x ∈ X there esists a n infinite matrix
T = {τij}i,j∈N ∈ B(c0) such that

{fn(x)xn}∞n=1 = {
∑
k∈N

τnkgk(x)yk}∞n=1.

Proof. On the space Yx, define the linear bounded operator

T́x : Yx → c0

by
T́x({gn(x)f(yn)}∞n=1) := {fn(x)f(xn)}∞n=1.

To show that T́x is bounded, we have∥∥T́x({gn(x)f(yn)}∞n=1)
∥∥

c0
=

∥∥{fn(x)f(xn)}∞n=1

∥∥
c0

≤ M(A, B)
∥∥{gn(x)f(yn)}∞n=1

∥∥
c0

.

Using the fact that c0 is separable Banach space and theorem (1), T́x can be extended
to a linear bounded operator Tx ∈ B(c0), using (1), the matrix representation of
the operator Tx has the required properties. �

3. Right and Left-Nuclear-Decomposable operators:

In this section we will introduce a novel class of operators having parallel charac-
terizations as that proved for the left complemented operators [7] and we also collect
some of its properties. Our definitions for the Right and Left-Nuclear-Decomposable
operators are some way opposite to the factorization of operators through Banach
spaces that given in [4] and [6].
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Definition 2. (1) An operator A ∈ B(X, Y ) (respectively A ∈ B(X)) is said
to be Right-Nuclear-Decomposable (respectively lp-Right-Nuclear-Decom-
posable) with respect to a Banach space Z if and only if there exists a
non-nuclear linear bounded operator T from Y into Z (respectively from
X into Z ) such that the compositi on TA is nuclear (respectively TA is
nuclear and the sequence of nuclear norms {ν(TAn)}∞n=1 is an element of
the space lp. i.e.,{

‖{ν(TAn)}∞n=1‖lp

}p =
∑
n∈N

[ν(TAn)]p < ∞.)

(2) The space Z in this case is said to be Right-Nuclearlizer or lp-Right-Nuclear-
lizer of the operator A respectively.

RNDO(X, Y ; Z) denotes the class of all Right-Nuclear-Decomposable operators
from a Banach space X into a Banach space Y with respect to the same Banach
space Z, lp−RNDO(X; Z) denotes the class of all lp-Right-Nuclear-Decomposable
operators on a Banach space X with respect to the same Banach space Z. If
A ∈ RNDO(X, Y ; Z), then the class of all nonnuclear operators T : Y → Z such
that TA is nuclear will be denoted by RNO(A; Z) and for A ∈ lp−RNDO(X; Z),
the class of all nonnuclear operators T : X → Z such that TA is nuclear and
{ν(TAn)}∞n=1 ∈ lp will be denoted by lp − RNO(A; Z). The class of all Right-
nuclearlizer and lp-Right-nuclearlizer of A will be denoted respectively by RN(A)
and lp −RN(A).

Definition 3. (1) If A ∈ RNDO(X, Y ; Z), then the right-relative nuclear con-
stant of the operator A denoted by R(A, Z) is defined by:

R(A, Z) := inf{ν(TA) : T ∈ RNO(A; Z)}.
(2) If A ∈ lp −RNDO(X; Z), then the p-right-relative nuclear constant of the

operator A denoted by Rp(A, Z) is defined by:

Rp(A, Z) := inf{‖{ν(TAn)}∞n=1‖lp : T ∈ lp −RNO(A; Z)}.
(3) The absolute Right-Nuclear and p-Right-Nuclear constant s of A are defined

respectively by:

R(A) = sup{R(A, Z) : Z ∈ RN(A)}.
and

Rp(A) = sup{Rp(A, Z) : Z ∈ lp −RN(A)}.

A parallel arguments can be defined from the left.

Definition 4. (1) An operator A ∈ B(X, Y ) (respectively A ∈ B(X))is said to
be Left-Nuclear-Decomposable (respectively lp-Left-Nuclear-Decomposable)
with respect to a Banach space Z if and only if there exists a non-nuclear
linear bounded operator T from Z into X (respectively T from Z into X)
such that the composition AT is nuclear (respectively AT is nuclear and the
sequence of nuclear norms {ν(AnT )}∞n=1 is an element of the space lp. i.e.,{

‖{ν(AnT )}∞n=1‖lp

}p =
∑
n∈N

[ν(AnT )]p < ∞.)
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(2) The space Z in this case is said to be Left-Nuclearlizer or lp-Left-Nuclearlizer-
of the operator A respectively.

LNDO(X, Y ; Z) denotes the class of all Left-Nuclear-Decomposable operators
from X into Y with respect to the same Banach space Z. lp−LNDO(X; Z) denote
the class of all lp-Left-Nuclear-Decomposable operators on a Banach space X with
respect to the same Banach space Z. If A ∈ LNDO(X, Y ; Z), then the class of
all nonnuclear operators T : Z → X such that AT is nuclear will be denoted by
LNO(A; Z). If A ∈ lp − LNDO(X; Z), then the class of all nonnuclear operators
T : Z → X such that AT is nuclear and {ν(AnT )}∞n=1 ∈ lp will be denoted by
lp − LNO(A; Z). The class of all Left-nuclearlizer spaces and lp-Left-nuclearlizer
spaces of A will be denoted respectively by LN(A) and lp − LN(A).

Definition 5. (1) If A ∈ LNDO(X, Y ; Z), then the left-relative nuclear con-
stant of the operator A denoted by L(A, Z) is defined by:

L(A, Z) := inf{ν(TA) : T ∈ LNO(A; Z)}.
(2) If A ∈ lp − LNDO(X; Z), then the p-left-relative nuclear constant of the

operator A denoted by Lp(A, Z) is defined by:

Lp(A, Z) := inf{‖{ν(AnT )}∞n=1‖lp : T ∈ lp − LNO(A; Z)}.

(3) The absolute Left-Nuclear and p-Left-Nuclear constants are defined respec-
tively by:

L(A) = sup{L(A, Z) : Z ∈ LN(A)}.
and

Lp(A) = sup{Lp(A, Z) : Z ∈ lp − LN(A)}.

4. Some preliminary lemmas

We have the following main properties:

Lemma 5. (1) The classes RNO(A; Z) and lp − RNO(A; Z) are linear sub-
spaces of the spaces B(Y, Z) and B(X, Z) respectively.

(2) The classes LNO(A; Z) and lp − LNO(A; Z) are also linear subspaces.
(3) The class L(X, Y ; Z) of the intersection of all classes RNO(A; Z) over all

nonnuclear operators A ∈ RNDO(X, Y ; Z)

L(X, Y ; Z) :=
⋂

A∈RNDO(X, Y ; Z)/N(X, Y )

RNO(A; Z) ⊂ B(Y, Z),

is linear subspace of B(Y, Z).
(4) The class R(X, Y ; Z) of the intersection of all classes LNO(A; Z) over all

nonnuclear operators A ∈ LNDO(X, Y ; Z)

R(X, Y ; Z) :=
⋂

A∈LNDO(X, Y ; Z)/N(X, Y )

LNO(A; Z),

is a linear subspace of B(Z, X).
(5) If A ∈ RNDO(X, Y ; Z), T ∈ RNO(A; Z) and W is any Banach space with

some T0 : Z → W such that T0T is not nuclear, then A ∈ RNDO(X, Y ; W ).
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(6) If A ∈ N(X, Y ), then A ∈ RNDO(X, Y ; Z) and A ∈ LNDO(X, Y ; Z)
for any Banach space Z.

(7) If A ∈ B(X) and {‖An‖}∞n=1 ∈ lp, then

A ∈

{
lp −RNDO(X; Z), ifA ∈ RNDO(X; Z);
lp − LNDO(X; Z), ifA ∈ LNDO(X; Z).

In fact, if T ∈ RNO(A; Z) (respectively T ∈ LNO(A; Z)), we have
ν(TAn) ≤ ν(TA)‖An−1‖ (respectively ν(AnT ) ≤ ν(AT )‖An−1‖).

(8) If A ∈ lp−RNDO(X; Z) (respectively A ∈ lp−LNDO(X; Z)), B ∈ B(X),
AB = BA and {‖Bn‖}∞n=1 ∈ lq, then AB ∈ lr−RNDO(X; Z) (respectively
A ∈ lr − LNDO(X; Z)), where 1

r = 1
p + 1

q .
In fact, if T ∈ RNO(A; Z) (respectively T ∈ LNO(A; Z)), we have
ν(T [AB]n) = ν(TAnBn) ≤ ν(TAn)‖Bn‖ (respectively ν([BA]nT ) =
ν(BnAnT ) ≤ ν(AnT )‖Bn‖), using the Minkowisky inequality, we get the
proof.

(9) If A ∈ LNDO(X, Y ; Z), then A ∈ LNDO(X, Y ; W ) where W is a sub-
space of l∞.

(10) If A ∈ RNDO(X, Y ; Z), then A ∈ RNDO(X, Y ; l∞).
(11) Let A be a projection from X onto a closed subspace Y and Aα = αA. Then

for A ∈ RNDO(X, Y ; Z), we have

Aα

{
∈ lp −RNDO(X, Y ; Z), if |αp| < 1;
/∈ lp −RNDO(X, Y ; Z), if |αp| ≥ 1.

Moreover in the first, case we have

Rp(A, Z) ≤ R(A, Z)p[ |αp|
1− |αp|

]
.

We also have the same from the left, in particular the projection operators
are not Power-Nuclear-Decomposable operators.

(12) Let A ∈ B(X, Y ), B ∈ B(Y, E), and C ∈ B(W, X). Then
• If A ∈ LNDO(X, Y ; Z), and B homeomorphism, then BA ∈ LNDO(X,

E; Z) and AC ∈ LNDO(W, Y ; Z).
• If A ∈ RNDO(X, Y ; Z) and B homeomorphism, then BA ∈ RNDO(X,

E; Z) and AC ∈ RNDO(W, Y ; Z).

We have the following theorem:

Theorem 3. Let A ∈ LNDO(X, Y ; l∞). Then A ∈ LNDO(X, Y ; Z) for every
Banach space Z. Moreover the absolute Left-Nuclear-Decomposable constant L(A)
of the operator A attains its supremum at l∞. i.e.,

L(A) = L(A, l∞).

Proof. Let l∞ be a left nuclearlizer of the operator A. Then there exists a linear
bounded non-nucle ar operator T : l∞ → X such that AT : l∞ → Y is nuclear. If Z
is any Banach space, J : Z → l∞ is the isometric embedding of Z into l∞, then TJ
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is not nuclear with A(TJ) = (AT )J nuclear and ν(A(TJ)) ≤ ‖J‖ ν(AT ) = ν(AT ),
from that we conclude for the infimum,

L(A, Z) ≤ L(A, l∞), for every Banach space Z.

Taking the supremum over all Banach spaces Z we get the proof. �

5. EXAMPLES

we have the following examples:
(1) The identity operator IX on an infinite dimensional Banach space X is not

Left and not Right-Nuclear-Decomposable with respect to any Banach space
Z, if X is a Banach space having Schauder basis, then IX is prenuclear.

(2) Consider the operator A ∈ B(l1) defined by

A({xi}∞i=1) = {αxi

i
}∞i=1,

where α is a real number with |α| ≤ 1.
• A is prenuclear non-nuclear. In fact A has the representation

A({xi}∞i=1) =
∑
n∈N

fn({xi}∞i=1)en,

where fn = {0, 0, . . . , α
n , 0, 0, . . . } ∈ l∞, the nonzero coordinate is the

n-coordinate. i.e., fn({xi}∞i=1) = αxn
n and en = {0, 0, . . . , 1, 0, 0, . . . },

n ∈ N are the canonical basis elements of the space l1.
On the other hand,

• A is Right-Nuclear-Decomposable with respect to l1. In fact, consider
the linear bounded non-nuclear operator T on l1 defined by

T ({xi}∞i=1) = {xi

i
}∞i=1,

we have
TA({xi}∞i=1) = {αxi

i2
}∞i=1,

which is linear bounded nuclear operator. This showed also that T is
Left-Nuclear-Decomposable with respect to l1.

• A is lp-Power-Nuclear-Decomposable with respect to l1. In fact, we
have

(TAn)({xi}∞i=1) = { αxi

in+1
}∞i=1,

and

ν(TAn) ≤
∑
i∈N

|α|n

in+1
,

‖{ν(TAn)}∞n=1‖lp ≤
|α|

(1− |α|p)
1
p

.

• Finally, we have

Rp(A) ≤ |α|

(1− |α|p)
1
p

.
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(3) Consider the last operator as an operator from lq into l1 and T as an operator
from l1 into l∞. For this two operators A is Right-Nuclear-Decomposable
with respect to l∞ and T is Left-Nuclear-Decomposable with respect to lq.

6. Problems

We have the following problems:

Problem 1. Under what conditions are the spaces L(X, Y ; Z) and R(X, Y ; Z)
not empty?

Problem 2. Under what conditions are there infinite matries T = {τij}i,j∈N ∈
B(c0) satiesfying theorem (2) valied for every x ∈ X?
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