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EXISTENCE OF NONNEGATIVE SOLUTIONS FOR NONLINEAR
BOUNDARY VALUE PROBLEMS VIA PSEUDOMONOTONE

OPERATORS AND NONSMOOTH CRITICAL POINT THEORY

RAVI P. AGARWAL, MICHAEL FILIPPAKIS*, DONAL O’REGAN,
AND NIKOLAOS S. PAPAGEORGIOU

Abstract. We study the existence of nonnegative solutions for nonlinear Dirich-
let boundary value problems driven by the ordinary scalar p-Laplacian and with
a nonsmooth potential. Our approach involves using the method of upper and
lower solutions with nonsmooth critical point theory for locally Lipschitz func-
tions. Our analysis covers the so-called “sublinear” and “superlinear” cases.

1. Introduction

In this paper, we study the existence of nonnegative solutions for the following
nonlinear second order boundary value problem

(1.1)
{
−(|x′(t)|p−2x′(t))′ ∈ ∂j(t, x(t)) a.e on T = [0, b]
x(0) = x(b) = 0, 1 < p <∞.

}
Here j(t, x) is a function measurable in t ∈ T and locally Lipschitz-in general
nonsmooth-in x ∈ R. By ∂j(t, x) we denote the generalized (Clarke) subdiffer-
ential of j(t, ·) (see Section 2). In the past the question of existence of nonnegative
solutions was examined primarily in the context of semilinear (i.e. p = 2) equations
with a smooth potential (i.e. j(t, ·) ∈ C1(R) and so ∂j(t, ·) = f(t, ·) ∈ C(R)).
In this direction we mention the works of Erbe-Hu-Wang [8], Erbe-Wang [9], Liu-
Li [14] and Y. Li [13]. In all of these works the right hand side nonlinearity is
jointly continuous on T × R and in the first three papers it is also nonnegative.
Only the recent work of Y. Li [13] allows the nonlinearity to have a varying sign.
The works of Erbe-Hu-Wang [8] and Erbe-Wang [9] cover the strictly sublinear and
superlinear cases, while Liu-Li [14] and Y. Li [13] include in their considerations
the asymptotically linear case. In all these works the approach is similar and it is
based on compression-expansion type fixed point theorems (see for example Guo-
Lakshmikantham [11]). For problems driven by the ordinary scalar p-Laplacian, we
have the works of De Coster [4], Wang [16] and Agarwal-Lü-O’Regan [1]. De Coster
[4] studies the so-called “sub-super linear case” which loosely speaking means that

the ratio
f(t, x)
|x|p−2x

(f being the right hand side nonlinearity) is greater than the

first eigenvalue λ1 > 0 near 0+ and near +∞. No interaction with λ1 > 0 is al-
lowed (uniform nonresonance). The nonlinearity f(t, x) is a Carathéodory function
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and the approach of De Coster is degree theoretic with parallel use of the time
map. In Wang [16] and Agarwal-Lü-O’Regan [1] the right hand side nonlinearity is
nonnegative. Wang [16] deals with the sublinear and superlinear problems, while
Agarwal-Lü-O’Regan [1] study eigenvalue problems and for a variety of asymptotic
conditions at 0+ and +∞, determine the eigenvalue interval for which the problem
has a nonnegative solution. Both works base their method of proof on fixed point
theorems of compression-expansion type.

Our work here extends the aforementioned semilinear works and complements
the work of De Coster [4] since we cover also the sublinear and superlinear cases.
Moreover, in certain circumstances we allow partial interaction with λ1 > 0 (nonuni-
form nonresonance). In contrast to Wang [16] and Agarwal-Lü-O’Regan [1] here the
potential function changes sign. Moreover, we do not have a smooth potential func-
tion. Finally, our approach is different and either it uses the method of upper and
lower solutions or it is variational based on nonsmooth critical point theory (see
Chang [2] and Kourogenis-Papageorgiou [12]). For the convenience of the reader, in
the next section we recall some basic definitions and facts from this theory, which
will be used in the sequel.

2. Mathematical Background

The nonsmooth critical point theory that we use is based on the subdifferential
theory of Clarke [3] for locally Lipschitz functions. Let X = (X, ‖ · ‖) be a Banach
space. By X∗ we denote its topological dual and by 〈·, ·〉 the duality brackets for
the pair (X∗, X). A function ϕ : X → R is said to be locally Lipschitz if for every
x ∈ X we can find a neighborhood U of x and k > 0 (depending on U) such that
|ϕ(y)− ϕ(z)| ≤ k‖y − z‖ for all y, z ∈ U. We know that if ψ : X → R is continuous
convex, then it is locally Lipschitz. Also if ψ ∈ C1(X), then clearly ψ is locally
Lipschitz.

Given a locally Lipschitz function ϕ : X → R, the generalized directional deriva-
tive of ϕ at x in the direction h ∈ X is defined by

ϕ0(x;h) = lim sup
x′→x
λ ↓ 0

ϕ(x′ + λh)− ϕ(x′)
λ

.

It is easy to check that ϕ0(x; ·) is sublinear and continuous. Thus it is the support
function of a nonempty, convex and w∗-compact set ∂ϕ(x) ⊆ X∗ defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x;h) for all h ∈ X}.

The multifunction x→ ∂ϕ(x) is known as the generalized (or Clarke) subdiffer-
ential of ϕ. If ϕ is also convex, then ∂ϕ(x) coincides with the subdifferential in the
sense of convex analysis given by

∂cϕ(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ ϕ(y)− ϕ(x) for all y ∈ X}.

Moreover, if ϕ ∈ C1(X), then ∂ϕ(x) = {ϕ′(x)} for all x ∈ X. For ϕ,ψ :→ R
locally Lipschitz functions and λ ∈ R, we have

∂(ϕ+ ψ) ⊆ ∂ϕ+ ∂ψ and ∂(λϕ) = λ∂ϕ.
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A point x ∈ X is said to be a critical point of ϕ, if 0 ∈ ∂ϕ(x). It is easy to check
that if x ∈ X is a local extremum of ϕ (i.e. a local maximum or a local minimum),
then 0 ∈ ∂ϕ(x) (i.e. x ∈ X is a critical point of ϕ). If x ∈ X is a critical point of ϕ,
then c = ϕ(x) is a critical value of ϕ.

From the smooth theory (i.e. ϕ ∈ C1(X)), we know that in variational methods
a central role is played by a compactness type condition, known as the Palais-Smale
condition (PS-condition for short). In the present nonsmooth setting this condition
takes the following form:

“A locally Lipschitz function ϕ : X → R satisfies the nonsmooth PS-
condition, if every sequence {xn}n≥1 ⊆ X such that |ϕ(xn)| ≤ M
for some M > 0 and all n ≥ 1 and

m(xn) = inf [‖x∗‖ : x∗ ∈ ∂ϕ(xn)] → 0 as n→∞,

has a strongly convergent subsequence”.
Using this condition, we have a nonsmooth version of the well-known Mountain

Pass Theorem (see Chang [2] and Kourogenis-Papageorgiou [12]).

Theorem 2.1. If X is a reflexive Banach space, ϕ : X → R is locally Lipschitz
and satisfies the nonsmooth PS-condition, there exist r > 0 and x1 ∈ X such that
‖x1‖ ≥ r and max{ϕ(x1), ϕ(0)} < inf [ϕ(x) : ‖x‖ = r] and Γ = {γ ∈ C([0, 1], X) :
γ(0) = 0, γ(1) = x1}, then

c = inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t))

is a critical value and c ≥ inf [ϕ(x) : ‖x‖ = r].

As we already indicated in the introduction, our hypotheses on j(t, x) will involve
the spectrum of the negative ordinary scalar p-Laplacian with Dirichlet boundary
conditions, so let us briefly describe this spectrum. Consider the following nonlinear
eigenvalue problem:

(2.1)
{
−(|x′(t)|p−2x′(t))′ = λ|x(t)|p−2x(t) a.e on T = [0, b]
x(0) = x(b) = 0, 1 < p <∞, λ ∈ R.

}
We say that λ ∈ R is an eigenvalue, if problem (2.1) has a nontrivial solu-

tion. It is well-known (see Del Pino-Elgueta-Manasevich [5]) that problem (2.1)
has an increasing sequence {λn}n≥1 of eigenvalues given by λn = (

nπp

b
)p, n ≥ 1,

where πp =
2π(p− 1)1/p

p sin(π
p )

. Note that π2 = π. It is worth pointing out that the

same sequence forms the spectrum of the negative ordinary vector p-Laplacian with
Dirichlet boundary conditions (this is no longer true if we have periodic bound-
ary conditions). The first eigenvalue λ1 = (πp

b )b is simple (i.e. the corresponding
eigenspace is one dimensional) and has the following variational characterization

(2.2) λ1 = inf
[
‖x′‖p

p

‖x‖p
p

: x ∈W 1,p
0 (0, b), x 6= 0

]
.

The infimum is attained at the eigenfunctions corresponding to λ1 > 0. Let u1

be the normalized (i.e. ‖u1‖p = 1) eigenfunction corresponding to λ1 > 0. Then
u1(t) > 0 for all t ∈ (0, b).
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Finally let us recall some definitions and facts from the theory of nonlinear op-
erators of monotone type. For details we refer the reader to Denkowski-Migorski-
Papageorgiou [7].

Let X be a reflexive Banach space. An operator A : D ⊆ X → 2X∗
is said

to be monotone, if for all x, y ∈ D and all x∗ ∈ A(x), y∗ ∈ A(y), we have 〈x∗ −
y∗, x − y〉 ≥ 0. If (x∗ − y∗, x − y) = 0 implies that x = y, then we say that A is
strictly monotone. A monotone operator A : D ⊆ X → 2X∗

is said to be maximal
monotone, if 〈x∗ − y∗, x − y〉 ≥ 0 for all x ∈ D and all x∗ ∈ A(x), imply y ∈ D
and y∗ ∈ A(y). The monotone operator A is maximal monotone if and only if its
graph GrA = {(x, x∗) ∈ X ×X∗ : x∗ ∈ A(x)} is maximal with respect to inclusion
among the graphs of all monotone operators. An operator A : X → X∗ which
is single-valued and everywhere defined, is said to be demicontinuous, if xn → x

in X, implies that A(xn) w→ A(x) in X∗. A monotone, demicontinuous operator is
maximal monotone.

An operator A : D ⊆→ 2X∗
is said to be coercive, if D is bounded or D is

unbounded and inf [‖x∗‖ : x∗ ∈ A(x)] → +∞ as ‖x‖ → +∞.
An operator A : X → 2X∗

is said to be pseudomonotone if
(a) for every x ∈ X, A(x) is nonempty, weakly compact and convex;
(b) A is upper semicontinuous for every finite dimensional subspace Z of X

into X∗ equipped with the weak topology (i.e. for all U ⊆ X∗ weakly open
A|+Z (U) = {x ∈ Z : A(x) ⊆ U} is open);

(c) If xn
w→ x in X, x∗n ∈ A(xn) and lim sup

n→∞
〈x∗n, xn − x〉 ≤ 0, then for every

y ∈ X, there exists x∗(y) ∈ A(x) such that 〈x∗(y), x−y〉 ≤ lim inf
n→∞

〈x∗n, xn−y〉.

If A is bounded (i.e. it maps bounded sets to bounded sets) and satisfies condition
(c), then it satisfies condition (b) too. An operator A : D ⊆ X → 2X∗

is said to be
generalized pseudomonotone, if for all x∗n ∈ A(xn) n ≥ 1 which satisfy xn

w→ x in
X, x∗n

w→ x∗ in X∗ and lim sup
n→∞

〈x∗n, xn − x〉 ≤ 0, we have x∗ ∈ A(x) and 〈x∗n, xn〉 →

〈x∗, x〉.
The following proposition relates all these notions.

Proposition 2.2. If X is a reflexive Banach space and A : X → 2X∗
, then

(a) If A is maximal monotone, it is also generalized pseudomonotone;
(b) If A is pseudomonotone, it is also generalized pseudomonotone;
(c) If A is generalized pseudomonotone, bounded and for all x ∈ X, A(x) is

nonempty, w-compact and convex, then A is pseudomonotone;
(d) If A is pseudomonotone and coercive, then A is surjective.

3. Sublinear Problems

In this section we deal with the so-called “sublinear case”. Roughly speaking,
in the context of semilinear (i.e. p = 2), smooth (i.e. ∂j(t, ·) = f(t, ·) ∈ C(R))

problems, this means that the ratio (slope)
f(t, x)
x

is below the first eigenvalue

λ1 > 0 near 0+ and near +∞. Therefore f(t, ·) exhibits a linear or sublinear behavior
near 0+ and near +∞ and this justifies the name “sublinear case”. In all the
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works mentioned in the introduction, asymptotically at 0+ and at +∞, there is no
interaction with λ1 > 0. In contrast here asymptotically at +∞, we allow partial
interaction with λ1 > 0 (nonuniform nonresonance, see hypothesisH(j)1(iv) below).

Our hypotheses on the nonsmooth potential j(t, x) are the following:
H(j)1: j : T × R → R is a function such that j(·, 0) ∈ L1(T ) and

(i) for all x ∈ R, t→ j(t, x) is measurable;
(ii) for almost all t ∈ T , x→ j(t, x) is locally Lipschitz;
(iii) for every r > 0, there exists αr ∈ L1(T )+ such that for almost all t ∈ T,

all |x| ≤ r and all u ∈ ∂j(t, x), we have |u| ≤ αr(t);
(iv) there exists θ ∈ L∞(T )+ such that θ(t) ≤ λ1 a.e. on T with strict in-

equality on a set of positive measure and lim sup
x→+∞

u

xp−1
≤ θ(t) uniformly

for almost all t ∈ T and all u ∈ ∂j(t, x);
(v) lim inf

x→0+

u

xp−1
> λ1 uniformly for almost all t ∈ T and all u ∈ ∂j(t, x).

Remark 3.1. The following nonsmooth locally Lipschitz functions satisfy hypotheses
H(j)1. For simplicity we have dropped the t-dependence: j1(x) = max{|x|r, µ|x|p}
with 1 ≤ r < p and 0 < µ < λ1. Also let h(x) = 1

2(x2+x) for all x ∈ [0, 1] and extend
h by periodicity to all of R (period 1). Denote the extension by j2(x). Evidently

∂j2(x) =
{
x− [x] + 1

2 if x /∈ N0

[0, 1] if x ∈ N0
, i.e. ∂j2(x) is a sawtooth type function (here

[x] denotes the largest integer less or equal to x and N0 = N ∪ {0}.
We start with a simple auxiliary result which will help us to deal with the nonuni-

form nonresonance condition in hypothesis H(j)1(iv).

Lemma 3.2. If θ ∈ L∞(T )+ is such that θ(t) ≤ λ1 a.e. on T with strict inequality
on a set of positive measure, then there exists ξ1 > 0 such that ψ(x) = ‖x′‖p

p −∫ b
0 θ(t)|x(t)|

pdt ≥ ξ1‖x′‖p
p for all x ∈W 1,p

0 (0, b).

Proof. By virtue of the variational characterization of λ1 > 0 (see (2.2)), we see that
ψ ≥ 0. Suppose that the lemma was not true. Exploiting the positive p-homogeneity
of the function ψ, we can find {xn}n≥1 ⊆ W 1,p

0 (0, b) with ‖x′n‖p = 1, n ≥ 1, such
that ψ(xn) ↓ 0 as n→∞.

From the Poincaré inequality, we have that {xn}n≥1 ⊆W 1,p
0 (0, b) is bounded and

so by passing to a suitable subsequence if necessary, we may assume that

xn
w→ x in W 1,p

0 (0, b) and xn → x in C(T )

(recall that W 1,p
0 (0, b) is embedded compactly in C(T )). Also since x′n

w→ x′ in
Lp(T ), we have ‖x′‖p ≤ lim inf

n→∞
‖x′n‖

p
p. Thus in the limit as n→∞, we obtain

‖x′‖p
p ≤

∫ b

0
θ(t)|x(t)|pdt ≤ λ1‖x‖p

p,(3.1)

⇒‖x′‖p
p = λ1‖x‖p

p (see (2.2)),
⇒x = 0 or x = ±u1.

If x = 0, then ‖x′n‖p → 0, a contradiction to the fact that ‖x′n‖p = 1 for all n ≥ 1.
Thus x = ±u1, which means that |x(t)| > 0 for all t ∈ (0, b). Therefore from (3.1)
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and hypothesis H(j)1(iv), we have

‖x′‖p
p ≤

∫ b

0
θ(t)|x(t)|pdt < λ1‖x‖p

p,

a contradiction to (2.2). �

Because of hypotheses H(j)1(iii) and (iv), given ε > 0, we can find γε ∈ L1(T )+\
{0} such that for almost all t ∈ T, all x ≥ 0 and all u ∈ ∂j(t, x), we have

(3.2) u ≤ (θ(t) + ε)xp−1 + γε(t).

We consider the following auxiliary Dirichlet problem:

(3.3)
{
−(|x′(t)|p−2x′(t))′ = (θ(t) + ε)|x(t)|p−2x(t) + γε(t) a.e on T
x(0) = x(b) = 0, ε > 0.

}
In the next proposition we show that for ε > 0 small, problem 3.3 has a positive

solution.

Proposition 3.3. If θ ∈ L∞(T )+ and θ(t) ≤ λ1 a.e. on T with strict inequality
on a set of positive measure, then for ε > 0 small, problem (3.3) has a solution
x ∈ C1(T ) such that x(t) > 0 for all t ∈ (0, b), x′(b) < 0 < x′(0).

Proof. Let A : W 1,p
0 (0, b) → W−1,q(0, b) = W 1,p

0 (0, b)∗ (1
p + 1

q = 1) be the nonlinear
operator defined by

〈A(x), y〉 =
∫ b

0
|x′(t)|p−2x′(t)y′(t)dt for all x, y ∈W 1,p

0 (0, b).

Hereafter by 〈·, ·〉 we denote the duality brackets for the pair (W−1,q(0, b),
W 1,p

0 (0, b)). It easy to check that A is monotone demicontinuous, hence it is maximal
monotone. Also let Jε : W 1,p

0 (0, b) → Lq(T ) ⊆W−1,q(0, b) be defined by

Jε(x)(·) = (θ(·) + ε)|x(·)|p−2x(·).
Because of the compact embedding of Lq(T ) into W−1,q(0, b), the map x→ Jε(x)

is completely continuous. Let Kε : A−Jε : W 1,p
0 (0, b) →W−1,q(0, b). We claim that

Kε is pseudomonotone. Since Kε is everywhere defined and bounded, it suffices to
show that Kε is generalized pseudomonotone. For this purpose suppose that xn

w→ x
in W 1,p

0 (0, b) and assume that lim sup
n→∞

〈Kε(xn), xn − x〉 ≤ 0. We need to show that

(3.4) 〈Kε(xn), xn〉 → 〈Kε(x), x〉 and Kε(xn) w→ Kε(x) in W−1,q(0, b).

We have

〈Kε(xn), xn − x〉 = 〈A(xn), xn − x〉 − 〈Jε(xn), xn − x〉.
Note that 〈Jε(xn), xn − x〉 → 0 as n→∞. As a result it follows that

lim sup
n→∞

〈A(xn), xn − x〉 ≤ 0.

Now since A is maximal monotone, it is generalized pseudomonotone and so we
have

(3.5) 〈A(xn), xn〉 → 〈A(x), x〉 and A(xn) w→ A(x) in W−1,q(0, b).
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Also from the complete continuity of Jε we have

(3.6) Jε(xn) → Jε(x) in W−1,q(0, b).

From (3.5) and (3.6), we conclude that (3.4) holds and so Kε is pseudomonotone.
For every x ∈W 1,p

0 (0, b), we have

〈Kε(x), x〉 = 〈A(x), x〉 − 〈Jε(x), x〉

= ‖x′‖p
p −

∫ b

0
θε(t)|x(t)|pdt− ε‖x‖p

p

≥ ξ1‖x′‖p
p − ε‖x‖p

p (see Lemma 3.2)

≥ ξ1‖x′‖p
p −

ε

λ1
‖x′‖p

p (see (2.2))

= (ξ − ε

λ1
)‖x′‖p

p.(3.7)

If we choose ε < ξ1λ1, from (3.7) and the Poincaré inequality we infer that
Kε is coercive. Since a pseudomonote, coercive operator is surjective, we can find
x ∈W 1,p

0 (0, b) such that
Kε(x) = γε

(recall that L1(T ) ⊆ W−1,q(0, b)). From this equality it follows easily that x ∈
C1(T ) and it solves problem (3.3).

Next we show that x(t) > 0 for all t ∈ (0, b). To this end, if we use as a test
function −x− ∈W 1,p

0 (0, b), we obtain

‖(x−)′‖p
p =

∫ b

0
(θ(t) + ε)|x−(t)|pdt+

∫ b

0
γε(t)(−x−)(t)dt

≤
∫ b

0
(θ(t) + ε)|x−(t)|pdt (since γε ≥ 0),

⇒ ξ1‖(x−)′‖p
p ≤ ε‖x−‖p

p (see Lemma 3.2)

⇒ ξ1‖(x−)′‖p
p ≤

ε

λ1
‖(x−)′‖p

p (see (2.2)).(3.8)

Recall that ε < λ1ξ1. Now from (3.8) we infer that ‖(x−)′‖p = 0 and this by
Poincaré’s inequality implies that x− = 0, hence x(t) ≥ 0 for all t ∈ T. Furthermore,
from (3.3) and since γε 6= 0, we see that x 6= 0. Finally note that

(|x′(t)|p−2x′(t))′ ≤ (θ(t) + ε)x(t)p−1 a.e. on T (see (3.3)).

Invoking Theorem 5 of Vazquez [15], we obtain that

x(t) > 0 for all t ∈ (0, b), with x′(b) < 0 < x′(0). �

Consider the functions

α(t, x) = min [u : u ∈ ∂j(t, x)] and α(t, x) = max [u : u ∈ ∂j(t, x)].

Because of hypotheses H(j)1(i) and (ii) and by redefining if necessary, j(·, ·) on
a set N × R with N being a Lebesgue-null subset of T, we may assume that j(·, ·)
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is Borel measurable on T ×R and that for all t ∈ T j(t, ·) is locally Lipschitz. From
the definition of the generalized directional derivative, we have

j0(t, x;h) = lim sup
x′→x
λ ↓ 0

j(t, x′ + λh)− j(t, x′)
λ

(3.9)

= inf
ε>0
ε∈Q

sup
|x′−x|<ε
0<λ<ε
x′,λ∈Q

j(t, x′ + λh)− j(t, x′)
λ

.

Since the function (t, x) → j(t, x) is Borel measurable, from (3.9) it follows that
(t, x, h) → j0(t, x;h) is Borel measurable from T ×R×R into R. We also know that

∂j(t, x) = {u ∈ R : uh ≤ j0(t, x;h) for all h ∈ R}.
Let {hn}n≥1 be the enumeration of the rationals in R. Exploiting the continuity

of the map h→ j0(t, x;h), we have

Gr∂j =
⋂
n≥1

{(t, x, u) ∈ T × R× R : uhn ≤ j0(t, x;hn)} ∈ B(T )×B(R)×B(R),

where B(T ) (resp. B(R)) is the Borel σ-field of T (resp. of R). For every η ∈ R we
have

{(t, x) ∈ T × R : α(t, x) < η} = projT×R[Gr∂j ∩ (T × R× (−∞, η)].

The generalized subdifferential is compact-valued. Thus we can use Theorem
2.6.36, p.216, of Denkowski-Migorski-Papageorgiou [6] and obtain that

{(t, x) ∈ T × R : α(t, x) < η} ∈ B(T × R) = B(T )×B(R),
⇒α is Borel measurable.

Since α(t, x) = max [u : u ∈ ∂j(t, x)] = −min [v : v ∈ ∂(−j)(t, x)], the above ar-
gument (with j replaced by −j) reveals that α is Borel measurable too.

Note that hypothesis H(j)1(iii) implies that for every u ∈ W 1,p
0 (0, b), α(·, u(·)),

α(·, u(·)) ∈ L1(T ). Using these two functions, we can now give the definitions of
upper and lower solutions for problem (1.1).

Definition:
(a) A function v ∈ W 1,p(0, b) is a “lower solution” for problem (1.1), if

v(0), v(b) ≤ 0 and
∫ b
0 |v

′(t)|p−2v′(t)y′(t)dt ≤
∫ b
0 α(t, v(t))y(t)dt for all y ∈

W 1,p
0 (0, b), with y(t) ≥ 0 for t ∈ T.

(b) A function v ∈ W 1,p(0, b) is an “upper solution” for problem (1.1), if
v(0), v(b) ≥ 0 and

∫ b
0 |v′(t)|

p−2v′(t)y′(t)dt ≤
∫ b
0 α(t, v(t))y(t)dt for all y ∈

W 1,p
0 (0, b), with y(t) ≥ 0 for t ∈ T.

Let x ∈ C1(T ) be the solution of problem (3.3) obtained in Proposition 3.3. Then
because of (3.2) and (3.3), we have{

−(|x′(t)|p−2x′(t))′ = (θ(t) + ε)|x(t)|p−1 + γε(t) ≥ α(t, x(t)) a.e on T
x(0) = x(b) = 0.

}
Hence x is an upper solution for problem (1.1).
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On the other hand, because of hypothesis H(j)1(v), given δ > 0, we can find
µ = µ(δ) > λ1 such that for almost all t ∈ T, all x ∈ (0, δ] and all u ∈ ∂j(t, x), we
have

(3.10) u ≥ µxp−1 > λ1x
p−1.

Let u1 ∈ C1(T ) be the normalized eigenfunction corresponding to λ1 > 0. Then
we can find η = η(δ) > 0 small enough such that x(t) = ηu1(t) ≤ δ for all t ∈ T.
On the other hand if C1

0 (T ) = {x ∈ C1(T ) : x(0) = x(b) = 0} and C1
0 (T )+ = {x ∈

C1
0 (T ) : x(t) ≥ 0 for all t ∈ T}, then

intC1
0 (T )+ = {x ∈ C1

0 (T )+ : x′(b) < 0 < x′(0)}.

Thus Proposition 3.3 implies that x ∈ intC1
0 (T )+. This means that we can always

choose η > 0 such that x(t) < x(t) for all t ∈ (0, b). Moreover, we have{
−(|x′(t)|p−2x′(t))′ = λ1|x(t)|p−1 < µx(t)p−1 ≤ α(t, x(t)) a.e on T (see (3.10))
x(0) = x(b) = 0.

}
Here x ∈ C1

0 (T ) is a lower solution for problem (1.1).
Next employing truncation and penalization techniques, we produce a solution

x ∈ C1
0 (T ) of (1.1) such that x(t) ≤ x(t) ≤ x(t) for all t ∈ T. Evidently this is a

positive solution of problem (1.1).

Theorem 3.4. If hypotheses H(j)1 hold, then problem (1.1) has a solution x ∈
C1

0 (T ) such that x(t) ≤ x(t) ≤ x(t) for all t ∈ T.

Proof. We introduce the truncation map τ : W 1,p
0 (0, b) →W 1,p

0 (0, b) defined by

τ(x)(t) =


x(t) if x(t) ≤ x(t)
x(t) if x(t) ≤ x(t) ≤ x(t)
x(t) if x(t) ≤ x(t).

Clearly τ is continuous and bounded and the same can be said if we view τ as
a map from Lp(T ) into itself. Moreover, for all x ∈ W 1,p

0 (0, b), we have ‖τ(x)‖p
p ≤

‖x‖p
p + c1 for some c1 > 0.

In addition we introduce a penalty function σ : T × R → R defined by

σ(t, x) =


(x− x(t))p−1 if x(t) ≤ x

0 if x(t) ≤ x ≤ x(t)
−(x(t)− x)p−1 if x ≤ x(t).

It is clear from this definition that σ(t, x) is a Carathéodory function (i.e. mea-
surable in t ∈ T and continuous in x ∈ R, hence jointly measurable), which is
nondecreasing in the x ∈ R variable.

Let A : W 1,p
0 (0, b) → W−1,q(0, b) be the maximal monotone operator introduced

in the proof of Proposition 3.3 and let Nσ : W 1,p
0 (0, b) → Lq(T ) be the Nemitsky

operator corresponding to σ(t, x), namelyNσ(x)(·) = σ(·, x(·)) for all x ∈W 1,p
0 (0, b).

Evidently Nσ is bounded and continuous and

(3.11) 〈Nσ(x), x〉 ≥ c2‖x‖p
p − c3 for all x ∈W 1,p

0 (0, b) and some c2, c3 > 0.
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Also we introduce the multifunction G : W 1,p
0 (0, b) → 2L1(T ) defined by

G(x) = {u ∈ L1(T ) : u(t) ∈ ∂j(t, τ(x)(t)) a.e. on T}.
In our discussion earlier, we saw that the multifunction (t, x) → ∂j(t, x) is

graph measurable, i.e. Gr∂j ∈ B(T ) × B(R) × B(R). The map ξ : T × R →
T × R × R defined by ξ(t, u) = (t, τ(x)(t), u) is clearly measurable. Therefore
ξ−1(Gr∂j) = Gr∂j(·, τ(x)(·)) ∈ LT × B(R), with LT being the Lebesgue σ-field of
T. Invoking the Yankov-von Neumann-Aumann selection theorem (see Denkowski-
Migorski-Papageorgiou [6], p.432) and using hypothesis H(j)1(iii), we infer that
for all x ∈ W 1,p

0 (0, b) we have G(x) 6= ∅. Moreover, it is clear that G(x) is closed
convex and by the Dunford-Pettis theorem it is also w-compact in L1(T ). For any
x ∈W 1,p

0 (0, b) and any u ∈ G(x), we have

〈u, x〉 =
∫ b

0
u(t)x(t)dt ≤ ‖u‖1‖x‖∞(3.12)

≤ c4‖x‖∞ for some c4 > 0 (see hypothesis H(j)1(iii))

≤ c5(ε) + ε‖x′‖p
p for any ε > 0 and some c5(ε) > 0.

In the last inequality, we have used Young’s inequality with ε > 0 and the fact
that W 1,p

0 (0, b) is embedded continuously (in fact compactly) into C(T ).
We consider the following auxiliary boundary value problem

(3.13)
{
−(|x′(t)|p−2x′(t))′ + σ(t, x(t)) ∈ ∂j(t, τ(x)(t)) a.e on T
x(0) = x(b) = 0.

}
This boundary value problem can be equivalently rewritten as the following op-

erator inclusion:
U(x) = A(x) +Nσ(x)−G(x) 3 0.

We remark that U : W 1,p
0 (0, b) → 2W−1,q(0,b)\{∅} and has w-compact and con-

vex values (recall that L1(T ) is embedded continuously in W−1,q(0, b)). Note that
〈A(x), x〉 = ‖x′‖p

p. Using this together with (3.11) and (3.12), we obtain

〈U(x), x〉 ≥ ‖x′‖p
p + c2‖x‖p

p − ε‖x′‖p
p − c6(ε) with c6(ε) = c5(ε) + c3 > 0.

Let ε = 1
2 . We have

〈U(x), x〉 ≥ 1
2
‖x′‖p

p − c7 for some c7 > 0.

Thus U is coercive. We claim that it is also pseudomonotone. By virtue of
Proposition 2.2(c) it suffices to show that U is generalized pseudomonotone. Sup-
pose that x∗n ∈ U(xn) n ≥ 1, xn

w→ x in W 1,p
0 (0, b), x∗n

w→ x∗ in W−1,q(0, b) and
lim sup

n→∞
〈x∗n, xn − x〉 ≤ 0. We need to show that x∗ ∈ U(x) and 〈x∗n, xn〉 → 〈x∗, x〉.

Since W 1,p
0 (0, b) is embedded compactly in C(T ), we have that xn → x in C(T ).

For all n ≥ 1 we have x∗n = A(xn) +Nσ(xn)− un with un ∈ G(xn). Then

〈Nσ(xn), xn〉 =
∫ b

0
σ(t, xn(t))(xn − x)(t)dt→ 0

and 〈un, xn − x〉 =
∫ b

0
un(t)(xn − x)(t)dt→ 0 (see hypothesis H(j)1(iii)).
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It follows that

(3.14) lim sup
n→∞

〈A(xn), xn − x〉 ≤ 0.

Because A is maximal monotone it is generalized pseudomonotone and so from
(3.14) we infer that

(3.15) A(xn) w→ A(x) in W−1,q(0, b) and 〈A(xn), xn〉 → 〈A(x), x〉.
Hypothesis H(j)1(iii) implies that {un}n≥1 ⊆ L1(T ) is uniformly integrable and

so by the Dunford-Pettis theorem, we may assume that un
w→ u in L1(T ). Also note

that by passing to a subsequence if necessary, we can say that τ(xn) → τ(x) in
Lp(T ) and τ(xn)(t) → τ(x)(t) for all t ∈ T.

The subdifferential multifunction z → ∂j(t, z) has closed graph and so using
Proposition 4.7.44, p.484, of Denkowski-Migorski-Papageorgiou [6], we obtain

u(t) ∈ conv lim sup
n→∞

∂j(x, τ(xn)(t)) ⊆ ∂j(t, τ(x)(t)) a.e. on T,

⇒u ∈ G(x).

Therefore in the limit as n→∞, we have

x∗ = A(x) +Nσ(x)− u with u ∈ G(x), i.e. x∗ ∈ U(x).

Moreover, because of (3.15), we have

〈x∗n, xn〉 → 〈x∗, x〉 as n→∞.

This proves the pseudomonotonicity of U. Because U is also coercive, it is surjec-
tive and this implies that the auxiliary problem (3.13) has a solution x ∈W 1,p(0, b).

On (3.13) we act with the test function (x− x)+ ∈ W 1,p
0 (0, b). After integration

by parts, we have

−
∫ b

0
|x′(t)|p−2x′(t)[(x− x)+]′(t)dt−

∫ b

0
σ(t, x(t))(x− x)+(t)dt(3.16)

= −
∫ b

0
u(t)(x− x)+(t)dt, u ∈ G(x).

Since x ∈W 1,p
0 (0, b) is a lower solution for problem (1.1), we have

(3.17)
∫ b

0
|x′(t)|p−2x′(t)[(x− x)+]′(t)dt ≤

∫ b

0
α(t, x(t))(x− x)+(t)dt.

Adding (3.16) and (3.17), we obtain

(3.18)
∫ b

0
(|x′(t)|p−2x′(t)− |x′(t)|p−2x′(t))[(x− x)+]′(t)dt

−
∫ b

0
σ(t, x(t))(x− x)+(t)dt

≤
∫ b

0
(h(t, x(t))− u(t))(x− x)+(t)dt.

Note that
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(3.19)
∫ b

0
(|x′(t)|p−2x′(t)− |x′(t)|p−2x′(t))[(x− x)+]′(t)dt

=
∫
{x≥x}

(|x′(t)|p−2x′(t)− |x′(t)|p−2x′(t))(x− x)′(t)dt ≥ 0.

From the definition of the penalty function σ(t, x), we have

(3.20) −
∫ b

0
σ(t, x(t))(x− x)+(t)dt = −

∫
{x≥x}

σ(t, x(t))(x− x)(t)dt

=
∫
{x≥x}

(x− x)(t)p−1(x− x)(t)dt = ‖(x− x)+‖p
p.

Finally from the definition of α(t, x), we have

(3.21)
∫ b

0
(α(t, x(t))− u(t))(x− x)+(t)dt ≤ 0.

Using (3.19), (3.20) and (3.21) in (3.18), we obtain

‖x− x)+‖p = 0,
⇒x− x = 0, i.e. x ≤ x.

In a similar fashion we show that x ≤ x. Therefore σ(t, x(t)) = 0 for all t ∈ T
and τ(x) = x. Hence problem (3.13) becomes{

−(|x′(t)|p−2x′(t))′ ∈ ∂j(t, x(t)) a.e on T
x(0) = x(b) = 0.

}
Therefore x ∈ C1

0 (T ), it solves problem (1.1) and x(t) > 0 for all t ∈ (0, b). �

For the semilinear case, we can have a second existence theorem. Now the as-
ymptotic condition at zero is in terms of the potential function j(t, x) rather than in
terms of ∂j(t, x) (see hypothesis H(j)2(v) below). The new condition is in general
less restrictive than the previous one. On the other hand asymptotically at +∞,

we impose a bound from below of the ratio
∂j(t, x)
xp−1

, which we did not need before.
Moreover, now we produce a nontrivial nonnegative solution, but we can not say
that it is positive on (0, b). In order that it is positive, we need to impose an extra
unilateral growth condition of ∂j(t, x) (see H(j)3(vi) below).

More precisely the new hypotheses on the nonsmooth potential j(t, x), are the
following:

H(j)2:: j : T ×R → R is a function such that j(·, 0) ∈ L1(T ),
∫ b
0 j(t, 0)dt ≤ 0

and
(i) for all x ∈ R, t→ j(t, x) is measurable;
(ii) for almost all t ∈ T , x→ j(t, x) is locally Lipschitz;
(iii) for every r > 0, there exists αr ∈ L1(T )+ such that for almost all t ∈ T,

all |x| ≤ r and all u ∈ ∂j(t, x), we have |u| ≤ αr(t);
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(iv) there exists θ1, θ2 ∈ L∞(T ) such that 0 ≤ θ2(t) ≤ λ1 a.e. on T with
the second inequality strict on a set of positive measure and

θ1(t) ≤ lim inf
x→+∞

u

xp−1
≤ lim sup

x→+∞

u

xp−1
≤ θ2(t)

uniformly for almost all t ∈ T and all u ∈ ∂j(t, x);

(v) lim inf
x→0+

pj(t, x)
xp

> λ1 uniformly for almost all t ∈ T.

Remark 3.5. Consider the following nonsmooth locally Lipschitz potential function.
Again for simplicity we drop the t-dependence.

j(x) =


x2ln|x|+ 1 if x < 0
cos(2πxp) if x ∈ [0, 1],
µ
px

p + p−µ
p if x > 1

with 0 < µ < λ1.

Note that in this case hypothesisH(j)2(v) is satisfied but not hypothesisH(j)1(v).
Now our approach will be variational. For this purpose we introduce the Lipschitz

continuous truncation function τ1 : R → R+ defined by

τ1(x) =

{
0 if x ≤ 0
x if x > 0.

We set j1(t, x) = j(t, τ1(x)). Evidently for almost all t ∈ T, j1(t, ·) is locally
Lipschitz and we have

(3.22) ∂j1(t, x) ⊆


0 if x < 0
conv

⋃
θ∈[0,1]

∂j(t, 0) if x = 0

∂j(t, x) if x > 0

(see Denkowski-Migorski-Papageorgiou [6], p.611). Let ϕ1 : W 1,p
0 (0, b) → R be the

energy functional defined by

ϕ1(x) =
1
p
‖x′‖p

p −
∫ b

0
j1(t, x(t))dt, x ∈W 1,p

0 (0, b).

We know that ϕ1 is locally Lipschitz.

Proposition 3.6. If hypotheses H(j)2 hold, then ϕ1 satisfies the nonsmooth PS-
condition.

Proof. Let {xn}n≥1 ⊆W 1,p
0 (0, b) be a sequence such that

|ϕ1(xn)| ≤M1 for some M1 > 0, all n ≥ 1 and m(xn) → 0 as n→∞.

Because ∂ϕ(xn) ⊆ W−1,q is w-compact and the norm functional in a Banach
space is weakly lower semicontinuous, by virtue of the Weierstrass theorem, we can
find x∗n ∈ ∂ϕ(xn) such that m(xn) = ‖x∗n‖, n ≥ 1. We have

x∗n = A(xn)− un with un ∈ L1(T ), un(t) ∈ ∂j1(t, xn(t)) a.e. on T , n ≥ 1,

(see Denkowski-Migorski-Papageorgiou [6], p.617). We claim that the sequence
{xn}n≥1 ⊆ W 1,p

0 (0, b) is bounded. Suppose that this is not true. By passing to a
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suitable subsequence if necessary, we may assume that ‖xn‖ → ∞ as n → ∞. Set
yn =

xn

‖xn‖
, n ≥ 1. We may assume that

yn
w→ y in W 1,p

0 (0, b) and yn → y in C(T ).

From the choice of the sequence {xn}n≥1 ⊆W 1,p
0 (0, b), we have

|〈A(xn), x−n 〉 −
∫ b

0
un(t)x−n (t)dt| ≤ εn‖x−n ‖ with εn ↓ 0,

⇒‖(x−n )′‖p
p ≤ εn‖(x−n )′‖p (see (3.22)),

⇒{x−n }n≥1 ⊆W 1,p
0 (0, b) is bounded.

Therefore y−n =
x−n
‖xn‖

→ 0 in W 1,p
0 (0, b) and from this we infer that y ≥ 0.

Then we have xn(t) → +∞ as n → ∞ for all t ∈ {y > 0}. Moreover, by virtue of
hypotheses H(j)2(iii), (iv), for almost all t ∈ T, all x ≥ 0 and all u ∈ ∂j(t, x), we
have

(3.23) |u| ≤ α̂(t) + ĉ|x|p−1 with α̂ ∈ L1(T )+, ĉ > 0.

Using as a test function y+
n ∈W 1,p

0 (0, b), we have

|〈A(xn), y+
n 〉 −

∫ b

0
un(t)y+

n (t)dt| ≤ εn‖y+
n ‖ with εn ↓ 0.

Dividing with ‖xn‖p−1, we obtain

(3.24)
∣∣∣∣‖(y+

n )′‖p
p −

∫ b

0

un(t)
‖xn‖p−1

y+
n (t)dt

∣∣∣∣ ≤ ε′n with ε′n ↓ 0.

Because of (3.23), we have

|un(t)|
‖xn‖p−1

≤ α̂(t)
‖xn‖p−1

+ ĉy+
n (t)p−1 a.e. on T,(3.25)

⇒
{

un

‖xn‖p−1

}
n≥1

⊆ L1(T ) is uniformly integrable.

So by the Dunford-Pettis theorem, there exists h ∈ L1(T ) such that
un

‖xn‖p−1

w→ h in L1(T ) as n→∞.

For ε > 0 and n ≥ 1, we consider the set

Cε,n = {t ∈ T : xn(t) > 0,
un(t)

xn(t)p−1
≤ θ2(t) + ε}

and set χε,n(t) = χCε,n(t). Because of hypothesis H(j)2(iv), we have that

(3.26) χε,n(t) → 1 a.e. on {y > 0}.
Note that ∫

{y>0}
(1− χε,n(t))

|un(t)|
‖xn‖p−1

dt→ 0 (see (3.25) and (3.26)),
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⇒χε,n
un

‖xn‖p−1

w→ h in L1({y > 0}).

Then we have

χε,n(t)
un(t)

‖xn‖p−1
= χε,n(t)

un(t)
xn(t)p−1

yn(t)p−1 ≤ χε,n(t)(θ2(t) + ε)yn(t)p−1.

Taking weak limits in L1({y > 0}), we obtain

h(t) ≤ (θ2(t) + ε)y(t)p−1 a.e. on {y > 0}.
Because ε > 0 was arbitrary, it follows that

h(t) ≤ θ2(t)y(t)p−1 a.e. on {y > 0}.
Moreover, from (3.25) it is clear that

h(t) = 0 a.e. on {y = 0}.
Since T = {y > 0} ∪ {y = 0}, we have

h(t) ≤ θ2(t)y(t)p−1 a.e. on T.

If we pass to the limit as n→∞ in (3.24) and since y ≥ 0, we obtain

‖y′‖p
p ≤

∫ b

0
h(t)y(t)dt ≤

∫ b

0
θ2(t)y(t)pdt ≤ λ1‖y‖p

p,(3.27)

⇒y = 0 or y = u1 (see (2.2)).

If y = 0, then yn → 0 in W 1,p
0 (0, b), a contradiction to the fact that ‖yn‖ = 1 for

all n ≥ 1.
Therefore y = u1 and so y(t) > 0 for all t ∈ (0, b). From (3.27) we have

‖y′‖p
p < λ1‖y‖p

p,

a contradiction to (2.2). This proves that {xn}n≥1 ⊆ W 1,p
0 (0, b) is bounded and so

we may assume that

xn
w→ x in W 1,b

0 (0, b) and xn → x in C(T ).

From the choice of the sequence {xn}n≥1 ⊆W 1,p
0 (0, b), we have

|〈A(xn), xn − x〉 −
∫ b

0
un(t)(xn − x)(t)dt| ≤ εn‖xn‖.

Note that
∫ b
0 un(t)(xn − x)(t)dt→ 0, so it follows that

lim〈A(xn), xn − x〉 = 0.

But A being maximal monotone, it is generalized pseudomonotone (see Proposi-
tion 2.2(a)) and so

〈A(xn), xn〉 → 〈A(x), x〉,
⇒‖x′n‖p → ‖x′‖p.

Because x′n
w→ x′ in Lp(T ) and Lp(T ) is uniformly convex, from the Kadec-Klee

property we have x′n → x′ in Lp(T ) and so xn → x in W 1,p
0 (0, b). Therefore ϕ

satisfies the nonsmooth PS-condition. �
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Now using the nonsmooth least action principle, we can show that problem (1.1)
has a nontrivial nonnegative solution.

Theorem 3.7. If hypotheses H(j)2 hold, then problem (1.1) has a solution x ∈
C1

0 (T ) such that x 6= 0 and x(t) ≥ 0 for all t ∈ T.

Proof. By virtue of hypothesis H(j)2(iv), given ε > 0, we can find M2 = M2(ε) > 0
such that for almost all t ∈ T, all x ≥M2 and all u ∈ ∂j(t, x), we have

u ≤ (θ2(t) + ε)xp−1.

On the other hand hypothesis H(j)2(iii) implies that for almost all t ∈ T and all
0 ≤ x ≤M2, we have

|u| ≤ αε(t) with αε ∈ L1(T )+.

So we can say that for almost all t ∈ T, all x ≥ 0 and all u ∈ ∂j(t, x)

(3.28) u ≤ (θ2(t) + ε)xp−1 + αε(t).

Since for almost all t ∈ T, j(t, ·) is locally Lipschitz, it is differentiable at all
x ∈ R\D(t) with |D(t)|1 = 0 (by | · |1 we denote the Lebesgue measure on R) and
d

dr
j(t, r) ∈ ∂j(t, r). Hence for almost all t ∈ T and all x ≥ 0, we have

j(t, x) = j(t, 0) +
∫ x

0

d

dr
j(t, x)dr(3.29)

≤ j(t, 0) +
∫ b

0
(θ2(t) + ε)rp−1dr + αε(t)x (see (3.28))

= j(t, 0) +
1
p
θ2(t)xp +

ε

p
xp + αε(t)x.

Using (3.29) for all x ∈W 1,p
0 (0, b) we have

ϕ1(x) ≥
1
p
‖x′‖p

p −
1
p

∫ b

0
θ2(t)|x(t)|pdt−

ε

p
‖x‖p

p − c7‖x′‖p for some c7 > 0

(recall
∫ b

0
j(t, 0)dt ≤ 0)

≥ ξ1
p
‖x′‖p

p −
ε

pλ1
‖x′‖p

p − c7‖x′‖p (see (2.2) and Lemma 3.2).

So by choosing ε < ξ1λ1, we infer that ϕ1 is coercive, thus it is bounded below.
This combined with Proposition 3.6 implies that there exists x ∈ W 1,p

0 (0, b) such
that

ϕ1(x) = inf
W 1,p

0 (0,b)
ϕ1,

⇒0 ∈ ∂ϕ1(x),

⇒A(x) = u with u ∈ L1(T ), u(t) ∈ ∂j1(t, x(t)) a.e. on T.
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From this equality it follows that x ∈ C1
0 (T ) and it solves problem (1.1). Using

as a test function −x− ∈W 1,p
0 (0, b), we obtain

‖(x−)′‖p
p = −

∫ b

0
u(t)x−(t)dt = 0 (see (3.22))

⇒x− = 0, i.e. x ≥ 0.

Because of hypothesis H(j)2(v), we can find δ > 0 and µ = µ(δ) > λ1 such that
for almost all t ∈ T and all x ∈ (0, δ], we have

(3.30) j(t, x) ≥ µ

p
xp.

Since u1 ∈ C1
0 (T ), we can find η > 0 small enough so that ηu1(t) ∈ (0, δ] for all

t ∈ (0, b). Then

ϕ1(nu1) =
ηp

p
‖u′1‖p

p −
∫ b

0
j(t, ηu1(t))dt

≤ ηp

p
‖u′1‖p

p −
µηp

p
‖u1‖p

p

=
ηp

p
(1− µ

λ1
)‖u′1‖p

p (see (2.2)),

⇒ ϕ1(ηu1) < 0 since µ > λ1,

⇒ inf
W 1,p

0 (0,b)
ϕ1 = ϕ1(x) < 0 ≤ ϕ(0) (recall that

∫ b
0 j(t, 0)dt ≤ 0),

⇒ x 6= 0, x ≥ 0. �

To guarantee that the solution is positive, we need to impose an extra unilateral
condition on ∂j(t, ·). More precisely we assume:

H(j)3: j : T × R → R is a function such that j(·, 0) ∈ L1(T ),
∫ b
0 j(t, 0)dt ≤ 0

and (i), (ii), (iii), (iv), (v) are the same as hypotheses H(j)2(i), (ii), (iii),
(iv), (v) respectively and
(vi) for almost all t ∈ T, all x ≥ 0 and all u ∈ ∂j(t, x),

−ĉxp−1 ≤ u with ĉ > 0.

Remark 3.8. The nonsmooth locally Lipschitz j(x) given after hypotheses H(j)2
satisfies also hypotheses H(j)3.

Theorem 3.9. If hypotheses H(j)3 hold, then problem (1.1) has a solution x ∈
C1

0 (T ) such that x(t) > 0 for all t ∈ (0, b) and x′(b) < 0 < x′(0).

Proof. Let x ∈ C1
0 (T ) be the nontrivial nonnegative solution of problem (1.1) ob-

tained in Theorem 3.7. We have

−(|x′(t)|p−2x′(t))′ = u(t) a.e. on T with u ∈ L1(T ), u(t) ∈ ∂j1(t, x(t)) a.e. on T.

Since x′(t) = 0 a.e. on {x = 0} by Stampacchia’s Theorem, (see Denkowski-
Migorski-Papageorgiou [6], p.349), using (3.22) and hypothesis H(j)3(vi), we have

(|x′(t)|p−2x′(t))′ ≤ ĉx(t)p−1 a.e. on T.
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The strict maximum principle of Vazquez [15] implies that

x(t) > 0 for all t ∈ (0, b), x′(b) < 0 < x′(0). �

Remark 3.10. Theorem 3.9 implies that x ∈ intC1
0 (T )+.

4. Superlinear Problems

In this section we deal with superlinear problems. Namely now the ratio
∂j(t, x)
xp−1

stays above λ1 > 0 near +∞ and below λ1 > 0 near 0+.
The first result actually concerns the “linear” case, i.e. ∂j(t, ·) has at most

(p − 1)-polynomial growth (see hypothesis H(j)4(iii)), hence if p = 2, it exhibits
linear growth, which justifies the nomenclature “linear”. However, note that as x
moves from 0 to +∞, the ratio

u

xp−1
can cross the first eigenvalue λ1 > 0. As before

at +∞ we allow nonuniform nonresonance.
The hypotheses on the nonsmooth potential j(t, x) are the following:
H(j)4: j : T × R → R is a function such that j(t, 0) = 0 a.e. on T and

(i) for all x ∈ R, t→ j(t, x) is measurable;
(ii) for almost all t ∈ T , x→ j(t, x) is locally Lipschitz;
(iii) for almost all t ∈ T, all x ∈ R and all u ∈ ∂j(t, x), we have

|u| ≤ α(t) + c|x|p−1 with α ∈ L∞(T )+, c > 0;

(iv) there exists θ ∈ L∞(T )+ such that θ(t) ≥ λ1 a.e. on T with strict
inequality on a set of positive measure and

lim inf
x→+∞

u

xp−1
≥ θ(t)

uniformly for almost all t ∈ T and all u ∈ ∂j(t, x);

(v) lim sup
x→0+

pj(t, x)
xp

< λ1 uniformly for almost all t ∈ T.

Remark 4.1. The following nonsmooth locally Lipschitz function satisfies hypotheses
H(j)4.

j(x) =


xex if x < 0
µ
px

pe−xp
if x ∈ [0, 1]

η
px

p + 1
p sin(π

2x
p) + µ−(η+1)

p if x > 1
with µ < λ1 < η − 1.

As before j1(t, x) = j(t, τ1(x)) and we consider the locally Lipschitz energy func-
tional ϕ1 : W 1,p

0 (0, b) → R defined by

ϕ1(x) =
1
p
‖x′‖p

p −
∫ b

0
j1(t, x(t))dt, x ∈W 1,p

0 (0, b).

Proposition 4.2. If hypotheses H(j)4 hold, then ϕ1 satisfies the PS-condition.

Proof. Let {xn}n≥1 ⊆W 1,p
0 (0, b) be a sequence such that

|ϕ1(xn)| ≤M3 for some M3 > 0, all n ≥ 1 and m(xn) → 0 as n→∞.
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As before we can find x∗n ∈ ∂ϕ(xn) such that ‖x∗n‖ = m(xn), n ≥ 1. We have

x∗n = A(xn)− un with un ∈ L1(T ), un(t) ∈ ∂j1(t, xn(t)) a.e. on T, n ≥ 1.

We use as a test function x−n ∈W 1,p
0 (0, b) and obtain

|〈A(xn), x−n 〉 −
∫ b

0
un(t)x−n (t)dt| ≤ εn‖x−n ‖ with εn ↓ 0,

⇒‖(x−n )′‖p
p ≤ εn‖(x−n )′‖p (see (3.22)),

⇒{x−n }n≥1 ⊆W 1,p
0 (0, b) is bounded.

Suppose that {xn}n≥1 ⊆W 1,p
0 (0, b) is not bounded. We may assume that ‖xn‖ →

∞. We set yn =
xn

‖xn‖
, n ≥ 1. We can say that yn

w→ y in W 1,p
0 (0, b) and yn → y

in C(T ). Since {x−n }n≥1 ⊆ W 1,p
0 (0, b) is bounded, we have that y ≥ 0. Then for all

t ∈ {y > 0} we have xn(t) → +∞ as n → ∞. Because of hypothesis H(j)4(iii) we

have that
{

un

‖xn‖p−1

}
n≥1

⊆ L1(T ) is uniformly integrable and so we can say that

un

‖xn‖p−1

w→ h in L1(T ). As in the proof of Proposition 3.6, we can show that

h(t) ≥ θ(t)y(t)p−1 a.e. on {y > 0}
and h(t) = 0 a.e on {y = 0}.

Therefore we have

(4.1) h(t) ≥ θ(t)y(t)p−1 a.e. on T

From the choice of the sequence {xn}n≥1 ⊆W 1,p
0 (0, b), we have that∣∣∣∣〈A(yn), yn − y〉 −

∫ b

0

un(t)
‖xn‖p−1

(yn − y)(t)dt
∣∣∣∣ ≤ εn

‖yn − y‖
‖xn‖p−1

,

⇒〈A(yn), yn − y〉 → 0 as n→∞.

From this convergence, as before, via the Kadec-Klee property, we conclude that

yn → y in W 1,p
0 (0, b), i.e. y 6= 0 (since ‖yn‖ = 1 for all n ≥ 1).

Then A(yn) w→ A(y) in W−1,q(0, b) and for all v ∈W 1,p
0 (0, b), we have

|〈A(yn), v〉 −
∫ b

0

un(t)
‖xn‖p−1

v(t)dt| ≤ εn‖v‖,

⇒〈A(y), v〉 =
∫ b

0
h(t)v(t)dt for all v ∈W 1,p

0 (0, b),

⇒
{
−(|y′(t)|p−2y′(t))′ = h(t) a.e on T = [0, b]
y(0) = y(b) = 0.

}
(4.2)

From (4.1), (4.2) and Proposition 4.1 of Godoy-Gossez-Paczca [10], we have that
y(·) changes sign, a contradiction. This proves the boundedness of {xn}n≥1 ⊆
W 1,p

0 (0, b), from which we infer that ϕ1 satisfies the nonsmooth PS-condition (see
the proof of Proposition 3.6). �
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Proposition 4.3. If hypotheses H(j)4 hold, then ϕ1(ηu1) → −∞ as n→ +∞.

Proof. From hypotheses H(j)4(iii) and (iv), we know that given ε > 0 we can find
αε ∈ L1(T ) such that for almost all t ∈ T all x ≥ 0 and all u ∈ ∂j(t, x), we have

(4.3) u ≥ (θ(t)− ε)xp−1 − αε(t).

Recall that for almost all t ∈ T, j(t, ·) is differentiable at all x ∈ R\D(t), |D(t)|1 =

0 and we have
d

dr
j(t, r) ∈ ∂j(t, r). So using (4.3), we see that for almost all t ∈ T

and all x ≥ 0, we have

(4.4) j(t, x) = j(t, 0) +
∫ x

0

d

dr
j(t, r)dr ≥ θ(t)

p
xp − ε

p
xp − αε(t)x.

Thus if η > 0, we have

ϕ1(ηu1) =
ηp

p
‖u′1‖p

p −
∫ b

0
j(t, ηu1(t))dt (since ηu1(t) ≥ 0 for all t ∈ T )(4.5)

≤ ηp

p
‖u′1‖p

p −
ηpλ1

p
‖u1‖p

p −
ηp

p

∫ b

0
(θ(t)− λ1)u1(t)pdt+

εηp

p
‖u1‖p

p

+ ηcε‖u1‖p with cε > 0 (see (4.4))

= −η
p

p

∫ b

0
(θ(t)− λ1)u1(t)pdt+

εηp

p
‖u1‖p

p + ηcε‖u1‖p.

Let ζ = 1
p

∫ b
0 (θ(t) − λ1)u1(t)pdt. Because of hypothesis H(j)4(iv), we have that

ζ > 0 and so if we choose ε ∈ (0, ζ) (recall ‖u1‖p = 1), from (4.5) we conclude that

ϕ(ηu1) → −∞ as n→ +∞. �

The next proposition will allow us to satisfy the Mountain Pass geometry and so
eventually apply Theorem 2.1.

Proposition 4.4. If hypotheses H(j)4 hold, then ϕ1(x) ≥ β1‖x‖p − β2‖x‖σ for
some β1, β2 > 0, all x ∈W 1,p

0 (0, b) and with σ > p.

Proof. By virtue of hypothesis H(j)4(v), we can find µ < λ1 and δ = δ(µ) > 0 such
that for almost all t ∈ T and all x ∈ (0, δ], we have

j(t, x) ≤ µ

p
xp.

On the other hand by virtue of hypothesis H(j)4(iii) and the mean value theorem
for locally Lipschitz functions (see Denkowski-Migorski-Papageorgiou [6], p.609), for
almost all t ∈ T and all x > δ, we have

j(t, x) ≤ cxσ for some c > 0 and with σ > p

(remark that in hypothesis H(j)4(iii) α ∈ L∞(T )+). So finally we can say that for
almost all t ∈ T and all x ≥ 0, we have

(4.6) j(t, x) ≤ µ

p
xp + cxσ.
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Using (4.6), for all x ∈W 1,p
0 (0, b) we have

ϕ1(x) =
1
p
‖x′‖p

p −
∫ b

0
j1(t, x(t))dt

≥ 1
p
‖x′‖p

p −
µ

pλ1
‖x′‖p

p − η‖x‖σ
σ for some η > 0 (see (4.6) and (2.2))

≥ β1‖x‖p − β2‖x‖σ for some β1, β2 > 0 (recall that µ < λ1). �

Now we have all the necessary geometry to apply Theorem 2.1 (the nonsmooth
Mountain Pass Theorem).

Theorem 4.5. If hypotheses H(j)4 hold, then problem (1.1) has a solution x ∈
C1

0 (T ) such that x 6= 0 and x(t) ≥ 0 for all t ∈ T.

Proof. By virtue of Proposition 4.4, we can find r > 0 small such that if ‖x‖ = r,
then ϕ1(x) > 0. On the other hand for η > 0 large we have ϕ1(ηu1) < 0 (see
Proposition 4.3). Since ϕ1(0) = 0 and ϕ1 satisfies the nonsmooth PS-condition (see
Proposition 4.2), we see that we can apply Theorem 2.1 and obtain x ∈ W 1,p

0 (0, b)
such that

0 ∈ ∂ϕ1(x) and ϕ1(0) = 0 < inf [ϕ1(y) : ‖y‖ = r] ≤ ϕ1(x), i.e. x 6= 0.

From the inclusion 0 ∈ ∂ϕ1(x), we deduce that x ∈ C1
0 (T ) and it solves (1.1) with

j replaced by j1. Finally as in the proof of Theorem 3.7, we verify that x(t) ≥ 0 for
all t ∈ T. �

As before by imposing an extra unilateral growth condition on ∂j(t, ·), we can
verify that the solution x is positive. So we assume:

H(j)5: j : T × R → R is a function such that (i), (ii), (iii), (iv), (v) are the
same as hypotheses H(j)4(i), (ii), (iii), (iv), (v) respectively and
(vi) for almost all t ∈ T, all x ≥ 0 and all u ∈ ∂j(t, x), we have

−ĉxp−1 ≤ u with ĉ > 0.

Theorem 4.6. If hypotheses H(j)5 hold, then (1.1) has a solution x ∈ C1
0 (T ) such

that x(t) > 0 for all t ∈ (0, b).

In the next existence theorem we will take care of the strictly “superlinear”
case, which is not covered by the previous analysis. So now our hypotheses on the
nonsmooth potential j(t, x) are the following:

H(j)6: j : T × R → R is a function such that j(t, 0) = 0 a.e. on T and
(i) for all x ∈ R, t→ j(t, x) is measurable;
(ii) for almost all t ∈ T , x→ j(t, x) is locally Lipschitz;
(iii) for almost all t ∈ T, all x ∈ R and all u ∈ ∂j(t, x), we have

|u| ≤ α(t) + c|x|r−1 with α ∈ L∞(T )+, c > 0, 1 ≤ r <∞;

(iv) there exists M > 0 such that for almost all t ∈ T and all x ≥ M > 0
we have

0 < γ ≤ ηj(t, x) ≤ −j0(t, x;−x) with η > p;
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(v) lim sup
x→0+

pj(t, x)
xp

< λ1 uniformly for almost all t ∈ T.

Remark 4.7. Hypothesis H(j)6(iv) is the well-known Ambrosetti-Rabinowitz con-
dition adapted to the present nonsmooth setting. As in the smooth case we will see
that it implies that j(t, ·) has an η-polynomial growth at +∞, i.e. if p = 2, then
j(t, ·) is strictly superquadratic and so ∂j(t, ·) is strictly sublinear. The following
nonsmooth, locally Lipschitz function satisfies hypotheses H(j)6

j(x) =


|x| if x < 0
θ sinxp if x ∈ [0, 1]
1
ηx

η + θ sin(1)− 1
η if x > 1

.

As before we consider the truncation map τ1 : R → R+ defined by τ1(x) = x+

and we set
j1(t, x) = j(t, τ1(x)).

Then we consider the locally Lipschitz energy functional ϕ1 : W 1,p
0 (0, b) → R

defined by

ϕ1(x) =
1
p
‖x′‖p

p −
∫ b

0
j1(t, x(t))dt, x ∈W 1,p

0 (0, b).

Proposition 4.8. If hypotheses H(j)6 hold, then ϕ1 satisfies the nonsmooth PS-
condition.

Proof. Let {xn}n≥1 ⊆W 1,p
0 (0, b) be a sequence such that

|ϕ1(xn)| ≤M4 for some M4 > 0, all n ≥ 1 and m(xn) → 0 as n→∞.

We can find x∗n ∈ ∂ϕ1(xn) such that m(xn) = ‖x∗n‖, n ≥ 1. We have

x∗n = A(xn)− un with un ∈ L1(T ), un(t) ∈ ∂j1(t, xn(t)) a.e. on T, n ≥ 1.

As in the proof of Proposition 4.2, we can check that {x−n }n≥1 ⊆ W 1,p
0 (0, b) is

bounded. In addition, from the mean value theorem for locally Lipschitz functions,
hypothesis H(j)6(iii) and the fact that j(t, 0) = 0 a.e. on T, for almost all t ∈ T
and all x ∈ R, we have

(4.7) |j1(t, x)| ≤ α(t) + c|x|r, α ∈ L∞(T )+, c > 0.

From the choice of the sequence {xn}n≥1 ⊆W 1,p
0 (0, b), we have

ηϕ1(x+
n ) + 〈x∗n,−x+

n 〉 ≤ ηM1 + εn‖x+
n ‖ with εn ↓ 0,

⇒
(
η

p
− 1

)
‖(x+

n )′‖ −
∫ b

0
(un(t)(−x+

n )(t) + ηj(t, x+
n (t)))dt ≤ ηM1 + εn‖x+

n ‖

(since j(t, ·)|R+ = j1(t, ·))

⇒
(
η

p
− 1

)
‖(x+

n )′‖p
p +

∫ b

0
(−j0(t, x+

n (t);−x+
n (t))dt− ηj(t, x+

n (t)))dt(4.8)

≤ ηM1 + εn‖x+
n ‖.
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We estimate the integral in the left hand side of (4.8). Thus we have

∫ b

0
(−j0(t, x+

n (t);−x+
n (t))− ηj(t, x+

n (t)))dt

(4.9)

=
∫
{x+

n≥M}
(−j0(t, x+

n (t);−x+
n (t))− ηj(t, x+

n (t)))dt

+
∫
{0≤x+

n <M}
(−j0(t, x+

n (t);−x+
n (t))− ηj(t, x+

n (t)))dt

≥
∫
{0≤x+

n <M}
(−j0(t, x+

n (t);−x+
n (t))− ηj(t, x+

n (t)))dt (see hypothesis H(j)6(iv))

≥ −β3 for some β3 > 0 (see (4.7) and hypothesis H(j)6(iii))

Returning to (4.8) and using (4.9), we obtain

(
n

p
− 1)‖(x+

n )′‖p
p ≤ β4 + εn‖x+

n ‖ for some β4 > 0, all n ≥ 1,

⇒{x+
n }n≥1 ⊆W 1,p

0 (0, b) is bounded (by the Poincaré inequality),

⇒{xn}n≥1 ⊆W 1,p
0 (0, b) is bounded.

So we may assume that xn
w→ x in W 1,p

0 (0, b) and xn → x in C(T ) as n→∞. As
in the proof of Proposition 3.6, we conclude that xn → x in W 1,p

0 (0, b) and so ϕ1

satisfies the nonsmooth PS-condition. �

Using this proposition we can establish the existence of a nontrivial nonnegative
solution for problem (1.1).

Theorem 4.9. If hypotheses H(j)6 hold, then (1.1) has a solution x ∈ C1
0 (T ) such

that x 6= 0 and x(t) ≥ 0 for all t ∈ T.

Proof. On R+\{0}, the function r → 1
rη

is continuous convex, thus locally Lipschitz.

Then r → 1
rη
j(t, rx) is locally Lipschitz for almost all t ∈ T and all x ∈ R+\{0}.

As a result we have

∂r

(
1
rη
j(t, rx)

)
⊆ − η

rη+1
j(t, rx) +

1
rη
∂xj(t, rx)x

(see Denkowski-Migorski-Papageorgiou [6], p.612). Here by ∂r(resp. ∂x) we denote
the generalized subdifferential with respect to r ∈ R+\{0} (resp. x ∈ R). Using the
mean value theorem for locally Lipschitz functions, we can find λ ∈ (1, r) such that
for almost all t ∈ T and all x ≥M, we have

1
rη
j(t, rx)− j(t, x) ∈

(
− η

λη+1
j(t, λx) +

1
λη
∂xj(t, λx)x

)
(r − 1),

⇒ 1
rη
j(t, rx)− j(t, x) =

r − 1
λη+1

(
− ηj(t, λx) + ∂x(t, λx)λx

)
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≥r − 1
λη+1

(
− ηj(t, λx)− j0(t, λx;−λx)

)
≥ 0 (see hypothesis H(j)6(iv)),

⇒rηj(t, x) ≤ j(t, rx) for almost all t ∈ T, all x ≥M and all r ≥ 1.(4.10)

From 4.7 and 4.10 it follows that for almost all t ∈ T and all x ≥ 0, we have

j1(t, x) ≥
j(t,M)
Mη

xη − ξ, for some ξ > 0.

Since j(·,M) ∈ L1(T )+ and η > p, for all θ > 0 we have

ϕ1(θu1) ≤
θpλ1

p
‖u1‖p

p − θηβ5‖u1‖η
p + β6

for some β5, β6 > 0 (recall ‖u′1‖
p
p = λ1‖u1‖p

p)

⇒ ϕ1(θu1) → −∞ as θ → +∞.

Also from Proposition 4.4, we know that

ϕ1(x) ≥ β7‖x‖p − β8‖x‖σ

for some β7, β8 > 0, all x ∈W 1,p
0 (0, b) and with σ > p.

Therefore we can find r > 0 small and θ > 0 large such that

ϕ1(x) ≥ β̂ > 0 = ϕ(0) > ϕ(θu1) for all ‖x‖ = r.

Because of this and Proposition 4.8, we can apply Theorem 2.1 and obtain x ∈
W 1,p

0 (0, b) such that

0 ∈ ∂ϕ1(x) and ϕ1(0) = 0 < β̂ ≤ ϕ1(x), i.e. x 6= 0.

As before we check that x ∈ C1
0 (T ), x(t) ≥ 0 for all t ∈ T and it solves problem

(1.1). �

To have a positive solution, we need the unilateral growth condition on ∂j(t, ·).
H(j)7: j : T × R → R is a function such that j(t, 0) = 0 a.e. on T and

(i), (ii), (iii), (iv), (v) are the same as hypothesesH(j)6(i), (ii), (iii), (iv), (v)
respectively and
(vi) for almost all t ∈ T, all x ≥ 0 and all u ∈ ∂j(t, x), we have

−ĉxp−1 ≤ u with ĉ > 0.

Theorem 4.10. If hypotheses H(j)7 hold, then problem (1.1) has a solution x ∈
C1

0 (T ) such that x(t) > 0 for all t ∈ (0, b),
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