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VOLTERRA OPERATOR: BACK TO THE FUTURE

MICHAEL DRAKHLIN AND ELENA LITSYN

Abstract. The notion of Volterra operator is central in many considerations
regarding differential, integral, and functional-differential equations. Its history
traces back to a Volterra’s paper of 1913, where he studied an integro-differential
equation with the integral operator

(Kx)(t) =

∫ t

a

K(t, s)x(s)ds.

Afterwards operators of such type appeared in a more general form in works by
Tonelli (1929) and Tikhonov (1938). The definition of Volterra operator intro-
duced by Tikhonov is very easy to grasp:

An operator is Volterra if any two functions coinciding on an interval
[a, t] have equal images on [a, t], t ∈ [a, b].

This innocently looking definition leads however to a wide variety of far-
reaching consequences. Inspired by the success of the notion of Volterra operator
in study of equations e.g. in the space of continuous functions, researchers deal-
ing with equations in abstract spaces were tempted to introduce some equivalent
of this definition into their considerations. This led to a series of works providing
a notion reminiscent of the Volterra operator in each particular situation.

We introduce here a new definition of Volterra operator. Our approach stems
mainly from the initial considerations of Volterra-Tonelli-Tikhonov, i.e. uses
mainly the evolutionary nature of the Volterra operator. By going back to the
origins of the theory, we are freeing future research from cumbersome conditions
and notions.

Basing on the notions of operator’s memory and chain we single out a class
of operators possessing the evolutionary property, which we call Volterra. We
define properties of nilpotentness, quasi-nilpotentness and compactness of linear
Volterra operators in some functional spaces. We also derive conditions for solv-
ability of some functional equations with linear and non-linear Volterra operators
in certain complete metric spaces.

1. Introduction

In 1913 in his seminal work “Lectures in Integral and Integro-Differential Equa-
tions” [31] Volterra considered the following integro-differential equation

ẋ(t) =
∫ t

a
K(t, s)x(s)ds+ f(t)

with the operator

(Kx)(t) =
∫ t

a
K(t, s)x(s)ds.
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Afterwards the notion of Volterra operator appeared simultaneously in several ar-
eas of mathematics: integral operators, spectral theory, general theory of systems,
functional-differential equations, etc. This notion was studied independently in the
framework of the aforementioned theories. Therefore there is a great deal of repeat-
ing results, and there is no common accepted body of definitions and terminology.
Even the term itself - Volterra operator - is not always used, other ones are: Volterra
type, delay, hereditary, causal, non-anticipative operator, etc. which are attributed
to different classes of operators with similar properties. Usually these definitions
are based on such important properties of the Volterra operator as evolutionariness,
compactness and quasi-nilpotence.

The singled out classes of Volterra type operators were based on one of the
mentioned above properties, or on their combination. Mainly, some of the authors
addressed the compactness and quasi-nilpotence properties of this operator, while
others concentrated on its evolutionary side. However, all these classes preserved the
name “Volterra” operator (or one of the equivalent terms as it has been mentioned
above).

Let us give a brief review of results concerning the operators in question (see
also [3], §2.4). L. Tonelli (1929) [28] was the first to single out a class of Volterra
type operators, namely, such integral operators K that the equality x(s) = y(s) for
s ≤ t yields (Kx)(s) = (Ky)(s) for s ≤ t. His followers, D. Graffi (1931) [14] and S.
Cinquini (1933) [6] derived first results in the theory of Volterra operators. An ab-
stract theory of integral Volterra operators basing on a particular system of axioms
was constructed by A. D. Myshkis and his apprentices [4], [13], [22]. Let us also
note a series of papers by A. Ponosov on non-linear stochastic Volterra operators
[20], [21] and the bibliography therein. In 1938 a definition of operator of Volterra
type appeared in a paper by A. N. Tikhonov (1938) [27] devoted to problems in
mathematical physics. This widely acclaimed work initiated a further development
of the theory of Volterra operators in functional spaces, and the operators satisfy-
ing the Tikhonov’s definition sometimes are called “Volterra operators according to
Tikhonov”. The property which is basic for the Tikhonov’s definition is as follows:
for functions x and y coinciding on [a, t], t ∈ [a, b], the restrictions of Fx and Fy on
[a, t] also coincide. This definition is used in research on functional-differential equa-
tions with Volterra operators according to Tikhonov (e.g. Azbelev et al. (1991) [2],
Corduneanu (1991) [7]).

Several papers devoted to generalizations of the notion of Volterra operator ac-
cording to Tikhonov appeared recently. V.I. Sumin (1989, 1992) [24], [25] proposed
a generalization of Tikhonov’s definition to the space of summable functions. An
operator F : Lm

p (M) → S`(M) is called Volterra on a system of sets Θ, Θ be-
longs to σ-algebra of measurable subsets of M , if the equality of functions x and
y on a set G ∈ Θ yields the coincidence of Fx and Fy on G. Here Lm

p (M) is
the Lebesgue space of m-dimensional vector-functions, defined on a bounded mea-
surable subset M ⊂ Rn with the usual norm, 1 ≤ p ≤ ∞, Sl(M) is the space of
l-dimensional vector-functions, component-wise measurable and almost everywhere
finite on M . An analogous definition of generalized Volterra operators acting in the
space Lp[a, b], where all sorts of systems of subsets from [a, b] ordered by inclusion
with the measure continuously changing from 0 to b−a, was introduced and studied
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by E.S. Zhukovskii (1989,1994) [34], [35]. S. A. Gusarenko (1987) [15] and M. Vâth
(1998) [30] used chains of ordered projectors for another generalization.

Alternatively, P.P. Zabrejko (1967) [32], [33] proposed a generalization of the
notion of integral Volterra operator based on properties of its kernel. These proper-
ties provided existence of a chain of invariant subspaces of the operator. Zabrejko
derived an expression for the spectral radius and proved that the equality to 0 of
the spectral radius follows from a property due to T. Andô (1957) [1]. I.Z. Go-
hberg and M. G. Krein (1967) [12] defined an abstract Volterra operator in Hilbert
space as completely continuous linear operator with zero spectral radius. A.L.
Buhgeim (1983) [5] extended this definition to Banach spaces. He used for it a
notion of a special chain of projectors. A similar construction is due to V.G. Kur-
batov (1975,1990) [17], [18] based on a chain of embedded subspaces. Notice, that
a basic theory of the translations of abstract causal operators was developed by
G. Karakostas in [16].

The theory of Volterra operators in Hilbert spaces attracted a great deal of at-
tention. D.C. Youla et al. (1959) [29] were the first to emphasize the importance of
a Volterra notion in the general theory of systems. The main properties of Volterra
operators were first stated for L2, and then for general Hilbert spaces. According
to A. Feintuch and R. Saeks (1982) [11] a linear ordered and closed family of or-
thogonal projectors P in space H is called “expansion of unity” if P τH ⊂ P θH
when 0 ≤ τ ≤ θ ≤ 1 and P 0 = 0, P 1 = I. An operator is called Volterra (“causal”
in the source), if it possesses the property: P τx = P τy yields P τFx = P τFy.
In these papers also notions of anti-Volterra (anticausality) and absolute Volterra
(memoryless) were introduced. The problems which were mainly studied for linear
operators, are operators’ expansion, factorization, and invertibility.

This is just a non-complete sample of attempts generalize the notion. Neverthe-
less, all the mentioned approaches are deficient in the following sense:

• They use essentially the topology of underlying space, e.g. employ com-
pleteness, convergence, etc.

• Being formulated for a particular space, they do not cover all the situations
described by the original definition (for example, operator (Fx)(t) = x(t/2)
is not Volterra according to [12], but is Volterra in the original sense for the
interval [0, a], a ∈ R+).

• Apparently, there is no clear way of extending the introduced notions to
spaces other than the ones under the particular consideration.

In the paper we attempt to provide a new definition of Volterra operators on
abstract spaces avoiding the aforementioned shortcomings. The definition we give
requires only existence of a σ-algebra on a metric space. Notice, that being applied
to such spaces it covers most of the results achieved with the former definitions and
essentially extends them to a wider classes of operators. It allows to relate different
properties of the Volterra type operators.

Our definition of the Volterra operator is based on the notion of the memory of
operator. Roughly speaking, the memory is an information about the preimages the
operator is able to remember given some information about the images. In Section
2 we recall the definitions related to the notion of memory [10]. In Section 3, basing
on the notions of operator’s memory and chain, we single out a class of Volterra
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operators. In Section 4 we study linear Volterra operators, and derive properties of
nilpotentness, quasi-nilpotentness and compactness of such operators. Section 5 is
devoted to functional equations with Volterra operators. Conditions for solvability
of some functional equations with linear and non-linear Volterra operator in certain
complete metric spaces are derived. In Section 6 we formulate a statement on
representation of a Volterra operator involved in the theory of functional differential
equations with delayed argument.

2. Notation and preliminaries

Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be two measure spaces, and Σ0
1 ⊂ Σ1, Σ0

2 ⊂ Σ2

be the σ-ideals of µ1- and µ2-nullsets respectively. We denote by Σ̃i := Σi/Σ0
i ,

i = 1, 2, the respective measure algebras (see § 42 of [23]). For the elements of Σ̃i

(i.e. the equivalence classes of sets) will be denoted ẽi or [ei], i = 1, 2. Further on we
will however frequently abuse the notation and identify the elements of the measure
algebras Σ̃i with the elements of the respective original σ-algebras of sets Σi.

A measure space (Ω,Σ, µ) is called standard, if Ω is a Polish space, Σ is either the
Borel σ-algebra or its completion with respect to finite or σ-finite Borel measure µ.

By X(Ω,Σ, µ;Y) we will understand a linear space of measurable functions, de-
fined on Ω and taking values in Y. A topology in X will be defined explicitly
depending on the particular problem under consideration.

Further, the notation Lp(Ω,Σ, µ;Y), where Y is a separable Banach space, will
stand, as usual, for the classical Lebesgue space of Y-valued functions measurable
with respect to Σ and µ-summable with power p (if p ∈ [1,+∞)) or µ-essentially
bounded (if p = +∞). These spaces are silently assumed to be equipped with their
strong topologies. If Y is a separable metric space, then L0(Ω,Σ, µ;Y) stands for
the metric space of Y-valued functions measurable with respect to Σ equipped with
the topology of convergence in measure.

Whenever there is no possibility of confusion, the references to Y, Ω, Σ and/or
µ will be omitted. We will also omit in sequel the sign (̃·) , assuming that all the
considerations are modulo the equivalence classes of sets.

Let Xi := X(Ωi,Σi, µi;Yi), i = 1, 2. Consider an operator T : X1 → X2. In what
follows the notation T : X1 → X2 assumes that the domain of T coincides with the
whole space X1. Following [10] (see also [8], [9]) we introduce now the concept of
memory and the related concept of comemory.

Definition 2.1. We call the memory of an operator T : X1(Ω1,Σ1, µ1;Y1) →
X2(Ω2,Σ2, µ2;Y2) on a set e2 ∈ Σ2 the family of all possible e1 ∈ Σ1 such that for
any x, y ∈ X1 satisfying x |e1 = y |e1 it follows that T (x) |e2 = T (y) |e2 . In other
words,

MemT (e2) := {e1 ∈ Σ1 : x |e1 = y |e1 ⇒ T (x) |e2 = T (y) |e2 } .

Similarly, the comemory of operator T on a set e1 ∈ Σ1 is the family

ComemT (e1) := {e2 ∈ Σ2 : x |e1 = y |e1 ⇒ T (x) |e2 = T (y) |e2 } .

Recall that according to our convention all the equalities in the above definition
should be understood in almost everywhere sense.
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It is clear from the definitions that

(2.1) e1 ∈ MemT (e2) ⇐⇒ e2 ∈ ComemT (e1).

The properties of memory and comemory along with some examples helping to
understand deeper the definitions given above, could be found in [10]

3. Volterra Operator

In this section, basing on the notions of chain and memory, we single out a class
of operators possessing the evolutionary property.

Definition 3.1. A collection of subsets {eν}, eν ∈ Σ, ν ∈ [0,∞], in a measurable
space (Ω,Σ, µ) is said to be chain if the following conditions are satisfied:

(1) µ(e0) = 0;
(2) eν1 ⊂ eν2 if ν1 ≤ ν2;
(3) for every α ∈ (0, µ(Ω)) there exists a set eβ ∈ {eν} such that µ(eβ) = α.

Example 3.1.
(1) Ω = [0, 1], {eν} = {[0, ν]}, ν ∈ [0, 1].
(2) Ω = [0, 1], {eν} = {[1− ν, 1]}, ν ∈ [0, 1].
(3) Ω = [0, 1], {eν} = {[12 − ν, 1

2 + ν]}, ν ∈ [0, 1
2 ].

(4) Ω = [0, 1], {eν} = {[0, ν] ∪ [1− ν, 1]}, ν ∈ [0, 1
2 ].

Definition 3.2. An operator

T : X1(Ω1,Σ1, µ1;Y1) → X2(Ω2,Σ2, µ2;Y2),

is called Volterra (this will be denoted T ∈ V ), if there exists a pair of chains
{e1ν} ⊂ Σ1, {e2λ} ⊂ Σ2, such that for every member e2α of the chain {e2λ}, the
corresponding element e1α of the chain {e1ν} satisfies

(3.1) e1α ∈ MemT (e2α)

The correspondence between the pair of chains here is provided by the same lower
index α.

Remark 3.1. Taking into account ( 2.1), the inclusion e1α ∈ MemT (e2α) in the above
definition can be replaced by an equivalent one:

(3.2) e2α ∈ ComemT (e1α)

Remark 3.2. Let operator T1 : X1(Ω1,Σ1, µ1;Y1) → X2(Ω2,Σ2, µ2;Y2) be Volterra
with respect to the pair of chains {e1ν} ⊂ Σ1, {e2λ} ⊂ Σ2, and operator T2 :
X2(Ω2,Σ2, µ2;Y2) → X3(Ω3,Σ3, µ3;Y3) be Volterra with respect to the pair of
chains {e2λ} ⊂ Σ2, {e3δ} ⊂ Σ3. Then evidently operator T2T1 : X1(Ω1,Σ1, µ1;Y1) →
X3(Ω3,Σ3, µ3;Y3) is Volterra with respect to the pair of chains {e1ν} ⊂ Σ1, {e3δ} ⊂
Σ3.

Remark 3.3. In [8], [9], [10] the notion of the local operator is given in terms of the
memory of operator. Namely, operator N : X(Ω,Σ, µ;Y) → X(Ω,Σ, µ;Y) is local
if

∀e ∈ Σ ⇒ e ∈ MemN (e).
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Taking into account Definition 3.2 one can conclude that N : X(Ω,Σ, µ;Y) →
X(Ω,Σ, µ;Y) is Volterra with respect to any chain {eν} ⊂ Σ. Thus, if operator
T : X1(Ω1,Σ1, µ1;Y1) → X2(Ω2,Σ2, µ2;Y2) is Volterra with respect to the pair
of chains {e1ν} ⊂ Σ1, {e2λ} ⊂ Σ2, then operator NT : X1(Ω1,Σ1, µ1;Y1) →
X2(Ω2,Σ2, µ2;Y2), where N : X2(Ω2,Σ2, µ2;Y2) → X2(Ω2,Σ2, µ2;Y2) is a local
operator, also Volterra with respect to the same pair of chains. Moreover, opera-
tor TN : X1(Ω1,Σ1, µ1;Y1) → X2(Ω2,Σ2, µ2;Y2), where N : X1(Ω1,Σ1, µ1;Y1) →
X1(Ω1,Σ1, µ1;Y1) is a local operator, also Volterra with respect to the same pair of
chains.

Example 3.2.
(1) Ti : X1([0, 1],Σ,m;Y1) → X2([0, 1],Σ,m;Y2), i = 1, 2, 3, 4, 5, 6, where

(T1x)(t) =
∫ t

0
Q(t, s, x(s))ds, t ∈ [0, 1];

(T2x)(t) =
∫ 1

1−t
Q(t, s, x(s))ds, t ∈ [0, 1];

(T3x)(t) = f(t, x(g(t))), t ∈ [0, 1], g(t) ≤ t, x(ζ) = ϕ(ζ) if ζ < 0;
(T4x)(t) = f(t, x(τ(t))), t ∈ [0, 1], τ(t) ≥ t, x(ζ) = ψ(ζ) if ζ > 1;

(T5x)(t) = f(t, x(1− t)), t ∈ [0, 1];

(T6x)(t) =
∫ t

0
Q(t, s, x(1− s))ds, t ∈ [0, 1].

Here the operators T1 and T3 are Volterra with respect to the chain pair
{[0, t]} and {[0, t]}; T2 and T4 are Volterra with respect to {[1 − t, 1]} and
{[1 − t, 1]}, and, finally, T5 and T6 are Volterra with respect to {[1 − t, 1]}
and {[0, t]}.

(2) Si : X1([0, 1],Σ1,m;Y1) → X2([0, 1
2 ],Σ2,m;Y2), i = 1, 2;

(S1x)(t) =
∫ 1

2
+t

1
2
−t

Q(t, s, x(s))ds, t ∈ [0,
1
2
];

(S2x)(t) =
∫ t

0
Q1(t, s, x(s))ds+

∫ 1
2
+t

1
2

Q2(t, s, x(s))ds, t ∈ [0,
1
2
].

Here S1 is Volterra with respect to the pair of chains {[12 − t,
1
2 + t]} ∈ Σ1

and {[0, t]} ∈ Σ2, and S2 is Volterra with respect to the pair of chains
{[0, t] ∪ [12 ,

1
2 + t]} ⊂ Σ1 and {[0, t]} ⊂ Σ2.

Let us single out from the class of Volterra operators, T : X1(Ω,Σ, µ;Y1) →
X2(Ω,Σ, µ;Y2), a subclass which will be called the class of conventional Volterra
operators.

Definition 3.3. An operator

T : X1(Ω,Σ, µ;Y1) → X2(Ω,Σ, µ;Y2),

is called conventional Volterra (this will be denoted T ∈ CV ), if there exists a
chain {eν} ⊂ Σ such that every element of the chain, eα ∈ {eν}, satisfies

(3.3) eα ∈ MemT (eα)
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Evidently the integral Volterra operators (of type T1 in Example 3.2) belong to
the class of conventional Volterra. The operator of type T3 from Example 3.2 is
called Volterra according to the definition by A.N.Tikhonov [27], and is also from
the class of conventional Volterra operators. Note that the operators of type T2 and
T4 from Example 3.2 and the local operators [10] also belong to this class.

Remark 3.4. Note that if an operator T : X(Ω,Σ, µ;Y) → X(Ω,Σ, µ;Y) is conven-
tional Volterra with respect to some chain, then every degree of T , T k, k = 1, 2, ...
(T k = TT k−1, T 0-the identity operator) is conventional Volterra with respect to the
same chain.

4. Linear Volterra operators

In this section we derive the properties of nilpotentness, quasi-nilpotentness and
compactness of linear Volterra operators in some functional spaces.

Consider a linear operator

L : X(Ω,Σ, µ;Y) → X(Ω,Σ, µ;Y).

Definition 4.1. L is called nilpotent if there exist an integer k > 0, such that
Lk : X → X is zero operator.

Theorem 4.1. Let a linear, continuous in measure, operator L : X → X, be
conventional Volterra with respect to chain {eν} ⊂ Σ, and

(1) µ(Ω) <∞;
(2) for every element of the chain satisfying

(4.1) µ(inf MemL(eα)) > 0,

the following holds:

(4.2) µ(eα \ inf MemL(eα)) ≥ δ > 0.

Then L is nilpotent.

Proof. First of all notice that for every set e ∈ Σ:

(4.3) MemL2(e) = MemL(inf MemL(e)).

By the assumptions,
µ(inf MemL(Ω)) ≤ µ(Ω)− δ.

Thus, having in mind (4.3), there exists an integer k such that

µ(inf MemLk(Ω)) = 0.

Thus the claim follows from linearity and continuity in measure of L. �

In the following example we illustrate the necessity of imposed conditions.

Example 4.1. Consider operator T : L∞([0, 1],Σ,m;R) → L∞([0, 1],Σ,m;R).
Here Σ is the σ-algebra on subsets of [0, 1], Lebesgue measurable, and m is the
Lebesgue measure. Let T be defined by one of the following equalities:

(1) (Tx)(t) = x(t− 1
2), t ∈ [0, 1], x(ζ) = 1, if ζ < 0;

(2) (Tx)(t) = x(1
2 t), t ∈ [0, 1];
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(3) (Tx)(t) = limδ→0 sup 1
2δ

∫ 1
2
+δ

1
2
−δ

x(s)ds · 1(t).

It is easy to see that in each one of the aforementioned cases the conventional
Volterra operators are not nilpotent.

Indeed, in the first case all the conditions of Theorem 1 but linearity are fulfilled.
In the second case T is linear and continuous in the measure, but condition (4.2) is
not satisfied. It follows from

µ([0, α] \ inf MemT ([0, α])) =
α

2

for any α ∈ (0, 1]. Finally, in the third case the conditions of continuity in the
measure and linearity are violated. Notice, that

(∀e ∈ Σ) µ(e \ inf MemT (e)) = µ(e).

Definition 4.2. We say that a space X possesses property X (and write X ∈ X )
if (∀e ∈ Σ)(∀x ∈ X), the function xe defined by

(4.4) xe(t) = χe(t)x(t), t ∈ Ω,

also belongs to X. Here χe is the characteristic function of e.

Let X ∈ X , e ∈ Σ. Choose a subspace Xe of X as follows: to every function
x ∈ X we correspond the function xe ∈ Xe defined by (4.4). Let us define by Le

the reduction of L : X1 → X2 to the subspace X1e.

Lemma 4.1. Let a space X1(Ω1,Σ1, µ1;Y1) ∈ X and a linear operator
L : X1(Ω1,Σ1, µ1;Y1) → X2(Ω2,Σ2, µ2;Y2) be Volterra with respect to the couple of
chains
{e1ν} ⊂ Σ1, {e2ν} ⊂ Σ2. Then for every collection e1αi

∈ {e1ν}, i = 1, ..., k; e1αi
⊂ e1αj

,

whenever i < j, we have

(4.5) Le1
αk

= Le1
α1

+ Le1
α2
\e1

α1
+ ...+ Le1

αk
\e1

αk−1

Proof. Since X1 ∈ X , for every function x ∈ X1 the function xe1
αk

also belongs to
this space. Evidently we have,

(4.6) xe1
αk

(t) = xe1
α1

(t) + xe1
α2
\e1

α1
(t) + ...+ xe1

αk
\e1

αk−1
(t), t ∈ Ω1.

To accomplish the proof now we apply L to both sides of (4.6), and take into account
that it is linear and Volterra. � �

Definition 4.3. A linear operator L : X → X, is called quasi-nilpotent if the
spectral radius of this operator is zero.

Theorem 4.2. Let for a linear operator L : X(Ω,Σ, µ;Y) → X(Ω,Σ, µ;Y), where
X is a Banach space possessing property X , the following conditions hold:

(1) Operator L is conventional Volterra;
(2) (∀ε > 0)(∃δ > 0)(∀e ∈ Σ) : µ(e) < δ ⇒ ‖Le‖Xe→X < ε.

Then L is quasi-nilpotent.
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Proof. Seeking contradiction, let us assume that λ, |λ| > 0, is an eigenvalue of L,
and the corresponding eigenfunction is x : Ω → Y, ‖x‖X > 0. Clearly x is a solution
of

(4.7) λx(t) = (Lx)(t), t ∈ Ω.

Denote by {eν} the chain, with respect to which T is conventional Volterra. By
the definition (of conventional Volterra operators) for every element eα of the chain
{eν}, the function xeα is a solution of

(4.8) λxeα(t) = (Leαxeα)(t), t ∈ eα.

Thus for every k, k = 1, 2, ..., we have

(4.9) λkxeα(t) = (Lk
eα
xeα)(t), t ∈ eα, k = 1, 2, ....

By Condition 2 of the theorem, it is possible to find eα, µ(eα) > 0, such that the
following inequality is valid:

(4.10) |λ|−1‖Leα‖Xeα→X < 1.

Since (4.9) holds for every k, k = 1, 2, ..., (4.10) yields that the eigenfunction x
satisfies

(4.11) x(t) = 0, t ∈ eα.

Furthermore, let us choose a set eβ from the chain {eν} such that the following
relations hold:

(4.12) eα ⊂ eβ, µ(eβ \ eα) = µ(eα).

By Lemma 4.1 we have Leβ
= Leα +Leβ\eα

. Applying Leβ
to the eigenfunction and

taking into account (4.11), we get

(4.13) (Leβ
x)(t) = (Leβ\eα

x)(t), t ∈ eβ \ eα.

Therefore, for every k, k = 1, 2, ..., we have for the eigenfunction x:

λkxeβ\eα
(t) = (Lk

eβ\eα
xeβ\eα

)(t), t ∈ eβ \ eα,

and

(4.14) |λ|−1‖Leβ\eα
‖Xeβ\eα→X < 1.

Thus
x(t) = 0, t ∈ eβ.

Continuing this process, in a finite number of steps when µ(Ω) < ∞ or applying
induction when the measure is σ-finite, we arrive at a contradiction:

x(t) = 0, t ∈ Ω. �

The case of operators in Banach spaces of measurable real-valued functions was
studied in [26].
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Example 4.2. Consider operator S : L2([0, 1],Σ,m;R) → L2([0, 1],Σ,m;R), de-
fined by

(4.15) (Sx)(t) =
∫ 1

0
K(t, s)x(s)ds, 0 ≤ s, t ≤ 1.

Assume that K : [0, 1]× [0, 1] → R, the kernel of S, is measurable and satisfies:

(4.16)
∫ 1

0

∫ 1

0
|K(t, s)|2dsdt <∞.

As usual, we call the operator of type (4.15) Fredholm and, if K(·, ·) satisfies (4.16)
it is called Hilbert-Schmidt, and

(4.17) ‖S‖L2→L2 ≤ (
∫ 1

0

∫ 1

0
|K(t, s)|2dsdt)

1
2 .

It is easy to see that for the Hilbert-Schmidt operator defined by (4.15) Condition
2 of Theorem 4.2 is satisfied.

If an extra assumption,

K(t, s) = 0, 0 < t < s < 1,

holds, the operator S has the form

(4.18) (Lx)(t) =
∫ t

0
K(t, s)x(s)ds, 0 ≤ s ≤ t ≤ 1

For the operator L all the conditions of Theorem 4.2 are already fulfilled. As a
corollary of Theorem 4.2 we derive the well-known fact that L defined by (4.18) is
quasi-nilpotent.

Theorem 4.3. Let for a linear continuous operator

L : X(Ω1,Σ1, µ1;Y1) → Lp(Ω2,Σ2, µ2;Y2), µ2(Ω2) <∞, 1 ≤ p ≤ ∞,

where X is a Banach space satisfying the property X the following conditions hold:
(1) There exists a pair of chains {e1ν} ⊂ Σ1, {e2ν} ⊂ Σ2, such that L is Volterra

with respect to it;
(2) (∀ε > 0)(∃δ > 0)(∀e ∈ Σ1) : µ1(e) < δ ⇒ ‖Le‖Xe→Lp < ε;
(3) (∀e1α ∈ {e1ν})(∀t1, t2 ∈ Ω2 \ e2α)(∀x ∈ X) : (Le1

α
xe1

α
)(t1) = (Le1

α
xe1

α
)(t2).

Then L is compact.

Proof. 1. First let us consider the case 1 ≤ p < ∞. To prove the theorem it is
enough to establish integral equicontinuity of the image of any bounded set from
X. Fix ε, ε > 0, and using Condition 2 pick sets e1αi

, i = 1, 2, ..., k, belonging to the
chain {e1ν} ⊂ Σ1, in such a way that

(4.19) ‖Le1
αi
\e1

αi−1
‖X

e1αi
\e1αi−1

→Lp < ε, i = 1, 2, ..., k.

Here we denote: e1α0
= e10, e

1
αk

= Ω1, and it is assumed that e1αi
⊂ e1αj

if 0 ≤
i ≤ j ≤ k. Let us correspond to each point t ∈ Ω2 a point t′ ∈ Ω2 satisfying the
following condition: t ∈ e2αi

\ e2αi−1
implies t′ ∈ e2αi

\ e2αi−1
, i = 1, 2, ..., k. Let us

estimate
‖(Lx)(t′)− (Lx)(t)‖Y2 , t ∈ Ω2,



VOLTERRA OPERATOR: BACK TO THE FUTURE 385

for an arbitrary x ∈ X. Let t ∈ e2αi
\ e2αi−1

. Since X ∈ X ,

(Lx)(t) = [L(xe1
αi−1

+ xe1
αi
\e1

αi−1
+ xe1

αk
\e1

αi
)](t).

By the conditions of the theorem:

(Lxe1
αi−1

)(t) = (Lxe1
αi−1

)(t′), t ∈ e2αi
\ e2αi−1

,

(Lxe1
αk
\e1

αi
)(t) = (Lxe1

αk
\e1

αi
)(t′) = 0, t, t′ ∈ e2αi

.

Therefore,

(4.20) ‖(Lx)(t′)− (Lx)(t)‖Y2 = ‖(Lxe1
αi
\e1

αi−1
)(t′)− (Lxe1

αi
\e1

αi−1
)(t)‖Y2 =

= ‖(Le1
αi
\e1

αi−1
xe1

αi
\e1

αi−1
)(t′)− (Le1

αi
\e1

αi−1
xe1

αi
\e1

αi−1
)(t)‖Y2 ≤ 2ε‖x‖X .

Thus ∫
Ω2

‖(Lx)(t′)− (Lx)(t)‖p
Y2
dµ2(t) =

=
k∑

i=1

∫
e2
αi
\e2

αi−1

‖(Lx)(t′)− (Lx)(t)‖p
Y2
dµ2(t) ≤

≤ (2ε‖x‖X)pµ2(Ω2).

To accomplish the proof we use the compactness conditions in Lp, 1 ≤ p <∞.

2. Now let us consider the case p = ∞. Taking into account (4.20), we obtain

essup
t,t′∈e2

αi
\e2

αi−1

i=1,2,...,k

‖(Lx)(t′)− (Lx)(t)‖Y2 =

= max
i∈(1,...,k)

essup
t,t′∈e2

αi
\e2

αi−1
‖(Le1

αi
\e1

αi−1
xe1

αi
\e1

αi−1
))(t′)− (Le1

αi
\e1

αi−1
xe1

αi
\e1

αi−1
)(t)‖Y2

≤ 2ε‖x‖X .

Last estimate means that every equivalence class Lx contains the continuous
function. Since for a bounded set from X this estimate holds equicontinuously, then
for completeness of the proof it is enough to refer to the compactness conditions in
the space of continuous functions. �

Remark 4.1. In order to clarify the conditions of Theorem 4.3 let us note the fol-
lowing. Operators T1, T2 from Example 3.2 satisfy Condition 3 of the theorem if
we assume for the function Q : [0, 1]× [0, 1]× Y1 → Y2 the validity of the equality
Q(t, s, 0) = 0, t, s ∈ [0, 1]. Operators T3 and T4 from the same example in general
do not satisfy the Condition 3 of the theorem.
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5. Functional Equations with Volterra Operator

In this section conditions for solvability of some functional equations with linear
and non-linear Volterra operator in certain complete metric spaces are derived. A
generalization of the step method, well-known in the theory of functional differential
equations (see, for example, [19]), is proposed.

Theorem 5.1. Let X(Ω,Σ, µ;Y) be a complete metric space. Moreover, let X ∈ X .
Let for a linear operator T : X(Ω,Σ, µ;Y) → X(Ω,Σ, µ;Y) the following conditions

1. T is conventional Volterra with respect to some chain {eν};
2. For any two elements eα, eβ of the chain {eν}, eα ⊂ eβ, and for any

x′, x′′ ∈ X condition µ(eβ \ eα) ≤ δ, δ > 0, implies

ρ(Tx′eβ\eα
, Tx′′eβ\eα

) ≤ σρ(x′eβ\eα
, x′′eβ\eα

), 0 < σ < 1.

hold.
Then for any function f ∈ X there exists the unique solution to the equation

(5.1) x(t)− (Tx)(t) = f(t), t ∈ Ω,

which could be found by the method of successive approximations.

Proof. Let us pick a set e1 ∈ {eν} such that 0 < µ(e1) ≤ δ. Then, in virtue of the
theorem’s conditions, for any x′, x′′ ∈ X the following inequality holds:

ρ(Tx′e1 , Tx
′′
e1) ≤ σρ(x′e1 , x

′′
e1).

According to the Banach principle there exists the unique solution x̄e1 to the
equation

(5.2) xe1(t)− (Te1xe1)(t) = fe1(t), t ∈ e1,

which could be found by the method of successive approximations. Furthermore,
let us pick a set e2 ∈ {eν} such that 0 < µ(e2 \ e1) ≤ δ. Then for any x′, x′′ ∈ X the
following inequality takes place:

ρ(Tx′e2\e1 , Tx
′′
e2\e1) ≤ σρ(x′e2\e1 , x

′′
e2\e1).

Applying again the Banach principle, we conclude that there exists the unique
solution x̄e2\e1 to the equation

(5.3) xe2\e1(t)− (Te2\e1xe2\e1)(t) = fe2\e1(t) + (Te1 x̄e1)(t), t ∈ e2 \ e1,

which also could be found by the method of successive approximations. Taking into
account Lemma 4.1, one can conclude that the function x̄e2 = x̄e1 + xe2\e1 is the
unique solution to the equation

(5.4) xe2(t)− (Te2xe2)(t) = fe2(t), t ∈ e2,

which could be found by the method of successive approximations.
Continuing this process, after finite number of steps in the case µ(Ω) < ∞, or

using the method of mathematical induction in the case of σ - finite µ, we will
achieve the statement of the theorem. �
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Theorem 5.2. (Step method) Let operator
F : X(Ω,Σ, µ;Y) → X(Ω,Σ, µ;Y) satisfy the following conditions:

1. F is Volterra operator with respect to some pair of chains {e1ν} ⊂ Σ, {e2ν} ⊂
Σ. Moreover, for any element e2α ∈ {e2ν}, µ(e2α) > 0, the following inclusion

(5.5) e1α ⊂ e2α, µ(e2α \ e1α) > 0

takes place.
2. There exists a set e1α ∈ {e1ν}, µ(e1α) > 0 such that the equation

(5.6) x(t)− (Fx)(t) = f(t), t ∈ e1α,
has a solution y ∈ X on this set.

Then for any function ϕ ∈ X, ϕ(t) = f(t), t ∈ e1α, there exists a function
z ∈ X, z(t) = y(t), t ∈ e1α, such that it converts the equation

(5.7) x(t)− (Fx)(t) = ϕ(t), t ∈ Ω,

into identity on each set e2γ ∈ {e2ν}, µ(Ω\ e2γ) > 0, i.e. the function z is a solution
to (5.7) on the set e2γ .

Proof. In virtue of the conditions function x̄e2
α
∈ X, defined as follows

(5.8)
x̄e2

α
(t) = y(t), t ∈ e1α

x̄e2
α
(t) = (Fy)(t) + ϕ(t), t ∈ e2α \ e1α,

is a solution to (5.7) on the set e2α or on the set e1β = e2α. Then function x̄e2
β

defined
by the following equalities

x̄e2
β
(t) = x̄e2

α
(t), t ∈ e1β,

x̄e2
β
(t) = (Fxe1

β
)(t) + ϕ(t), t ∈ e2β \ e1β,

satisfies (5.7) on e2β. Continuing this process (and taking into account that µ(Ω) <
∞), for each set e2γ ∈ {e2ν}, µ(Ω\e2γ) > 0, one can find a function z ∈ X satisfying
(5.7) on this very set. �

Remark 5.1. If additionally to the conditions of Theorem 5.2 one assumes that

(5.9) µ(inf MemF (Ω)) < µ(Ω),

then there exists a function z ∈ X, satisfying (5.7) on the whole set Ω.

Let us emphasize the essence of the condition on finiteness of the measure µ in
Theorem 5.2. Namely, consider the following

Example 5.1. Let us consider the equation

(5.10) x(t)− (Tx)(t) = 1, t ∈ [0,∞),

with continuous operator T : L∞([0,∞),Σ,m;R) → L∞([0,∞),Σ,m;R) defined as
follows:

(Tx)(t) =
{
x(t− 1), t ≥ 1,

0, t < 1.
A solution to (5.10) is defined by the equality

x(t) = n, t ∈ [n− 1, n), n = 1, 2, ...,
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and, evidently, does not belong to the space L∞([0,∞),Σ,m;R).

Remark 5.2. Note, that in Theorem 5.2 we do not concretize a topology on
X(Ω,Σ, µ;Y) as well as there is no assumption on the completeness of the space.

Corollary 5.1. Let X(Ω,Σ, µ;Y) be a complete metric space, X ∈ X and µ(Ω) <
∞. Let operator F : X(Ω,Σ, µ;Y) → X(Ω,Σ, µ;Y) satisfies the following conditions:

1. Condition 1 of Theorem 5.2 is satisfied.
2. There exists a set e1α ∈ {e1ν}, µ(e1α) > 0, such that on this set for any x′, x′′

holds:
ρ(Fx′e1

α
, Fx′′e1

α
) ≤ σρ(x′e1

α
, x′′e1

α
) 0 < σ < 1.

Then for any function f ∈ X and for any set e2γ ∈ {e2ν}, µ(Ω \ e2γ) > 0, there
exists the unique solution to the equation

(5.11) x(t)− (Fx)(t) = f(t), t ∈ e2γ ,

which can be found by the method of successive approximations.

Proof. In virtue of the conditions and using the Banach principle one can obtain
that that on the set e1α, µ(e1α) > 0, for any function f ∈ X there exists the unique
solution to (5.6), which can be found via the method of successive approximations.
Furthermore, in virtue of Theorem 5.2, this solution can be extended on any set
e2γ ∈ {e2ν}, µ(Ω \ e2γ) > 0, in such a way, that it will satisfy (5.11). �

The following example emphasizes the essence of the condition (5.9).

Example 5.2. Let us consider the scalar equation

(5.12) x(t)− (Tx)(t) =
1
2
, t ∈ [0, 1],

where operator T : L∞([0, 1],Σ,m;R) → L∞([0, 1],Σ,m;R) is defined as follows

(5.13) (Tx)(t) = a(t)x(τ(t)), t ∈ [0, 1].

Here

a(t) =
{

1
2 , t ∈ [0, 1

2 ],
1, t ∈ [12 , 1],

τ(t) =


1
2 t, t ∈ [0, 1

2 ],

t− 1
2n+1 , t ∈ (

n∑
k=0

1
2k+1 ,

n+1∑
k=0

1
2k+1 ], n = 0, 1, ....

For (5.12) in the space L∞([0, 1],Σ,m;R) all the conditions of Corollary 5.1 are
fulfilled. Thus, on any segment [0, γ], γ < 1, there exists the unique solution to
(5.12):

(5.14) x(t) =


1, t ∈ [0, 1

2 ],

1 + n+1
2 , t ∈ (

n∑
k=0

1
2k+1 ,

n+1∑
k=0

1
2k+1 ], n = 0, 1, ....

We just want to point out that the function x defined by (5.14) is not bounded on
[0, 1].
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6. Representation Theorem

Here we will formulate a statement on representation of a Volterra operator in-
volved in the theory of functional differential equations with delayed argument.

Let us first recall few necessary definitions from [10].
Here again Xi := Xi(Ωi,Σ1, µi;Yi), i = 1, 2.

Definition 6.1. Operator T : X1 → X2 is called full comemory, if for any
collection {e1i ∈ Σ1}, satisfying condition

(6.1) Ω1 = ∪ie1i,

there exists a collection {e2i ∈ Σ2}, e2i ∈ ComemT (e1i), such that the following
equality

(6.2) Ω2 = ∪ie2i,

holds.

Let Ej ∈ Σj , j = 1, 2. Let us define by Σj(Ej) a restriction of Σj on Ej , j = 1, 2.
For any e1 ∈ Σ1 define a family Comem(E2)T (e1) as follows:

(6.3) Comem(E2)T (e1) = {e2 ∈ Σ2(E2) : x|e1 = ye1 ⇒ Tx|e2 = Ty|e2}.
If E2 = Ω2, then E2 in (6.3) will be omitted.

Definition 6.2. We say that operator T : X1 → X2 satisfies I-condition (T ∈ I) if
there exists a collection of disjoint sets E2i, E2i ∈ Σ2, i = 1, 2, ..., such that

Ω2 =
⊔
i

E2i,

and for any set e2 ∈ Σ2 the following equalities hold:

(6.4) maxComem(E2i)T [infMemT (e2 ∩ E2i)] = e2 ∩ E2i, i = 1, 2, ....

Theorem 6.1. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be standard measure spaces. Let
for a continuous operator F : X1(Ω1,Σ1, µ1;Y1) → X2(Ω2,Σ2, µ2;Y2) the following
conditions are fulfilled:
1. There exists a pair of chains {e1ν} ⊂ Σ1, {e2ν} ⊂ Σ2 such that F is Volterra with
respect to it.
2. Opertator F is full comemory.
3. ComemF (∅µ1) = ∅µ2.
4. F ∈ I.

Then F can be represented as

(6.5) (Fx)(t) = f(t, x(g(t)) for µ2 − a.e. t ∈ Ω2

for some Carathéodory function f : Ω2 × Y1 → Y2, a measurable function g : Ω2 →
Ω1, satisfying the conditions:
i). (∀e1) ∈ Σ1 µ2(g−1(e1)) = 0 when µ1(e1) = 0,
ii). (∀e2α ∈ {e2ν}) µ2(e2α \ g−1(e1α)) = 0

Proof. The proof of the theorem is based on the following statement proved in [10].
Here we will quote it as a lemma, using the notions of the present paper.
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Lemma 6.1. [10] Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be standard measure spaces.
Any continuous full comemory operator F : X1(Ω1,Σ1, µ1;Y1) → X1(Ω2,Σ2, µ2;Y2),
satisfying Conditions 3 and 4 of the theorem, can be represented as

(6.6) (Fx)(t) = f(t, x(g(t)) for µ2 − a.c t ∈ Ω2

for some Carathéodory function f : Ω2 × Y1 → Y2, a measurable function g : Ω2 →
Ω1, satisfying the Condition i) of the theorem, and every x ∈ X1.

To complete the proof it is enough to note that the validity of Condition ii) is a
corollary of the assumption on Volterra property of F with respect to the pair of
the chains {e1ν} ⊂ Σ1, {e2ν} ⊂ Σ2. �

The notions of full comemory operator and I-condition were studied in detail
in our paper [10]. One can also find there some illustrative examples.

In conclusion we would like to call attention to Condition 3 in Definition 3.1. This
condition means that only spaces with continuous measure are under consideration.
Evidently, including into examination spaces with a more general measure, one has
to revise the mentioned condition and thus generalize the notion of chain.

Acknowledgement. We are grateful to the anonymous referees for constructive
suggestions and remarks.
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