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Abstract. In this paper, some ε-optimality results are extended to vector op-
timization problems with inequality, equality and abstract constraints via exact
penalty functions. Subsequently, these results are utilized to derive KKT-type
optimality conditions for ε-Pareto solutions of a multiobjective fractional pro-
gramming problem without any constraint qualification.

1. Introduction

During the past few decades much attention has been paid to develop optimality
conditions for approximate solutions of vector optimization problems under various
assumptions. This is because of the fact that in most practical cases mathematical
models formulated for real life problems are not the precise copies of the original
problems. Moreover, as observed by Loridan [8], the exact optimal solution of nei-
ther the scalar nor one of the vector optimization problem are necessarily attained.
Hence, it is interesting to have a theoretical analysis of approximate solutions.

Numerous research articles have appeared in this direction. For more details, see,
Hiriart-Urruty [4], Liu [5], Loridan [7,8], Strodiot et al. [9], Yokoyama [10,11], and
references cited therein.

In this paper, following the techniques of Hamel [3], Liu and Yokoyama [6] and
Yokoyama and Shiraishi [12], we derive optimality conditions for ε-Pareto solutions
of a nondifferentiable locally Lipschitz multiobjective fractional programming prob-
lem without any constraint qualification. The problem considered in the present
paper involves inequality, equality and abstract constraints.

The organization of the paper is as follows. In Section 2, we give the preliminary
terminologies. In Section 3, we use a vector exact penalty function to establish
ε-optimality criteria for the multiobjective optimization problem by estimating the
sizes of penalty parameters in terms of ε-optimal solutions of the dual problem.
In Section 4, the results of Section 3 along with Ekeland’s variational principle [2]
are utilized to derive Karush-Kuhn-Tucker type conditions for ε-Pareto optimality
of locally Lipschitz multiobjective fractional programming problems without any
constraint qualification.
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2. Preliminaries

Consider the following vector minimization problem

Minimize φ(x) = (φ1(x), . . . , φp(x))(P)
subject to x ∈ S

where S = {x ∈ Rn : hj(x) 5 0, 1 5 j 5 m ; qr(x) = 0, 1 5 r 5 k ;x ∈ C} is the set
of feasible solutions of (P), φi (1 5 i 5 p), hj (1 5 j 5 m), qr(1 5 r 5 k) : Rn → R
and C is a closed subset of Rn.

We associate p-scalar problems (Pi), 1 5 i 5 p with (P) as

Minimize φi(x)(Pi)
subject to x ∈ S.

For each i = 1, . . . , p, the dual problem (Di) associated with the i-th problem
(Pi) is given by

Maximize wi(λ, µ, ν)(Di)

where λ = (λ1, λ2, . . . , λm) ∈ Rm , µ = (µ1, µ2, . . . , µk) ∈ Rk , ν ∈ R and

wi(λ, µ, ν) = inf
x∈Rn

Li(x, λ, µ, ν) ,

Li(x, λ, µ, ν) =





φi(x) +
m∑

j=1

λj hj(x) +
k∑

r=1

µr qr(x) + νdC(x), if λ = 0, ν = 0

−∞, otherwise .

To transform the problem (P) into an unconstrained problem, we use a vector exact
penalty function defined by

σ(x, ρ, s, η) = (σ1(x, ρ, s, η), . . . , σp(x, ρ, s, η))

where

σi(x, ρ, s, η) = φi(x) + ρ

m∑

j=1

max(0, hj(x)) + s

k∑

r=1

max(qr(x),−qr(x)) + ηdC(x) ,

dC(x) = inf
c∈C

‖x− c‖ ,

and ρ, s, η are positive reals.
Throughout the paper, we assume that the set S 6= φ.

Also, for any ξ ∈ R`, ‖ξ‖1 =
∑̀

t=1

|ξt| and the duality gap between the problems (Pi)

and (Di) is denoted by ri, i.e.,

ri = inf
x∈S

φi(x)− sup
(λ,µ,ν)∈Rm+k+1

wi(λ, µ, ν) , 1 5 i 5 p .

Further, let ε = (ε1, ε2, . . . , εp) > 0 be the permissible vector perturbation. We now
define ε-approximate solutions.

Definition 2.1. x̄ ∈ S is called an ε-Pareto solution of (P) if there exists no x ∈ S
such that φi(x) 5 φi(x̄)− εi for any i = 1, . . . , p with at least one strict inequality.
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Definition 2.2. (λ̄, µ̄, ν̄) ∈ Rm+k+1 is called an εi-optimal solution of (Di) if it
satisfies wi(λ̄, µ̄, ν̄) = sup

(λ,µ,ν)∈Rm+k+1

(wi(λ, µ, ν))− εi .

Definition 2.3. For ρ, s, η > 0, x̄ ∈ Rn is called an ε-Pareto solution of the uncon-
strained problem (UP),

(UP) Minimize σ(x, ρ, s, η) = (σ1(x, ρ, s, η), . . . , σp(x, ρ, s, η))

if there exists no x ∈ Rn such that

σi(x, ρ, s, η) 5 σi(x̄, ρ, s, η)− εi

for any i = 1, . . . , p with at least one strict inequality.

3. Characterization of ε-Pareto Solution

In this section, we characterize ε-Pareto solutions of (P) by estimating the size
of penalty parameters ρ, s, η in terms of ε-optimal solutions of (Di).

The following proposition gives a necessary condition to obtain an ε-Pareto so-
lution of (P).

Proposition 3.1. Let x̄ be an ε-Pareto solution of (P) and let

ρ0 = max
15i5p

‖λ̄i‖∞, s0 = max
15i5p

‖µ̄i‖∞, η0 = max
15i5p

|ν̄i|,

where (λ̄i, µ̄i, ν̄i) is an εi-optimal solution of (Di), 1 5 i 5 p. Then, for any
(ρ, s, η) = (ρ0, s0, η0), x̄ is a (β+3ε)-Pareto solution of (UP) where β = (β1, . . . , βp)
and βi = inf

x∈S
max
15i5p

φi(x)− sup
(λ,µ,ν)∈Rm+k+1

wi(λ, µ, ν) .

Proof. We prove the result by contradiction. Let there exist (ρ, s, η) = (ρ0, s0, η0)
such that x̄ is not a (β +3ε)-Pareto solution of (UP). Then there exists x̂ ∈ Rn such
that

σi(x̂, ρ, s, η) 5 σi(x̄, ρ, s, η)− (βi + 3εi)
for any i = 1, . . . , p with at least one strict inequality.

Since x̄ ∈ S, we have

(3.1) φi(x̄)− εi = σi(x̂, ρ, s, η) + (βi + 2εi)

for any i = 1, . . . , p with at least one strict inequality.
Now, we can estimate as follows.

σi(x̂, ρ, s, η) = φi(x̂) + ρ
m∑

j=1

max(0, hj(x̂)) + s
k∑

r=1

max(qr(x̂),−qr(x̂)) + ηdC(x̂)

= φi(x̂) + ρ0

m∑

j=1

max(0, hj(x̂)) + s0

k∑

r=1

max(qr(x̂),−qr(x̂)) + η0dC(x̂)

= φi(x̂) +
m∑

j=1

|λ̄i
j |max(0, hj(x̂)) +

k∑

r=1

|µ̄i
r|max(qr(x̂),−qr(x̂))

+ |ν̄i|dC(x̂)
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= φi(x̂) +
m∑

j=1

λ̄i
jhj(x̂) +

k∑

r=1

µ̄i
rqr(x̂) + ν̄idC(x̂)

which on using (3.1) yields

φi(x̄)− εi = φi(x̂) +
m∑

j=1

λ̄i
jhj(x̂) +

k∑

r=1

µ̄i
rqr(x̂) + ν̄idC(x̂) + βi + 2εi

for any i = 1, . . . , p with at least one strict inequality.
Thus, we have

φi(x̄)− εi = inf
x∈Rn


φi(x) +

m∑

j=1

λ̄i
jhj(x) +

k∑

r=1

µ̄i
rqr(x) + ν̄idC(x)


 + βi + 2εi

= wi(λ̄i, µ̄i, ν̄i) + βi + 2εi

= sup
(λ,µ,ν)∈Rm+k+1

wi(λ, µ, ν)− εi + βi + 2εi .

By the choice of βi, we get

φi(x̄)− εi = inf
x∈S

max
15i5p

φi(x) + εi

= inf
x∈S

max
15i5p

φi(x) + min
15i5p

εi

= inf
x∈S

max
15i5p

φi(x) + ε0, ε0 = min
15i5p

εi > 0

= max
15i5p

φi(x̃) for some x̃ ∈ S.

Hence, for some x̃ ∈ S,
φi(x̄)− εi = φi(x̃)

for any i = 1, . . . , p with at least one strict inequality. This contradicts that x̄ is an
ε-Pareto solution of (P). Hence we get the result. ¤

The next theorem, giving another necessary condition for ε-Pareto solutions of
(P), will be used as a principle tool in obtaining the main results in the sequel.

Theorem 3.1. Let x̄ be an ε-Pareto solution of (P) and ρ0, s0, η0 be as same as in
Proposition 3.1. Then for any (ρ, s, η) = (ρ0, s0, η0), there exits ū ∈ Rp such that
ū > 0 and

(3.2) ‖σ(x, ρ, s, η)− σ̄‖ū +

(
γ +

p∑

i=1

εi

)
= ‖σ(x̄, ρ, s, η)− σ̄‖ū for any x ∈ Rn

where
‖y‖ū = max

15i5p
ūi|yi| for y ∈ Rp

γ = p

(
inf
x∈S

max
15i5p

φi(x)
)
−

p∑

i=1

sup{wi(λ, µ, ν) | (λ, µ, ν) ∈ Rm+k+1} = 0,

σ̄i < φi(x)− 1 for any x ∈ Rn, 1 5 i 5 p.
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Proof. Let (ρ, s, η) = (ρ0, s0, η0). Define ū = (ū1, . . . , ūp) ∈ Rp as

ūi = (σi(x̄, ρ, s, η)− σ̄i)−1, 1 5 i 5 p .

Then, we have ūi = (φi(x̄)− σ̄i)−1 > 0.
We now prove the result by contradiction. Suppose relation (3.2) does not hold.

Then, there exists y ∈ Rn such that

‖σ(y, ρ, s, η)− σ̄‖ū < ‖σ(x̄, ρ, s, η)− σ̄‖ū −
(

γ +
p∑

i=1

εi

)
.

The rest of the proof runs on similar lines as in the proof of [11, Theorem 3.1].
A contradiction will be obtained by using Proposition 3.1. ¤

4. ε-optimality conditions

In this section, we consider the following multiobjective fractional programming
problem

Minimize
f(x)
g(x)

=
(

f1(x)
g1(x)

, . . . ,
fp(x)
gp(x)

)
(FP)

subject to x ∈ S

where

S = {x ∈ Rn : hj(x) 5 0, 1 5 j 5 m; qr(x) = 0, 1 5 r 5 k;x ∈ C}
is a feasible set of (FP), and for 1 5 i 5 p, 1 5 j 5 m, 1 5 r 5 k, the functions
fi, gi, hj , qr : Rn → R are locally Lipschitz, fi,−gi are bounded from below on Rn

and gi(x) > 0 for any x ∈ S. The set C is taken to be a closed subset of Rn.
Minimization is taken in terms of obtaining ε-Pareto solutions of (FP) defined as
follows:

Definition 4.1. x̄ ∈ S is called an ε-Pareto solution of (FP) if there is no x ∈ S
such that

fi(x)
gi(x)

5 fi(x̄)
gi(x̄)

− εi

for any i = 1, . . . , p with at least one strict inequality.
Using parametric approach, we transform the problem (FP) into the multi-

objective program (MP)v, with parameter v ∈ Rp,

Minimize (f(x)− vg(x)) = (f1(x)− v1g1(x), . . . , fp(x)− vpgp(x))(MP)v

subject to x ∈ S .

Following lemma relates the ε-Pareto solutions of (FP) and (MP)v.

Lemma 4.1. x̄ ∈ S is an ε-Pareto solution of (FP) if and only if there exists

v̄ ∈ Rp, with v̄i =
fi(x̄)
gi(x̄)

− εi, 1 5 i 5 p, such that x̄ is an ε̄-Pareto solution of

(MP)v̄ where ε̄ = εg(x̄) = (ε1g1(x̄), . . . , εpgp(x̄)) > 0.
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Proof. Let x̄ ∈ S be an ε-Pareto solution of (FP). Then there is no x ∈ S such that

fi(x)
gi(x)

5 fi(x̄)
gi(x̄)

− εi

for any i = 1, . . . , p with at least one strict inequality. Thus, there is no x ∈ S such
that

fi(x)− v̄i gi(x) 5 0

for any i = 1, . . . , p with at least one strict inequality. Using the definition of v̄, we
get that there is no x ∈ S such that

fi(x)− v̄i gi(x) 5 fi(x̄)− v̄i gi(x̄)− ε̄i

for any i = 1, . . . , p with at least one strict inequality. Hence, x̄ is an ε̄-Pareto
solution of (MP)v̄. The converse also follows on similar lines. ¤

For fixed v ∈ Rp, the exact penalty function associated with the problem (MP)v
is defined as

θ(x, ρ, s, η) = (θ1(x, ρ, s, η), . . . , θp(x, ρ, s, η)),

θi(x, ρ, s, η) = fi(x)− vigi(x) + ρ
m∑

j=1

max(0, hj(x))

+ s
k∑

r=1

max(qr(x),−qr(x)) + ηdC(x), 1 5 i 5 p .

We now establish Karush-Kuhn-Tucker (KKT) necessary optimality conditions
for ε-Pareto solutions of (FP).

Theorem 4.1. Let x̄ be an ε-Pareto solution of (FP). Then there exists an xτ ∈ Rn

such that ‖xτ − x̄‖ 5 1 and there exist λ ∈ Rp, ρ ∈ R, s ∈ Rk, τ ∈ R, η ∈ R such
that

0 ∈
p∑

i=1

λi∂(fi − v̄igi)(xτ ) + ρ
m∑

j=1

∂hj(xτ ) +
k∑

r=1

sr∂qr(xτ ) + τB∗ + η∂C(xτ ),

hj(xτ ) 5
√

ε , 1 5 j 5 m,

−
√

ε 5 qr(xτ ) 5
√

ε , 1 5 r 5 k ,

dC(xτ ) 5
√

ε ,

λi ≥ 0, 1 5 i 5 p, ρ > 0, τ > 0, η > 0,

p∑

i=1

λi = 1

where B∗ is a unit ball in Rn.

Proof. Since x̄ is an ε-Pareto solution of (FP), hence by Lemma 4.1, there exists

v̄ = (v̄1, . . . , v̄p), v̄i =
fi(x̄)
gi(x̄)

− εi 1 5 i 5 p such that x̄ is an ε̄-Pareto solution of

(MP)v̄ where ε̄i = εigi(x̄).



ε-OPTIMALITY WITHOUT CONSTRAINT QUALIFICATION 353

It follows from Theorem 3.1, that there exist ρ0 > 0, s0 > 0, η0 > 0, γ = 0 such
that for all (ρ, s, η) = (ρ0, s0, η0), there exists ū = (ū1, . . . , ūp) > 0 satisfying

‖θ(x, ρ, s, η)− θ̄‖ū +

(
γ +

p∑

i=1

ε̄i

)
= ‖θ(x̄, ρ, s, η)− θ̄‖ū for any x ∈ Rn

where θ̄ = (θ̄1, . . . , θ̄p) with

θ̄i < fi(x̄)− v̄igi(x̄)− 1, 1 5 i 5 p

and

γ =

(
p inf

x∈S
max
15i5p

(fi(x)− v̄igi(x))−
p∑

i=1

sup
(λ,µ,ν)

inf
x

Li(x, λ, µ, ν)

)
.

From this setting, we get

(4.3) max
15i5p

ūi


fi(x)− v̄igi(x) + ρ

m∑

j=1

max(0, hj(x))

+s
k∑

r=1

max(qr(x),−qr(x)) + ηdC(x)− θ̄i

)
+

(
γ +

p∑

i=1

ε̄i

)

= max
15i5p

ūi


fi(x̄)− v̄igi(x̄) + ρ

m∑

j=1

max(0, hj(x̄))

+s
k∑

r=1

max(qr(x̄),−qr(x̄)) + ηdC(x̄)− θ̄i

)
for any x ∈ Rn .

Set, for x ∈ Rn,

ψ(x) = max
15i5p

ūi


fi(x)− v̄igi(x) + ρ

m∑

j=1

max(0, hj(x))

+s

k∑

r=1

max(qr(x),−qr(x)) + ηdC(x)− θ̄i

)

and τ = γ +
∑p

i=1 ε̄i > 0.
Then, ψ : Rn → R is a locally Lipschitz function. From (4.1), we have ψ is

bounded from below and

ψ(x) + τ = ψ(x̄) for any x ∈ Rn .

Thus, x̄ is a τ -optimal solution of the following unconstrained optimization problem

Minimize
x∈Rn

ψ(x) .

By Ekeland’s variational principle [2], there exists an xτ ∈ Rn such that the following
relations hold

(i) ψ(xτ ) 5 ψ(x) + τ for any x ∈ Rn,
(ii) ‖x̄− xτ‖ 5 1,
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(iii) ψ(xτ ) 5 ψ(x) + τ‖x− xτ‖ for any x ∈ Rn .

From condition (iii) it follows that xτ is an optimal solution of the problem

Minimize
x∈Rn

ψ(x) + τ‖x− xτ‖ .

Also, the function ψ(·) + τ‖ · −xτ‖ is locally Lipschitz. By Clarke’s necessary
optimality conditions [1],

0 ∈ ∂(ψ(·) + τ‖ · −xτ‖)(xτ )

where ∂ denotes the Clarke’s generalized subgradient.
The above relation yields that

(4.4) 0 ∈ ∂ψ(xτ ) + τB∗

where B∗ = {y ∈ Rn : ‖y‖ 5 1} is a unit ball in Rn.
Now, we have

∂ψ(xτ ) = ∂ max
15i5p


ūi


fi(·)− v̄igi(·) + ρ

m∑

j=1

max(0, hj(·))

+s
k∑

r=1

max(qr(·),−qr(·)) + ηdC(·)− θ̄i

))
(xτ )

⊆
p∑

i=1

αiūi


∂(fi − v̄igi)(xτ ) + ρ

m∑

j=1

∂hj(xτ )

+s
k∑

r=1

βr∂qr(xτ ) + η∂C(xτ )

)

where αi = 0, 1 5 i 5 p,
p∑

i=1

αi = 1, βr ∈ R, 1 5 r 5 k.

Set αiūi = λi = 0, 1 5 i 5 p and at least one λi > 0. Then

∂ψ(xτ ) ⊆
p∑

i=1

λi


∂(fi − v̄igi)(xτ ) + ρ

m∑

j=1

∂hj(xτ )

+s

k∑

r=1

βr∂qr(xτ ) + η∂dC(xτ )

)

⊆
p∑

i=1

λi ∂(fi − v̄igi)(xτ ) + ρ

p∑

i=1

λi

m∑

j=1

∂hj(xτ )

+ s

p∑

i=1

λi

k∑

r=1

βr∂qr(xτ ) + η

p∑

i=1

λi∂dC(xτ ) .
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Since λi = 0 with at least one strict inequality, hence, without loss of generality, we

can take
p∑

i=1

λi = 1. Therefore

∂ψ(xτ ) ⊆
p∑

i=1

λi ∂(fi − v̄igi)(xτ ) + ρ
m∑

j=1

∂hj(xτ ) +
k∑

r=1

sr∂qr(xτ ) + η∂dC(xτ )

where sr = sβr ∈ R. Substituting in (4.2), we get

0 ∈
p∑

i=1

λi ∂(fi − v̄igi)(xτ ) + ρ

m∑

j=1

∂hj(xτ ) +
k∑

r=1

sr∂qr(xτ ) + τB∗ + η∂dC(xτ )

where λi = 0,
p∑

i=1

λi = 1, ρ > 0, sr ∈ R, 1 5 r 5 k, τ = γ +
p∑

i=1

ε̄i, ε̄i = εigi(x̄) and

v̄i =
fi(x̄)
gi(x̄)

− εi, 1 5 i 5 p.

We now prove the complementarity conditions.
Let v̄ ∈ Rp be fixed. Setting max

15i5p
ūi(θi(xτ , ρ, s, η)−θ̄i) = ūi1(θi1(xτ , ρ, s, η)−θ̄i1) ,

inf
x∈Rn

min
15i5p

ūi(fi(x)− v̄igi(x)− θ̄i)

5 ūi1(fi1(xτ )− v̄i1gi1(xτ )− θ̄i1)

5 ūi1(fi1(xτ )− v̄i1gi1(xτ ) + ρ
m∑

j=1

max(0, hj(xτ ))

+ s
k∑

r=1

| qr(xτ ) | +ηdC(xτ )− θ̄i1)

= max
15i5p

ūi(fi(xτ )− v̄igi(xτ ) + ρ
m∑

j=1

max(0, hj(xτ ))

+ s
k∑

r=1

| qr(xτ ) | +ηdC(xτ )− θ̄i)

= ψ(xτ )

5 inf
x∈Rn

ψ(x) + τ (from (i))

= inf
x∈Rn

max
15i5p

ūi(θi(x, ρ, s, η)− θ̄i) + τ.

So, we have

ūi1(ρ
m∑

j=1

max(0, hj(xτ )) + s
k∑

r=1

| qr(xτ ) | +ηdC(xτ ))

5 inf
x∈Rn

max
15i5p

ūi(θi(x, ρ, s, η)− θ̄i)− inf
x∈Rn

min
15i5p

ūi(fi(x)− v̄igi(x)− θ̄i) + τ,
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that is,

ρ

m∑

j=1

max(0, hj(xτ )) + s

k∑

r=1

| qr(xτ ) | +ηdC(xτ )

5 ( inf
x∈Rn

max
15i5p

ūi(θi(x, ρ, s, η)− θ̄i)− inf
x∈Rn

min
15i5p

ūi(fi(x)− v̄igi(x)− θ̄i) + τ)/ūi1 .

From (4.1), max
15i5p

ūi(θi(x, ρ, s, η) − θ̄i) is bounded from below. Since fi = Fi and

0 > −gi = Gi for some Fi, Gi, we have

fi(x)− v̄igi(x) = fi(x)− fi(x̄)gi(x)/gi(x̄) + εigi(x)

= Fi+ | fi(x̄)/gi(x̄) | Gi + εi0.

So, min
15i5p

ūi(fi(x)− v̄igi(x)− θ̄i) is bounded from below.

Then, we have
m∑

j=1

max(0, hj(xτ )) → 0 if ρ → +∞,
k∑

r=1

| qr(xτ ) |→ 0 if s → +∞

and dC(xτ ) → 0 if η → +∞.
Thus, there exist ρ(ε), s(ε) and η(ε) such that hj(xτ ) 5

√
ε (1 5 j 5 m),

−
√

ε 5 qr(xτ ) 5
√

ε (1 5 r 5 k) and dC(xτ ) 5
√

ε. ¤

Concluding remarks

If the functions involved in the fractional programming problem (FP) are assumed
to be differentiable and the set C is taken to be a convex set then the necessary
optimality condition of Theorem 4.1 reduces to∥∥∥∥∥∥

p∑

i=1

λi∇(fi − v̄igi)(xτ ) + ρ

m∑

j=1

∇hj(xτ ) +
k∑

r=1

sr∇qr(xτ ) + ξ

∥∥∥∥∥∥
5 τ

for some ξ ∈ NC(xτ ), the normal cone to C at xτ .
Thus, starting from any initial point, we can generate a sequence in the neigh-

bourhood of the ε–optimal solution of (FP) at which the above stated optimality

condition holds for some (λ, ρ, s, ξ) = 0,

p∑

i=1

λi = 1. The solution thus obtained is

correct up to τ -precision. The importance of this information can be judged from
the fact that in most practical situations, the algorithms designed to solve nonlin-
ear programming problems solve them only up to a given precision level. Moreover,
unlike the paper of Liu and Yokoyama [6], we have not placed any convexity re-
striction on the functions involved in the problem. The functions are required to be
locally Lipschitz only. Further, optimality conditions obtained in this paper yield
additional information about the solution behaviour in its neighbourhood.

The above observations obviously indicate that the results of this research work
are more general than the similar results established in earlier research articles.
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