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EXISTENCE SOLUTIONS FOR A CLASS OF SECOND ORDER
DIFFERENTIAL INCLUSIONS

AZZAM-LAOUIR DALILA AND LOUNIS SABRINA

Abstract. The paper studies, existence solutions for second order differential
inclusions with mixed semicontinuous maps, which are upper semicontinuous in
some points and lower semicontinuous in remaining points.

1. Introduction

Existence solutions for second order differential inclusions of the form ü(t) ∈
F (t, u(t), u̇(t)), where F : [0, 1]×E×E ⇁ E is a convex compact valued multifunc-
tion, Lebesgue-measurable on [0, 1] and upper semicontinuous on E×E, have been
studied where E is a finite dimensional space by several authors (see [9], [10], [11]).
Later, existence results for the above differential inclusion in the general context
of Banach spaces has been proved by Azzam-Castaing-Thibault [3]. The aim of
this paper is to provide new existence results for Problem (1), where F is a mixed
semicontinuous multifunction. Namely, we consider the differential inclusion in a
separable Banach space, of the form

(1)

{
ü(t) ∈ F (t, u(t), u̇(t)) ⊂ Γ(t) a.e in [0, 1];
u(0) = u(1) = 0,

where F : [0, 1]×E×E ⇁ E is a mixed semicontinuous multifunction with nonempty
compact values and Γ : [0, 1] ⇁ E is a nonempty convex compact valued Lebesgue-
measurable and integrably bounded multifunction; that is, the scalar function t 7→
|Γ(t)| := sup{‖x‖ : x ∈ Γ(t)} is Lebesgue integrable on [0,1].

One of possible ways to obtain the existence solutions of the first order differential
inclusion

(2)

{
u̇(t) ∈ F (t, u(t)) a.e in [0, 1];
u(0) = u0,

where F is a mixed semicontinuous multifunction has been treated by Fryszkowski-
Gorniewicz [7]. The authors have considered the mapping

KF (s) = {u ∈ L1([0, 1]) : u(t) ∈ F (t, s(t)) a.e t ∈ [0, 1]},
which is defined on C([0, 1]) and takes decomposable subsets of L1([0, 1]) as values.
They have constructed an u.s.c and convex multifunction M : C([0, 1]) ⇁ L1([0, 1]),
which called a multiselection, such that M(s) ⊂ KF (s), and have concluded the
existence of solutions to the cauchy problem (2) from the fixed point theorem.
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In this paper, we use this technique to prove the existence results for our problem (1).

2. Preliminaries and notations

Throughout, (E, ‖ · ‖) is a separable Banach space and E′ is its topological dual,
L([0, 1]) is the σ-algebra of Lebesgue-measurable sets of [0, 1], λ = dt is the Lebesgue
measure on [0, 1] and B(E) is the σ-algebra of Borel subsets of E. By L1

E([0, 1]) we
denote the space of all Lebesgue-Bochner integrable E-valued functions defined on
[0, 1]. Let CE([0, 1]) be the Banach space of all continuous functions u from [0, 1]
into E, endowed with the sup-norm. By W2,1

E ([0, 1]) we denote the space of all
continuous functions u in CE([0, 1]) such that their first derivatives are continuous
and their second weak derivatives belong to L1

E([0, 1]). For a set A ⊂ E, coA is its
closed convex hull.
A set K ⊂ L1

E([0, 1]) is said to be decomposable if and only if for every u, v ∈ K
and any A ∈ L([0, 1]) we have u.χA + v.(1 − χA) ∈ K, where χA stands for the
characteristic function of A

χA(x) =

{
1 if x ∈ A

0 if x 6∈ A.

The family of all nonempty closed and decomposable sets in L1
E([0, 1]) we will denote

by decE([0, 1]). For given K ∈ decE([0, 1]) and χ ∈ L∞R ([0, 1]) let Kχ stands for
the set

Kχ = {u ∈ L1
E([0, 1]) : u = v.χ and v ∈ K}.

Consider a multifunction K : E → decE([0, 1]), for given χ : E → L∞R ([0, 1]) denote
by Kχ(·) the multifunction defined by Kχ(x) = K(x)χ(x).

we need the following results in [7].

Definition 2.1. The mapping D : E → L([0, 1]) is said to be:

(a) lower semicontinuous with respect to λ (λ-l.s.c.) at x0 if and only if

lim
x→x0

λ[D(x0) \D(x)] = 0;

(b) upper semicontinuous with respect to λ (λ-u.s.c.) at x0 if and only if G(s) =
[0, 1] \D(s) is λ-l.s.c. at x0;

(c) λ-l.s.c. (λ-u.s.c.) if it is λ-l.s.c. (λ-u.s.c.) at every point x0 ∈ E;
(d) continuous with respect to λ (λ-c.) at x0 if and only if it is both λ-l.s.c. and

λ-u.s.c. at x0.

Proposition 2.2. Notice that

(a) λ-c. of D : E → L([0, 1]) is equivalent to the continuity of x 7→ χD(x) from
E into L1.

(b) λ-l.s.c. of D : E → L([0, 1]) is equivalent to the existence of λ-c. Dk : E →
L([0, 1]), k = 1, 2, ...., such that

χD(x) = sup
k

χDk(x) for x ∈ E.
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(c) λ-u.s.c. of D : E → L([0, 1]) is equivalent to the existence of λ-c. Dk : E →
L([0, 1]), k = 1, 2, ...., such that

χD(x) = inf
k

χDk(x) for x ∈ E.

Lemma 2.3. Let U : I := [0, 1] → E be a measurable multifunction with closed
values for almost all t ∈ I. For any given x ∈ CE(I) denote by D(x) = {t : x(t) 6∈
U(t)}. Then D(x) is λ-l.s.c.

Definition 2.4. Let K : E → decE([0, 1]) be a multifunction satisfying
(i) K(·) is integrably bounded;
(ii) there is a λ-l.s.c. mapping D : E → L([0, 1]) such that

(H1) KχD(·) is l.s.c.;
(H2) for every x0 ∈ E the map K(·)(1− χD(x0)) is u.s.c. at x0.

Then K is called mixed semicontinuous (m.s.c.).

Theorem 2.5. Let K : E → decE([0, 1]) be a mixed semicontinuous multifunction.
Then K(·) admits an u.s.c. multiselection M(·). This multiselection can be chosen
in the form

M(x) = l(x).χD(x) + K(1−χD)(x)
where l : E → L1

E([0, 1]) is a properly constructed Borel selection of K(·).
Moreover, if the sets K(x)(1 − χD(x)) are convex, then the multiselection M(·) is
convex valued.

3. Existence results for second order differential inclusions

We begin by a lemma which summarizes some properties of some Hartman type
function (see [2], [3], [9], [8], [10]). It is useful in the study of our boundary problem
for differential inclusions.

Lemma 3.1. Let E be a separable Banach space and let G : [0, 1] × [0, 1] → R be
the function defined by

G(t, s) =

{
(t− 1)s if 0 ≤ s ≤ t

t(s− 1) if t ≤ s ≤ 1.

Then the following assertions hold:
1) if u ∈ W2,1

E ([0, 1]) with u(0) = u(1) = 0, then

u(t) =
∫ 1

0
G(t, s)ü(s)ds,∀t ∈ [0, 1],

2) G(·, s) is derivable on [0, 1], for every s ∈ [0, 1], its derivative is given by

∂G

∂t
(t, s) =

{
s if 0 ≤ s < t

(s− 1) if t ≤ s ≤ 1.

3) G(·, ·) and
∂G

∂t
(·, ·) satisfies

sup
t,s∈[0,1]

|G(t, s)| ≤ 1, sup
t,s∈[0,1]

|∂G

∂t
(t, s)| ≤ 1.
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4) Let f ∈ L1
E([0, 1]) and let uf : [0, 1] → E be the function defined by

uf (t) =
∫ 1

0
G(t, s)f(s)ds,∀t ∈ [0, 1],

then uf (0) = uf (1) = 0.
Further, the function uf is derivable, and its derivative u̇f satisfies

lim
h→0

uf (t + h)− uf (t)
h

= u̇f (t) =
∫ 1

0

∂G

∂t
(t, s)f(s)ds

for all t ∈ [0, 1]. Consequently u̇f is a continuous mapping from [0, 1] into
E.

5) The function u̇f is scalary derivable, that is, for every x′ ∈ E′, the scalar
function 〈x′, u̇f (·)〉 is derivable, and its weak derivative üf is equal to f a.e.

Let us mention a useful consequence of Lemma 3.1.

Proposition 3.2. Let E be a separable Banach space and let f : [0, 1] → E be a
continuous mapping (respectively a mapping in L1

E([0, 1])). Then the function

uf (t) =
∫ 1

0
G(t, s)f(s)ds,∀t ∈ [0, 1]

is the unique C2
E([0, 1])-solution (respectively W2,1

E ([0, 1])-solution) to the differen-
tial equation {

ü(t) = f(t) ∀t ∈ [0, 1];
u(0) = u(1) = 0.

Now, we are ready to prove the main existence theorem.

Theorem 3.3. Let E be a separable Banach space, and let F : [0, 1]×E ×E ⇁ E
be a multifunction with nonempty compact values satisfying:

(i) F is L([0, 1])⊗ B(E)⊗ B(E)-measurable;
(ii) F (t, ·, ·) is upper semicontinuous for almost every t ∈ [0, 1];
(iii) for each (t, x, y) ∈ [0, 1]× E × E such that F (t, x, y) is nonconvex the map

F (t, ·, ·) is lower semicontinuous at (x, y).
Let Γ : [0, 1] ⇁ E be an integrably bounded multifunction with nonempty convex
compact values such that F (t, x, y) ⊂ Γ(t) for every (t, x, y) ∈ [0, 1]×E ×E. Then
the W2,1

E ([0, 1])-solutions set of the differential inclusion

(1)

{
ü(t) ∈ F (t, u(t), u̇(t)) ⊂ Γ(t) a.e in [0, 1];
u(0) = u(1) = 0,

is nonempty and compact in the Banach space CE([0, 1]).

Proof. Step 1. Let us consider the differential inclusion

(3)

{
ü(t) ∈ Γ(t) a.e in [0, 1];
u(0) = u(1) = 0.
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We wish to show that the W2,1
E ([0, 1])-solutions set XΓ of (3) is nonempty convex

compact in the Banach space CE([0, 1]) endowed with the topology of uniform
convergence.

First, let us recall (see [6]), that the set S1
Γ of all measurable selections of Γ is

convex and compact for the weak topology σ(L1
E([0, 1]),L∞E′([0, 1])). Furthermore,

the set-valued integral
∫ 1

0
Γ(t)dt = {

∫ 1

0
f(t)dt, f ∈ S1

Γ}

is convex and norm-compact. (See [4], [5], [6]) for a more general result.
In view of Lemma 3.1 and Proposition 3.2, the solutions set XΓ is nonempty and
characterized by

XΓ = {uf : [0, 1] → E : uf (t) =
∫ 1

0
G(t, s)f(s)ds, ∀t ∈ [0, 1]; f ∈ S1

Γ}.

Clearly XΓ is convex. We claim that XΓ is compact in CE([0, 1]). Since

‖uf (t)− uf (τ)‖ ≤
∫ 1

0
|G(t, s)−G(τ, s)|‖f(s)‖ds

≤
∫ 1

0
|G(t, s)−G(τ, s)||Γ(s)|ds

for all f ∈ S1
Γ and for all t, τ ∈ [0, 1], XΓ is equicontinuous in CE([0, 1]). Fur-

ther the set XΓ(t) is relatively compact in E because it is included in the norm
compact set

∫ 1
0 G(t, s)Γ(s)ds. Let (fn)n be a sequence in S1

Γ. As S1
Γ is weakly com-

pact in L1
E([0, 1]), we extract from (fn) a sequence (fm) such that (fm) converges

σ(L1
E([0, 1]),L∞E′([0, 1])) to a function f ∈ S1

Γ. The sequence (ufn) is relatively
compact in CE([0, 1]) by Arzelà-Ascoli’s theorem the sequence (ufm) converges uni-
formly to a continuous function ζ ∈ CE([0, 1]). In particular for every x′ ∈ E′ and
for every t ∈ [0, 1], we have

lim
m→∞

∫ 1

0
〈G(t, s)x′, fm(s)〉ds = lim

m→∞〈x
′,

∫ 1

0
G(t, s)fm(s)ds〉(∗)

∫ 1

0
〈G(t, s)x′, f(s)〉ds = 〈x′,

∫ 1

0
G(t, s)f(s)ds〉.

As the set-valued integral
∫ 1
0 G(t, s)Γ(s)ds (t ∈ [0, 1]) is norm compact, (∗) shows

that the sequence (ufm(·)) = (
∫ 1
0 G(·, s)fm(s)ds) converges pointwise to uf (·), for E

endowed with the strong topology, thus we get ζ = uf . This shows the compactness
of XΓ in CE([0, 1]).

At this point, it is worth to mention that the sequence (u̇fm(·)) =
(
∫ 1
0

∂G
∂t (·, s)fm(s)ds) converges pointwise to u̇f (·), for E endowed with the strong

topology, using the weak convergence of (fm) and the norm compactness of the
set-valued integral

∫ 1
0

∂G
∂t (t, s)Γ(s)ds (t ∈ [0, 1]).
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Step 2. With problem (1) we shall associate the multifunction KF : XΓ ⇁ L1
E([0, 1]

given as follows

KF (uf ) = {v ∈ L1
E([0, 1] : v(t) ∈ F (t, uf (t), u̇f (t)) a.e. in [0, 1]}.

In view of the existence theorem of measurable selections (See [1], [6]) we deduce
that KF (uf ) 6= ∅ for every uf ∈ XΓ. Moreover, KF (uf ) is closed decomposable for
every uf ∈ XΓ.

Now, we proceed to prove that KF is a mixed semicontinuous multifunction and
consequently it has a convex-valued multiselection M .

The proof would be similar to the one for the first order problem in Theorem 3.9
example (3) in [7]. We include it for the convenience of the reader.

Let D : XΓ ⇁ L([0, 1]), such that

D(uf ) = {t ∈ [0, 1] : F (t, uf (t), u̇f (t)) is nonconvex}.
Denote by

A = {(t, x, y) ∈ [0, 1]× E × E : F (t, x, y) = coF (t, x, y)},
clearly A is L([0, 1])⊗B(E)⊗B(E)-measurable. Consider for every t ∈ [0, 1] the set

U(t) = {(x, y) ∈ E × E : (t, x, y) ∈ A}
and observe that, for every uf ∈ XΓ

D(uf ) = {t ∈ [0, 1] : (uf (t), u̇f (t)) 6∈ U(t)}.
Since A is L([0, 1]) ⊗ B(E) ⊗ B(E)-measurable, the map t 7→ U(t) is L([0, 1])-
measurable. We need to check that D(·) is λ-l.s.c. Using Lemma 2.3 we need to
prove that the sets U(t) are closed for all t ∈ [0, 1]. Let us assume to a contrary
that, for some t ∈ [0, 1] U(t) is not closed. Then there exists a sequence (xn, yn) ∈
E ×E, (xn, yn) → (x0, y0) such that (xn, yn) ∈ U(t) and (x0, y0) 6∈ U(t). Therefore
F (t, xn, yn) are convex for all n ∈ N∗ while F (t, x0, y0) is not. Then there are
w, z ∈ F (t, x0, y0) and α ∈]0, 1[ such that αw + (1 − α)z 6∈ F (t, x0, y0). By the
assumptions, the map (x, y) 7→ F (t, x, y) is continuous at (x0, y0), then we can pick
up wn, zn ∈ F (t, xn, yn) such that wn → w and zn → z. Observe that αwn + (1 −
α)zn ∈ F (t, xn, yn) and αwn + (1 − α)zn → αw + (1 − α)z 6∈ F (t, x0, y0), against
the upper semicontinuity of F (t, ·, ·) at (x0, y0). Then the sets U(t) are closed for
all t ∈ [0, 1]. Consequently D(·) is λ-l.s.c.

Now, we prove that D(·) satisfies (H1) and (H2) of Definition 2.4. By the upper
semicontinuity of F (t, ·, ·) we get the u.s.c of KF and thus (H2) holds. To see (H1),
fixe uf0 ∈ XΓ, v0 ∈ KF (uf0) and take any sequence (ufn) ⊂ XΓ such that ufn → uf0

and thus u̇fn → u̇f0 . Let vn ∈ KF (ufn) be such integrable functions such that for
a.e. t ∈ [0, 1] we have

d(vn(t), F (t, uf0(t), u̇f0(t))) = ‖vn(t)− v0(t)‖.
For any t ∈ D(uf0), F (t, ·, ·) is continuous at (uf0(t), u̇f0(t)) and therefore

‖vn(t)− v0(t)‖ → 0 a.e. in D(uf0).
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The sequence (vn) is integrably bounded and thus

lim
n→∞

∫

D(uf0
)
‖vn(t)− v0(t)‖dλ = 0.

Denote by

Am(uf ) =
m⋃

k=1

Dk(uf )

where Dk(uf ) are as in Proposition 2.2. Observe that (Am(·)) is an increasing
sequence of λ-continuous mapping such that

D(uf ) =
∞⋃

m=1

Am(uf ).

Thus

lim
n→∞

∫

[0,1]
vnχAm(ufn )dλ = lim

n→∞

∫

Am(ufn )
vndλ =

m∑

k=1

lim
n→∞

∫

Dk(ufn )
vndλ

=
m∑

k=1

∫

Dk(uf0
)
v0dλ =

∫

Am(uf0
)
v0dλ =

∫

[0,1]
v0χAm(uf0

)dλ

then, vnχAm(ufn ) → v0χAm(uf0
) in L1([0, 1]). Consequently KF (uf )χAm(uf ) are l.s.c,

m = 1, 2, ...., and thus

KF (uf )χD(uf ) =
∞⋃

m=1

KF (uf )χAm(uf )

is l.s.c. We concluded that KF is mixed semicontinuous. Then, there exists an u.s.c
multiselection M : XΓ ⇁ L1

E([0, 1]) with closed convex values such that M(uf ) ⊂
KF (uf ) for every uf ∈ XΓ.

Step 3. Taking the results obtained in Step 1 account, a map u : [0, 1] → E is a
W2,1

E ([0, 1])-solution of the problem (1), iff there exists f ∈ S1
Γ such that u := uf ∈

XΓ and such that f(t) ∈ F (t, uf (t), u̇f (t)) for almost every t ∈ [0, 1].
For any f ∈ S1

Γ consider the set

Φ(f) = {g ∈ L1
E([0, 1]) : g ∈ M(uf ) a.e. in [0,1]}.

From the existence theorem of measurable selections (see [1], [6]) one can deduce
that Φ(f) are nonempty subsets of L1

E([0, 1]). It is clear that Φ(f) are convex
weakly compact subsets of S1

Γ. We need to check that Φ : S1
Γ ⇁ S1

Γ is upper
semicontinuous on the convex weakly compact metrizable set S1

Γ. Equivalently, we
need to prove that the graph of Φ is sequentially weakly compact in S1

Γ × S1
Γ. Let

(fn)n be a sequence in S1
Γ. By extracting a subsequence we may suppose that (fn)

converges weakly to f ∈ S1
Γ. It follows that (ufn) converges pointwise to uf , for

E endowed with the norm topology. Let gn ∈ Φ(fn) ⊂ S1
Γ. We may suppose that

(gn) converges weakly to some element g ∈ S1
Γ. As gn ∈ M(ufn) using the upper

semicontinuity of M(·) we can check that g ∈ M(uf ). Thus the graph of Φ is
weakly compact in the weakly compact set S1

Γ × S1
Γ. Hence, the application of the
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Kakutani-Ky Fan fixed point theorem to the multifunction Φ(·), there exists f0 ∈ S1
Γ

such that f0 ∈ M(f0) ⊂ KF (f0), and so f0(t) ∈ F (t, uf0(t), u̇f0(t)) for almost every
t ∈ [0, 1]. Equivalently, (see Lemma 3.1) üf0(t) ∈ F (t, uf0(t), u̇f0(t)) a.e. in [0, 1]
with uf0(0) = uf0(1), what, in turn, means that the mapping uf0 is a solution to
our problem (1). ¤
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