EXISTENCE SOLUTIONS FOR A CLASS OF SECOND ORDER DIFFERENTIAL INCLUSIONS

AZZAM-LAOUIR DALILA AND LOUNIS SABRINA

Abstract

The paper studies, existence solutions for second order differential inclusions with mixed semicontinuous maps, which are upper semicontinuous in some points and lower semicontinuous in remaining points.

1. Introduction

Existence solutions for second order differential inclusions of the form $\ddot{u}(t) \in$ $F(t, u(t), \dot{u}(t))$, where $F:[0,1] \times E \times E \rightharpoondown E$ is a convex compact valued multifunction, Lebesgue-measurable on $[0,1]$ and upper semicontinuous on $E \times E$, have been studied where E is a finite dimensional space by several authors (see [9], [10], [11]). Later, existence results for the above differential inclusion in the general context of Banach spaces has been proved by Azzam-Castaing-Thibault [3]. The aim of this paper is to provide new existence results for Problem (1), where F is a mixed semicontinuous multifunction. Namely, we consider the differential inclusion in a separable Banach space, of the form

$$
\left\{\begin{array}{l}
\ddot{u}(t) \in F(t, u(t), \dot{u}(t)) \subset \Gamma(t) \text { a.e in }[0,1] ; \tag{1}\\
u(0)=u(1)=0,
\end{array}\right.
$$

where $F:[0,1] \times E \times E \rightharpoondown E$ is a mixed semicontinuous multifunction with nonempty compact values and $\Gamma:[0,1] \rightharpoondown E$ is a nonempty convex compact valued Lebesguemeasurable and integrably bounded multifunction; that is, the scalar function $t \mapsto$ $|\Gamma(t)|:=\sup \{\|x\|: \quad x \in \Gamma(t)\}$ is Lebesgue integrable on $[0,1]$.
One of possible ways to obtain the existence solutions of the first order differential inclusion

$$
\left\{\begin{array}{l}
\dot{u}(t) \in F(t, u(t)) \text { a.e in }[0,1] ; \tag{2}\\
u(0)=u_{0},
\end{array}\right.
$$

where F is a mixed semicontinuous multifunction has been treated by FryszkowskiGorniewicz [7]. The authors have considered the mapping

$$
K_{F}(s)=\left\{u \in \mathbf{L}^{1}([0,1]): u(t) \in F(t, s(t)) \text { a.e } t \in[0,1]\right\},
$$

which is defined on $\mathbf{C}([0,1])$ and takes decomposable subsets of $\mathbf{L}^{1}([0,1])$ as values. They have constructed an u.s.c and convex multifunction $M: \mathbf{C}([0,1]) \rightharpoondown \mathbf{L}^{1}([0,1])$, which called a multiselection, such that $M(s) \subset K_{F}(s)$, and have concluded the existence of solutions to the cauchy problem (2) from the fixed point theorem.

[^0]In this paper, we use this technique to prove the existence results for our problem (1).

2. Preliminaries and notations

Throughout, $(E,\|\cdot\|)$ is a separable Banach space and E^{\prime} is its topological dual, $\mathcal{L}([0,1])$ is the σ-algebra of Lebesgue-measurable sets of $[0,1], \lambda=d t$ is the Lebesgue measure on $[0,1]$ and $\mathcal{B}(E)$ is the σ-algebra of Borel subsets of E. By $\mathbf{L}_{E}^{1}([0,1])$ we denote the space of all Lebesgue-Bochner integrable E-valued functions defined on $[0,1]$. Let $\mathbf{C}_{E}([0,1])$ be the Banach space of all continuous functions u from $[0,1]$ into E, endowed with the sup-norm. By $\mathbf{W}_{E}^{2,1}([0,1])$ we denote the space of all continuous functions u in $\mathbf{C}_{E}([0,1])$ such that their first derivatives are continuous and their second weak derivatives belong to $\mathbf{L}_{E}^{1}([0,1])$. For a set $A \subset E, \overline{c o} A$ is its closed convex hull.
A set $K \subset \mathbf{L}_{E}^{1}([0,1])$ is said to be decomposable if and only if for every $u, v \in K$ and any $A \in \mathcal{L}([0,1])$ we have $u \cdot \chi_{A}+v .\left(1-\chi_{A}\right) \in K$, where χ_{A} stands for the characteristic function of A

$$
\chi_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A .\end{cases}
$$

The family of all nonempty closed and decomposable sets in $\mathbf{L}_{E}^{1}([0,1])$ we will denote by $\operatorname{dec}_{E}([0,1])$. For given $K \in \operatorname{dec}_{E}([0,1])$ and $\chi \in \mathbf{L}_{\mathbb{R}}^{\infty}([0,1])$ let $K \chi$ stands for the set

$$
K \chi=\left\{u \in \mathbf{L}_{E}^{1}([0,1]): u=v \cdot \chi \text { and } v \in K\right\} .
$$

Consider a multifunction $K: E \rightarrow \operatorname{dec}_{E}([0,1])$, for given $\chi: E \rightarrow \mathbf{L}_{\mathbb{R}}^{\infty}([0,1])$ denote by $K \chi(\cdot)$ the multifunction defined by $K \chi(x)=K(x) \chi(x)$.
we need the following results in [7].
Definition 2.1. The mapping $D: E \rightarrow \mathcal{L}([0,1])$ is said to be:
(a) lower semicontinuous with respect to λ (λ-1.s.c.) at x_{0} if and only if

$$
\lim _{x \rightarrow x_{0}} \lambda\left[D\left(x_{0}\right) \backslash D(x)\right]=0 ;
$$

(b) upper semicontinuous with respect to λ (λ-u.s.c.) at x_{0} if and only if $G(s)=$ $[0,1] \backslash D(s)$ is λ-l.s.c. at x_{0};
(c) λ-l.s.c. (λ-u.s.c.) if it is λ-1.s.c. $\left(\lambda\right.$-u.s.c.) at every point $x_{0} \in E$;
(d) continuous with respect to $\lambda\left(\lambda-\mathrm{c}\right.$.) at x_{0} if and only if it is both λ-l.s.c. and λ-u.s.c. at x_{0}.

Proposition 2.2. Notice that
(a) λ-c. of $D: E \rightarrow \mathcal{L}([0,1])$ is equivalent to the continuity of $x \mapsto \chi_{D(x)}$ from E into \mathbf{L}^{1}.
(b) λ-l.s.c. of $D: E \rightarrow \mathcal{L}([0,1])$ is equivalent to the existence of λ-c. $D_{k}: E \rightarrow$ $\mathcal{L}([0,1]), k=1,2, \ldots$, such that

$$
\chi_{D(x)}=\sup _{k} \chi_{D_{k}(x)} \quad \text { for } x \in E .
$$

(c) λ-u.s.c. of $D: E \rightarrow \mathcal{L}([0,1])$ is equivalent to the existence of λ-c. $D_{k}: E \rightarrow$ $\mathcal{L}([0,1]), k=1,2, \ldots .$, such that

$$
\chi_{D(x)}=\inf _{k} \chi_{D_{k}(x)} \quad \text { for } x \in E .
$$

Lemma 2.3. Let $U: I:=[0,1] \rightarrow E$ be a measurable multifunction with closed values for almost all $t \in I$. For any given $x \in \mathbf{C}_{E}(I)$ denote by $D(x)=\{t: x(t) \notin$ $U(t)\}$. Then $D(x)$ is λ-l.s.c.

Definition 2.4. Let $K: E \rightarrow \boldsymbol{\operatorname { d e c }}_{E}([0,1])$ be a multifunction satisfying
(i) $K(\cdot)$ is integrably bounded;
(ii) there is a λ-l.s.c. mapping $D: E \rightarrow \mathcal{L}([0,1])$ such that
(H1) $K \chi_{D}(\cdot)$ is l.s.c.;
(H2) for every $x_{0} \in E$ the map $K(\cdot)\left(1-\chi_{D\left(x_{0}\right)}\right)$ is u.s.c. at x_{0}.
Then K is called mixed semicontinuous (m.s.c.).
Theorem 2.5. Let $K: E \rightarrow \boldsymbol{d e c}_{E}([0,1])$ be a mixed semicontinuous multifunction. Then $K(\cdot)$ admits an u.s.c. multiselection $M(\cdot)$. This multiselection can be chosen in the form

$$
M(x)=l(x) \cdot \chi_{D(x)}+K_{\left(1-\chi_{D}\right)}(x)
$$

where $l: E \rightarrow \mathbf{L}_{E}^{1}([0,1])$ is a properly constructed Borel selection of $K(\cdot)$.
Moreover, if the sets $K(x)\left(1-\chi_{D(x)}\right)$ are convex, then the multiselection $M(\cdot)$ is convex valued.

3. Existence results for second order differential inclusions

We begin by a lemma which summarizes some properties of some Hartman type function (see [2], [3], [9], [8], [10]). It is useful in the study of our boundary problem for differential inclusions.
Lemma 3.1. Let E be a separable Banach space and let $G:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be the function defined by

$$
G(t, s)= \begin{cases}(t-1) s & \text { if } 0 \leq s \leq t \\ t(s-1) & \text { if } t \leq s \leq 1\end{cases}
$$

Then the following assertions hold:

1) if $u \in \mathbf{W}_{E}^{2,1}([0,1])$ with $u(0)=u(1)=0$, then

$$
u(t)=\int_{0}^{1} G(t, s) \ddot{u}(s) d s, \forall t \in[0,1]
$$

2) $G(\cdot, s)$ is derivable on $[0,1]$, for every $s \in[0,1]$, its derivative is given by

$$
\frac{\partial G}{\partial t}(t, s)= \begin{cases}s & \text { if } 0 \leq s<t \\ (s-1) & \text { if } t \leq s \leq 1\end{cases}
$$

3) $G(\cdot, \cdot)$ and $\frac{\partial G}{\partial t}(\cdot, \cdot)$ satisfies

$$
\sup _{t, s \in[0,1]}|G(t, s)| \leq 1, \quad \sup _{t, s \in[0,1]}\left|\frac{\partial G}{\partial t}(t, s)\right| \leq 1
$$

4) Let $f \in \mathbf{L}_{E}^{1}([0,1])$ and let $u_{f}:[0,1] \rightarrow E$ be the function defined by

$$
u_{f}(t)=\int_{0}^{1} G(t, s) f(s) d s, \forall t \in[0,1]
$$

then $u_{f}(0)=u_{f}(1)=0$.
Further, the function u_{f} is derivable, and its derivative \dot{u}_{f} satisfies

$$
\lim _{h \rightarrow 0} \frac{u_{f}(t+h)-u_{f}(t)}{h}=\dot{u}_{f}(t)=\int_{0}^{1} \frac{\partial G}{\partial t}(t, s) f(s) d s
$$

for all $t \in[0,1]$. Consequently \dot{u}_{f} is a continuous mapping from $[0,1]$ into E.
5) The function \dot{u}_{f} is scalary derivable, that is, for every $x^{\prime} \in E^{\prime}$, the scalar function $\left\langle x^{\prime}, \dot{u}_{f}(\cdot)\right\rangle$ is derivable, and its weak derivative \ddot{u}_{f} is equal to f a.e.

Let us mention a useful consequence of Lemma 3.1.
Proposition 3.2. Let E be a separable Banach space and let $f:[0,1] \rightarrow E$ be a continuous mapping (respectively a mapping in $\left.\mathbf{L}_{E}^{1}([0,1])\right)$. Then the function

$$
u_{f}(t)=\int_{0}^{1} G(t, s) f(s) d s, \forall t \in[0,1]
$$

is the unique $\mathbf{C}_{E}^{2}([0,1])$-solution (respectively $\mathbf{W}_{E}^{2,1}([0,1])$-solution) to the differential equation

$$
\left\{\begin{array}{l}
\ddot{u}(t)=f(t) \quad \forall t \in[0,1] \\
u(0)=u(1)=0
\end{array}\right.
$$

Now, we are ready to prove the main existence theorem.
Theorem 3.3. Let E be a separable Banach space, and let $F:[0,1] \times E \times E \rightharpoondown E$ be a multifunction with nonempty compact values satisfying:
(i) F is $\mathcal{L}([0,1]) \otimes \mathcal{B}(E) \otimes \mathcal{B}(E)$-measurable;
(ii) $F(t, \cdot, \cdot)$ is upper semicontinuous for almost every $t \in[0,1]$;
(iii) for each $(t, x, y) \in[0,1] \times E \times E$ such that $F(t, x, y)$ is nonconvex the map $F(t, \cdot, \cdot)$ is lower semicontinuous at (x, y).
Let $\Gamma:[0,1] \rightharpoondown E$ be an integrably bounded multifunction with nonempty convex compact values such that $F(t, x, y) \subset \Gamma(t)$ for every $(t, x, y) \in[0,1] \times E \times E$. Then the $\mathbf{W}_{E}^{2,1}([0,1])$-solutions set of the differential inclusion

$$
\left\{\begin{array}{l}
\ddot{u}(t) \in F(t, u(t), \dot{u}(t)) \subset \Gamma(t) \text { a.e in }[0,1] ; \tag{1}\\
u(0)=u(1)=0
\end{array}\right.
$$

is nonempty and compact in the Banach space $\mathbf{C}_{E}([0,1])$.
Proof. Step 1. Let us consider the differential inclusion

$$
\left\{\begin{array}{l}
\ddot{u}(t) \in \Gamma(t) \text { a.e in }[0,1] \tag{3}\\
u(0)=u(1)=0
\end{array}\right.
$$

We wish to show that the $\mathbf{W}_{E}^{2,1}([0,1])$-solutions set \mathbf{X}_{Γ} of (3) is nonempty convex compact in the Banach space $\mathbf{C}_{E}([0,1])$ endowed with the topology of uniform convergence.

First, let us recall (see [6]), that the set \mathbf{S}_{Γ}^{1} of all measurable selections of Γ is convex and compact for the weak topology $\sigma\left(\mathbf{L}_{E}^{1}([0,1]), \mathbf{L}_{E^{\prime}}^{\infty}([0,1])\right)$. Furthermore, the set-valued integral

$$
\int_{0}^{1} \Gamma(t) d t=\left\{\int_{0}^{1} f(t) d t, \quad f \in \mathbf{S}_{\Gamma}^{1}\right\}
$$

is convex and norm-compact. (See [4], [5], [6]) for a more general result.
In view of Lemma 3.1 and Proposition 3.2, the solutions set \mathbf{X}_{Γ} is nonempty and characterized by

$$
\mathbf{X}_{\Gamma}=\left\{u_{f}:[0,1] \rightarrow E: \quad u_{f}(t)=\int_{0}^{1} G(t, s) f(s) d s, \forall t \in[0,1] ; f \in \mathbf{S}_{\Gamma}^{1}\right\}
$$

Clearly \mathbf{X}_{Γ} is convex. We claim that \mathbf{X}_{Γ} is compact in $\mathbf{C}_{E}([0,1])$. Since

$$
\begin{aligned}
\left\|u_{f}(t)-u_{f}(\tau)\right\| & \leq \int_{0}^{1}|G(t, s)-G(\tau, s)|\|f(s)\| d s \\
& \leq \int_{0}^{1}|G(t, s)-G(\tau, s) \| \Gamma(s)| d s
\end{aligned}
$$

for all $f \in \mathbf{S}_{\Gamma}^{1}$ and for all $t, \tau \in[0,1], \mathbf{X}_{\Gamma}$ is equicontinuous in $\mathbf{C}_{E}([0,1])$. Further the set $\mathbf{X}_{\Gamma}(t)$ is relatively compact in E because it is included in the norm compact set $\int_{0}^{1} G(t, s) \Gamma(s) d s$. Let $\left(f_{n}\right)_{n}$ be a sequence in \mathbf{S}_{Γ}^{1}. As \mathbf{S}_{Γ}^{1} is weakly compact in $\mathbf{L}_{E}^{1}([0,1])$, we extract from $\left(f_{n}\right)$ a sequence $\left(f_{m}\right)$ such that $\left(f_{m}\right)$ converges $\sigma\left(\mathbf{L}_{E}^{1}([0,1]), \mathbf{L}_{E^{\prime}}^{\infty}([0,1])\right)$ to a function $f \in \mathbf{S}_{\Gamma}^{1}$. The sequence $\left(u_{f_{n}}\right)$ is relatively compact in $\mathbf{C}_{E}([0,1])$ by Arzelà-Ascoli's theorem the sequence $\left(u_{f_{m}}\right)$ converges uniformly to a continuous function $\zeta \in \mathbf{C}_{E}([0,1])$. In particular for every $x^{\prime} \in E^{\prime}$ and for every $t \in[0,1]$, we have

$$
\begin{align*}
\lim _{m \rightarrow \infty} \int_{0}^{1}\left\langle G(t, s) x^{\prime}, f_{m}(s)\right\rangle d s & =\lim _{m \rightarrow \infty}\left\langle x^{\prime}, \int_{0}^{1} G(t, s) f_{m}(s) d s\right\rangle \tag{*}\\
\int_{0}^{1}\left\langle G(t, s) x^{\prime}, f(s)\right\rangle d s & =\left\langle x^{\prime}, \int_{0}^{1} G(t, s) f(s) d s\right\rangle
\end{align*}
$$

As the set-valued integral $\int_{0}^{1} G(t, s) \Gamma(s) d s(t \in[0,1])$ is norm compact, $(*)$ shows that the sequence $\left(u_{f_{m}}(\cdot)\right)=\left(\int_{0}^{1} G(\cdot, s) f_{m}(s) d s\right)$ converges pointwise to $u_{f}(\cdot)$, for E endowed with the strong topology, thus we get $\zeta=u_{f}$. This shows the compactness of \mathbf{X}_{Γ} in $\mathbf{C}_{E}([0,1])$.

At this point, it is worth to mention that the sequence $\left(\dot{u}_{f_{m}}(\cdot)\right)=$ $\left(\int_{0}^{1} \frac{\partial G}{\partial t}(\cdot, s) f_{m}(s) d s\right)$ converges pointwise to $\dot{u}_{f}(\cdot)$, for E endowed with the strong topology, using the weak convergence of $\left(f_{m}\right)$ and the norm compactness of the set-valued integral $\int_{0}^{1} \frac{\partial G}{\partial t}(t, s) \Gamma(s) d s(t \in[0,1])$.

Step 2. With problem (1) we shall associate the multifunction $K_{F}: \mathbf{X}_{\Gamma} \rightharpoondown \mathbf{L}_{E}^{1}([0,1]$ given as follows

$$
K_{F}\left(u_{f}\right)=\left\{v \in \mathbf{L}_{E}^{1}\left([0,1]: \quad v(t) \in F\left(t, u_{f}(t), \dot{u}_{f}(t)\right) \text { a.e. in }[0,1]\right\} .\right.
$$

In view of the existence theorem of measurable selections (See [1], [6]) we deduce that $K_{F}\left(u_{f}\right) \neq \emptyset$ for every $u_{f} \in \mathbf{X}_{\Gamma}$. Moreover, $K_{F}\left(u_{f}\right)$ is closed decomposable for every $u_{f} \in \mathbf{X}_{\Gamma}$.

Now, we proceed to prove that K_{F} is a mixed semicontinuous multifunction and consequently it has a convex-valued multiselection M.

The proof would be similar to the one for the first order problem in Theorem 3.9 example (3) in [7]. We include it for the convenience of the reader.

Let $D: \mathbf{X}_{\Gamma} \rightharpoondown \mathcal{L}([0,1])$, such that

$$
D\left(u_{f}\right)=\left\{t \in[0,1]: \quad F\left(t, u_{f}(t), \dot{u}_{f}(t)\right) \text { is nonconvex }\right\}
$$

Denote by

$$
A=\{(t, x, y) \in[0,1] \times E \times E: \quad F(t, x, y)=\overline{c o} F(t, x, y)\}
$$

clearly A is $\mathcal{L}([0,1]) \otimes \mathcal{B}(E) \otimes \mathcal{B}(E)$-measurable. Consider for every $t \in[0,1]$ the set

$$
U(t)=\{(x, y) \in E \times E: \quad(t, x, y) \in A\}
$$

and observe that, for every $u_{f} \in \mathbf{X}_{\Gamma}$

$$
D\left(u_{f}\right)=\left\{t \in[0,1]: \quad\left(u_{f}(t), \dot{u}_{f}(t)\right) \notin U(t)\right\}
$$

Since A is $\mathcal{L}([0,1]) \otimes \mathcal{B}(E) \otimes \mathcal{B}(E)$-measurable, the map $t \mapsto U(t)$ is $\mathcal{L}([0,1])$ measurable. We need to check that $D(\cdot)$ is λ-l.s.c. Using Lemma 2.3 we need to prove that the sets $U(t)$ are closed for all $t \in[0,1]$. Let us assume to a contrary that, for some $t \in[0,1] U(t)$ is not closed. Then there exists a sequence $\left(x_{n}, y_{n}\right) \in$ $E \times E,\left(x_{n}, y_{n}\right) \rightarrow\left(x_{0}, y_{0}\right)$ such that $\left(x_{n}, y_{n}\right) \in U(t)$ and $\left(x_{0}, y_{0}\right) \notin U(t)$. Therefore $F\left(t, x_{n}, y_{n}\right)$ are convex for all $n \in \mathbb{N}^{*}$ while $F\left(t, x_{0}, y_{0}\right)$ is not. Then there are $w, z \in F\left(t, x_{0}, y_{0}\right)$ and $\left.\alpha \in\right] 0,1\left[\right.$ such that $\alpha w+(1-\alpha) z \notin F\left(t, x_{0}, y_{0}\right)$. By the assumptions, the map $(x, y) \mapsto F(t, x, y)$ is continuous at $\left(x_{0}, y_{0}\right)$, then we can pick up $w_{n}, z_{n} \in F\left(t, x_{n}, y_{n}\right)$ such that $w_{n} \rightarrow w$ and $z_{n} \rightarrow z$. Observe that $\alpha w_{n}+(1-$ $\alpha) z_{n} \in F\left(t, x_{n}, y_{n}\right)$ and $\alpha w_{n}+(1-\alpha) z_{n} \rightarrow \alpha w+(1-\alpha) z \notin F\left(t, x_{0}, y_{0}\right)$, against the upper semicontinuity of $F(t, \cdot, \cdot)$ at $\left(x_{0}, y_{0}\right)$. Then the sets $U(t)$ are closed for all $t \in[0,1]$. Consequently $D(\cdot)$ is λ-l.s.c.

Now, we prove that $D(\cdot)$ satisfies $(H 1)$ and $(H 2)$ of Definition 2.4. By the upper semicontinuity of $F(t, \cdot, \cdot)$ we get the u.s.c of K_{F} and thus (H2) holds. To see (H1), fixe $u_{f_{0}} \in \mathbf{X}_{\Gamma}, v_{0} \in K_{F}\left(u_{f_{0}}\right)$ and take any sequence $\left(u_{f_{n}}\right) \subset \mathbf{X}_{\Gamma}$ such that $u_{f_{n}} \rightarrow u_{f_{0}}$ and thus $\dot{u}_{f_{n}} \rightarrow \dot{u}_{f_{0}}$. Let $v_{n} \in K_{F}\left(u_{f_{n}}\right)$ be such integrable functions such that for a.e. $t \in[0,1]$ we have

$$
d\left(v_{n}(t), F\left(t, u_{f_{0}}(t), \dot{u}_{f_{0}}(t)\right)\right)=\left\|v_{n}(t)-v_{0}(t)\right\|
$$

For any $t \in D\left(u_{f_{0}}\right), F(t, \cdot, \cdot)$ is continuous at $\left(u_{f_{0}}(t), \dot{u}_{f_{0}}(t)\right)$ and therefore

$$
\left\|v_{n}(t)-v_{0}(t)\right\| \rightarrow 0 \text { a.e. in } D\left(u_{f_{0}}\right)
$$

The sequence $\left(v_{n}\right)$ is integrably bounded and thus

$$
\lim _{n \rightarrow \infty} \int_{D\left(u_{f_{0}}\right)}\left\|v_{n}(t)-v_{0}(t)\right\| d \lambda=0
$$

Denote by

$$
A_{m}\left(u_{f}\right)=\bigcup_{k=1}^{m} D_{k}\left(u_{f}\right)
$$

where $D_{k}\left(u_{f}\right)$ are as in Proposition 2.2. Observe that $\left(A_{m}(\cdot)\right)$ is an increasing sequence of λ-continuous mapping such that

$$
D\left(u_{f}\right)=\bigcup_{m=1}^{\infty} A_{m}\left(u_{f}\right)
$$

Thus

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{[0,1]} v_{n} \chi_{A_{m}\left(u_{\left.f_{n}\right)}\right)} d \lambda & =\lim _{n \rightarrow \infty} \int_{A_{m}\left(u_{f_{n}}\right)} v_{n} d \lambda=\sum_{k=1}^{m} \lim _{n \rightarrow \infty} \int_{D_{k}\left(u_{f_{n}}\right)} v_{n} d \lambda \\
= & \sum_{k=1}^{m} \int_{D_{k}\left(u_{f_{0}}\right)} v_{0} d \lambda=\int_{A_{m}\left(u_{f_{0}}\right)} v_{0} d \lambda=\int_{[0,1]} v_{0} \chi_{A_{m}\left(u_{\left.f_{0}\right)}\right.} d \lambda
\end{aligned}
$$

then, $v_{n} \chi_{A_{m}\left(u_{f_{n}}\right)} \rightarrow v_{0} \chi_{A_{m}\left(u_{f_{0}}\right)}$ in $\mathbf{L}^{1}([0,1])$. Consequently $K_{F}\left(u_{f}\right) \chi_{A_{m}\left(u_{f}\right)}$ are l.s.c, $m=1,2, \ldots$, and thus

$$
K_{F}\left(u_{f}\right) \chi_{D\left(u_{f}\right)}=\bigcup_{m=1}^{\infty} K_{F}\left(u_{f}\right) \chi_{A_{m}\left(u_{f}\right)}
$$

is l.s.c. We concluded that K_{F} is mixed semicontinuous. Then, there exists an u.s.c multiselection $M: \mathbf{X}_{\Gamma} \rightharpoondown \mathbf{L}_{E}^{1}([0,1])$ with closed convex values such that $M\left(u_{f}\right) \subset$ $K_{F}\left(u_{f}\right)$ for every $u_{f} \in \mathbf{X}_{\Gamma}$.
Step 3. Taking the results obtained in Step 1 account, a map $u:[0,1] \rightarrow E$ is a $\mathbf{W}_{E}^{2,1}([0,1])$-solution of the problem (1), iff there exists $f \in \mathbf{S}_{\Gamma}^{1}$ such that $u:=u_{f} \in$ \mathbf{X}_{Γ} and such that $f(t) \in F\left(t, u_{f}(t), \dot{u}_{f}(t)\right)$ for almost every $t \in[0,1]$.
For any $f \in \mathbf{S}_{\Gamma}^{1}$ consider the set

$$
\Phi(f)=\left\{g \in \mathbf{L}_{E}^{1}([0,1]): \quad g \in M\left(u_{f}\right) \text { a.e. in }[0,1]\right\}
$$

From the existence theorem of measurable selections (see [1], [6]) one can deduce that $\Phi(f)$ are nonempty subsets of $\mathbf{L}_{E}^{1}([0,1])$. It is clear that $\Phi(f)$ are convex weakly compact subsets of \mathbf{S}_{Γ}^{1}. We need to check that $\Phi: \mathbf{S}_{\Gamma}^{1} \rightharpoondown \mathbf{S}_{\Gamma}^{1}$ is upper semicontinuous on the convex weakly compact metrizable set \mathbf{S}_{Γ}^{1}. Equivalently, we need to prove that the graph of Φ is sequentially weakly compact in $\mathbf{S}_{\Gamma}^{1} \times \mathbf{S}_{\Gamma}^{1}$. Let $\left(f_{n}\right)_{n}$ be a sequence in \mathbf{S}_{Γ}^{1}. By extracting a subsequence we may suppose that $\left(f_{n}\right)$ converges weakly to $f \in \mathbf{S}_{\Gamma}^{1}$. It follows that $\left(u_{f_{n}}\right)$ converges pointwise to u_{f}, for E endowed with the norm topology. Let $g_{n} \in \Phi\left(f_{n}\right) \subset \mathbf{S}_{\Gamma}^{1}$. We may suppose that $\left(g_{n}\right)$ converges weakly to some element $g \in \mathbf{S}_{\Gamma}^{1}$. As $g_{n} \in M\left(u_{f_{n}}\right)$ using the upper semicontinuity of $M(\cdot)$ we can check that $g \in M\left(u_{f}\right)$. Thus the graph of Φ is weakly compact in the weakly compact set $\mathbf{S}_{\Gamma}^{1} \times \mathbf{S}_{\Gamma}^{1}$. Hence, the application of the

Kakutani-Ky Fan fixed point theorem to the multifunction $\Phi(\cdot)$, there exists $f_{0} \in \mathbf{S}_{\Gamma}^{1}$ such that $f_{0} \in M\left(f_{0}\right) \subset K_{F}\left(f_{0}\right)$, and so $f_{0}(t) \in F\left(t, u_{f_{0}}(t), \dot{u}_{f_{0}}(t)\right)$ for almost every $t \in[0,1]$. Equivalently, (see Lemma 3.1) $\ddot{u}_{f_{0}}(t) \in F\left(t, u_{f_{0}}(t), \dot{u}_{f_{0}}(t)\right)$ a.e. in [0,1] with $u_{f_{0}}(0)=u_{f_{0}}(1)$, what, in turn, means that the mapping $u_{f_{0}}$ is a solution to our problem (1).
Acknowledgements. The authors would like to thank Professor. Charles Castaing who suggested the research problem studied in this paper.

References

[1] J.P. Aubin and A. Cellina, Differential inclusions-set-valued maps and viability theory, Springer-Verlag, Berlin (1984).
[2] D. Azzam-Laouir, Contribution à l'étude de problèmes d'évolution du second ordre, Thèse de doctorat d'état, Constantine, Juin 2003.
[3] D. Azzam-Laouir, C. Castaing and L. Thibault, Three boundary value problems for second order differential inclusions in Banach spaces, Control and Cybernetics, Vol. 31 (2002) No. 3, pp. 659-693.
[4] C. Castaing, Quelques applications du théorème de Banach-Dieudonné à l'intégration, Service de Mathématiques, Preprint No 67, Université de Montpellier (1969).
[5] C. Castaing, Quelques résultats de compacité liés à l'intégration, Colloque Anal. Fonct. (parution originelle) (1971), Bull. Soc. Math. France 31-32 (1972), 73-81.
[6] C. Castaing, M. Valadier, Convex analysis and measurable multifunctions, Lectures Notes in Mth., 580 springer-Verlag, Berlin (1977).
[7] A. Fryszkowski and L. Górniewicz, Mixed semicontinuous mapping and their applications to differential inclusions, Set-Valued Analysis 8: 203-217, 2000.
[8] P. Hartman, Ordinary differential equations, John Wiley and Sons, New York, London Sydney (1967).
[9] A.G. Ibrahim and A.M.M. Gomaa, Existence theorems for functional multivalued three-point boundary value problem of second order, J. Egypt. Math. Soc. 8(2) (2000), 155-168.
[10] S.A. Marano, Existence theorems for multivalued boundary value problem, Bull. Australian Math. Soc. 45 (1992), 249-260.
[11] S.A. Marano, A remark on a second order three-point boundary value problem, J. Math. Anal. Apll. 183 (1994), 518-522.

Manuscript received March 24, 2004
revised June 1, 2005

D. L. Azzam

Département de Mathématiques, Faculté des Sciences, Université de Jijel, Algérie.
E-mail address: azzam_d@mail.univ-jijel.dz, azzam_d@yahoo.com
S. Lounis

Département de Mathématiques, Faculté des Sciences, Université de Jijel, Algérie. E-mail address: lounis_18sabrina@yahoo.fr

[^0]: Key words and phrases. Multifunction, mixed semicontinuous conditions, differential inclusions, second derivative, selections.

