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UNIFORM SMOOTHNESS AND U-CONVEXITY OF ψ-DIRECT
SUMS

SOMPONG DHOMPONGSA, ATTAPOL KAEWKHAO, AND SATIT SAEJUNG

Abstract. We study the ψ-direct sum, introduced by K.-S. Saito and M. Kato,
of U -spaces, introduced by K. S. Lau. For Banach spaces X and Y and a contin-
uous convex function ψ on the unit interval [0, 1] satisfying certain conditions, let
X⊕ψ Y be the ψ-direct sum of X and Y equipped with the norm associated with
ψ. We first show that the dual space (X ⊕ψ Y )∗ of X ⊕ψ Y is isometric to the
space X∗ ⊕ϕ Y ∗ for some continuous convex function ϕ satisfying the same con-
ditions as of ψ. We introduce the so-called u-spaces and show that: (1) X⊕ψ Y is
a smooth space if and only if X, Y are smooth spaces and ψ is a smooth function.
We also show that (2) X⊕ψ Y is a u-space if and only if X, Y are u-spaces and ψ
is a u-function. As consequences, using the notion of ultrapower, we obtain : (3)
X ⊕ψ Y is uniformly smooth if and only if X, Y are uniformly smooth and ψ is
a smooth function, and (4) X ⊕ψ Y is a U -space if and only if X, Y are U -spaces
and ψ is a u-function.

1. Introduction

For every continuous convex function ψ on [0, 1] satisfying ψ(0) = ψ(1) = 1
and max{1 − t, t} ≤ ψ(t) ≤ 1 (0 ≤ t ≤ 1), there corresponds a unique absolute
normalized norm ‖ · ‖ on C2 (see Bonsall and Duncan [3], also [19]). Recently, in
[16] the authors introduced the ψ-direct sums X ⊕ψ Y of Banach spaces X and Y
equipped with the norm associated with ψ, and proved that X ⊕ψ Y is uniformly
convex if and only if X, Y are uniformly convex and ψ is strictly convex. We write
X ' Y to indicate that X and Y are isometric (or Banach isomorphism, see [12]).

The purposes of this paper are to characterize uniform smoothness and U -con-
vexity of X⊕ψY . In Section 2 we shall recall some fundamental facts on the ψ-direct
sums of Banach spaces and introduce the dual function ϕ of ψ so that the dual space
(X ⊕ψ Y )∗ of X ⊕ψ Y is X∗⊕ϕ Y ∗. In Section 3 we shall show that the ultrapower
of X ⊕ψ Y is the ψ-direct sum of the ultrapowers of X and of Y . In Section 4 we
shall prove that X ⊕ψ Y is a smooth space if and only if X, Y are smooth spaces
and ψ is a smooth function, and by using the ultrapower technique we obtain that
X ⊕ψ Y is uniformly smooth if and only if X, Y are uniformly smooth and ψ is a
smooth function. In Section 5 we introduce new spaces, namely u-spaces, and prove
that X⊕ψ Y is a u-space if and only if X, Y are u-spaces and ψ is a u-function, and
again by using the ultrapowers we have X ⊕ψ Y is a U -space if and only if X, Y are
U -spaces and ψ is a u-function.
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2. The ψ-direct sums

Let X be a Banach space. Throughout this paper, let X∗ be the dual space
of X, SX = {x ∈ X : ‖x‖ = 1}, BX = {x ∈ X : ‖x‖ ≤ 1}, and for x 6= 0,
∇x = {f ∈ SX∗ : f(x) = ‖x‖}. In this section we shall recall the definition of the
ψ-direct sum X ⊕ψ Y of Banach spaces X and Y . A norm on C2 is called absolute
if ‖(z, w)‖ = ‖(|z|, |w|)‖ for all (z, w) ∈ C2 and normalized if ‖(1, 0)‖ = ‖(0, 1)‖ = 1.
The set of all absolute normalized norms on C2 is denoted by Na. The lp-norms
‖ · ‖p (1 ≤ p ≤ ∞) on C2 are examples of such norms, and for any norm ‖ · ‖ ∈ Na,

‖ · ‖∞ ≤ ‖ · ‖ ≤ ‖ · ‖1.

Let Ψ be the set of all continuous convex functions ψ on [0, 1] satisfying ψ(0) =
ψ(1) = 1 and max{1 − t, t} ≤ ψ(t) ≤ 1 (0 ≤ t ≤ 1). Na and Ψ are in one-to-one
correspondence under the following equations. For each ‖ · ‖ ∈ Na, the function ψ
defined by ψ(t) = ‖(1− t, t)‖ (0 ≤ t ≤ 1) belongs to Ψ. Conversely, for each ψ ∈ Ψ,
let ‖(0, 0)‖ψ = 0, and ‖(z, w)‖ψ = (|z| + |w|)ψ( |w|

|w|+|z|) for (z, w) 6= (0, 0) and this
norm belongs to Na (see [3] and [19]). For Banach spaces X and Y , we denote by
X ⊕ψ Y the direct sum X ⊕ Y equipped with the norm

‖(x, y)‖ = ‖(‖x‖, ‖y‖)‖ψ for (x, y) ∈ X ⊕ Y.

Thus, under this norm, X ⊕ψ Y , which will be called the ψ-direct sum of X and Y ,
is a Banach space and for all (x, y) ∈ X ⊕ Y we also have (see [16])

‖(x, y)‖∞ ≤ ‖(x, y)‖ψ ≤ ‖(x, y)‖1.

Saito et al. [16] extended the concept to absolute normalized norm on Rn.
The corresponding set of all continuous convex functions on the (n − 1)−simplex
{(s1, ..., sn−1) ∈ Rn−1

+ : s1 + ... + sn−1 ≤ 1} will be denoted by Ψn.
Now we show that the dual space of this ψ-direct sum is a direct sum X ⊕ϕ Y of

the same kind for some ϕ ∈ Ψ. We first define

ϕψ(s) = ϕ(s) := sup
t∈[0,1]

st + (1− s)(1− t)
ψ(t)

for s ∈ [0, 1]. We show that ϕ ∈ Ψ and call it the dual function of ψ.

Proposition 1. The above function ϕ is continuous, convex on [0, 1] and satisfies
ϕ(s) ≥ max{s, 1− s} for all s ∈ [0, 1].

Proof. It is easy to see that ϕ(·) is continuous. To show that ϕ is convex, we let
s1, s2 ∈ [0, 1] and consider

ϕ
(s1 + s2

2

)
= sup

t∈[0,1]

s1+s2
2 t + (1− s1+s2

2 )(1− t)
ψ(t)

= sup
t∈[0,1]

1
2

s1t + s2t + (1− s1)(1− t) + (1− s2)(1− t)
ψ(t)

≤ 1
2
(ϕ(s1) + ϕ(s2)),
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which verifies the convexity of ϕ(·). Next we prove the last assertion. Since ψ(t) ≤ 1
for all t ∈ [0, 1],

ϕ(s) ≥ sup
t∈[0,1]

{st + (1− s)(1− t)} ≥ max{s, 1− s}

for all s ∈ [0, 1], and the proof is complete. ¤
Theorem 2. The dual space (X ⊕ψ Y )∗ is isometric to X∗ ⊕ϕ Y ∗, where ϕ is the
dual function of ψ. Moreover, each bounded linear functional F in (X ⊕ψ Y )∗ can
be (uniquely) represented by (f, g) where f ∈ X∗ and g ∈ Y ∗ and

F (x, y) = f(x) + g(y)

for all (x, y) ∈ X ⊕ψ Y . In this case, ‖F‖ ≤ ‖(f, g)‖ϕ‖(x, y)‖ψ.

Proof. Define T : X∗ ⊕ϕ Y ∗ → (X ⊕ψ Y )∗ by

T (f, g)(x, y) = f(x) + g(y)

where f ∈ X∗, g ∈ Y ∗, x ∈ X, and y ∈ Y . It is easy to see that T is linear.
Moreover, by the definition of ϕ, we have, recalling that the norm of each nonzero
element (f, g) of the ϕ-direct sum X∗ ⊕ϕ Y ∗ is defined by

‖(f, g)‖ϕ = (‖f‖+ ‖g‖)ϕ
( ‖g‖
‖f‖+ ‖g‖

)
,

|T (f, g)(x, y)| ≤ ‖f‖‖x‖+ ‖g‖‖y‖

= (‖f‖+ ‖g‖)(‖x‖+ ‖y‖) ‖f‖‖x‖+ ‖g‖‖y‖
(‖f‖+ ‖g‖)(‖x‖+ ‖y‖)

≤ (‖f‖+ ‖g‖)ϕ
( ‖g‖
‖f‖+ ‖g‖

)
(‖x‖+ ‖y‖)ψ

( ‖y‖
‖x‖+ ‖y‖

)

= ‖(f, g)‖ϕ‖(x, y)‖ψ,

for all nonzero (f, g). Thus, T (f, g) is actually an element of (X ⊕ψ Y )∗. For each
F ∈ (X ⊕ψ Y )∗, F (·, 0) and F (0, ·) are bounded linear functionals on X and Y ,
respectively. Put f(x) = F (x, 0) and g(y) = F (0, y), then T (f, g) = F and the
surjectivity of T is proved.

Finally we prove that T is an isometry, i.e., ‖T (f, g)‖ = ‖(f, g)‖ϕ. From the
above calculation, we always have ‖T (f, g)‖ ≤ ‖(f, g)‖ϕ. Now we prove the reverse
inequality. We choose sequences {tn} ⊂ [0, 1], {xn} ⊂ SX , and {yn} ⊂ SY so that

1
ψ(tn)

((1− tn)‖f‖
‖f‖+ ‖g‖ +

tn‖g‖
‖f‖+ ‖g‖

)
→ ϕ

( ‖g‖
‖f‖+ ‖g‖

)
,

f(xn) → ‖f‖, and g(yn) → ‖g‖ as n →∞.

Therefore, since 1
ψ(tn)((1− tn)xn, tnyn) ∈ SX⊕ψY ,

‖T (f, g)‖ ≥ 1
ψ(tn)

(
f((1− tn)xn) + g(tnyn)

)

= (‖f‖+ ‖g‖) 1
ψ(tn)

((1− tn)f(xn)
‖f‖+ ‖g‖ +

tng(yn)
‖f‖+ ‖g‖

)
.
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The last expression tends to ‖(f, g)‖ϕ as n →∞, proving that ‖T (f, g)‖ ≥ ‖(f, g)‖ϕ

and this completes the proof. ¤

Our first application of Theorem 2 is to show that reflexivity is preserved under
the ψ-direct sums.

Corollary 3. For each ψ ∈ Ψ, X ⊕ψ Y is reflexive if and only if X and Y are
reflexive.

Proof. We only proof the sufficiency. We first show, without using reflexivity, that
(X ⊕ψ Y )∗∗ ' X∗∗⊕ψ Y ∗∗, i.e., they are isometric. For this, we let ϕ and then θ be
the dual functions of ψ and of ϕ, respectively. Thus (X ⊕ψ Y )∗ ' X∗⊕ϕ Y ∗ by the
isometry T where TF = (F1, F2), F1 = F (·, 0) and F2 = F (0, ·); and (X∗⊕ϕ Y ∗)∗ '
X∗∗ ⊕θ Y ∗∗ by the isometry U where UG = (G1, G2), G1 = G(·, 0) and G2 =
G(0, ·). Hence (X ⊕ψ Y )∗∗ ' X∗∗ ⊕θ Y ∗∗ via the isometry which maps L ∈ (X ⊕ψ

Y )∗∗ to ULT−1 = (LT−1(·, 0), LT−1(0, ·)) ∈ X∗∗ ⊕θ Y ∗∗ so that ULT−1(x∗, y∗) =
(LT−1(x∗, 0), LT−1(0, y∗)) = (L(x∗, 0), L(0, y∗)) = (L1(x∗), L2(y∗)). In particular,
when L = L(x,y), the evaluation map at (x, y), i.e., L(x,y)(F ) = F (x, y) = F1(x) +
F2(y) for F ∈ (X ⊕ψ Y )∗, UL(x,y)T

−1(x∗, y∗) = x∗(x) + y∗(y) = Lx(x∗) + Ly(y∗) =
(Lx, Ly)(x∗, y∗). This shows that ‖(x, y)‖ψ = ‖L(x,y)‖ = ‖(Lx, Ly)‖θ for (x, y) ∈
X ⊕Y. Therefore, ψ( ‖y‖

‖x‖+‖y‖) = θ( ‖Ly‖
‖Lx‖+‖Ly‖) = θ( ‖y‖

‖x‖+‖y‖) for ‖x‖+ ‖y‖ 6= 0. From
this we can easily see that ψ = θ.

Now suppose that X and Y are reflexive. Thus elements in X∗∗ and Y ∗∗ are of the
form Lx and Ly for some x ∈ X and y ∈ Y. To show that (X⊕ψ Y )∗∗ is reflexive, let
L ∈ (X⊕ψ Y )∗∗ and consider, for each F ∈ (X⊕Y )∗, L(F ) = L(F1, 0)+L(0, F2) =
Lx(F1) + Ly(F2) = F1(x) + F2(y) = L(x,y)(F ), for some x ∈ X and y ∈ Y. That is
L = L(x,y) showing that X ⊕ψ Y is reflexive and the proof is complete. ¤

We observe that X ⊕ψ Y is super-reflexive when (and only when) X and Y are
super-reflexive. By Henson and Moore [7], this is equivalent to showing that the
ultrapower X̃ ⊕ψ Y is reflexive. But this follows from Remark 5 below and Corollary
3.

3. Ultrapowers of the ψ-direct sums

The ultrapower of a Banach space is proved to be useful in many branches of
mathematics. Many results can be seen more easily when treated in this setting.
In this section we prove that every ultrapower of a ψ-direct sum is isometric to
the ψ-direct sum of their ultrapowers. First we recall some basic facts about the
ultrapowers. Let F be a filter on an index set I and let {xi}i∈I be a family of points
in a Hausdorff topological space X. {xi}i∈I is said to converge to x with respect to
F , denoted by limF xi = x, if for each neighborhood U of x, {i ∈ I : xi ∈ U} ∈ F . A
filter U on I is called an ultrafilter if it is maximal with respect to the set inclusion.
An ultrafilter is called trivial if it is of the form {A : A ⊂ I, i0 ∈ A} for some fixed
i0 ∈ I, otherwise, it is called nontrivial. We will use the fact that

(i) U is an ultrafilter if and only if for any subset A ⊂ I, either A ∈ U or
I \A ∈ U , and
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(ii) if X is compact, then the limU xi of a family {xi} in X always exists and is
unique.

Let {Xi}i∈I be a family of Banach spaces and let l∞(I, Xi) denote the subspace
of the product space Πi∈IXi equipped with the norm ‖(xi)‖ := supi∈I ‖xi‖ < ∞.

Let U be an ultrafilter on I and let

NU = {(xi) ∈ l∞(I, Xi) : lim
U
‖xi‖ = 0}.

The ultraproduct of {Xi} is the quotient space l∞(I, Xi)/NU equipped with the
quotient norm. Write (xi)U to denote the elements of the ultraproduct. It follows
from remark (ii) above and the definition of the quotient norm that

‖(xi)U‖ = lim
U
‖xi‖.

In the following, we will restrict our index set I to be N, the set of natural numbers,
and let Xi = X, i ∈ N, for some Banach space X. For an ultrafilter U on N, we
write X̃ to denote the ultraproduct which will be called an ultrapower of X. Note
that if U is nontrivial, then X can be embedded into X̃ isometrically (for more
details see [17] ).

Following T. Landes [11], a normed space Z is a substitution space (with index
I 6= ∅ with any cardinality) whenever Z has a (Shauder) basis (ei)i∈I (unconditional
if I is uncountable) and the norm of Z is monotone, i.e., ‖z‖ ≤ ‖z′‖ whenever
0 ≤ zi ≤ z′i for all i ∈ I (z, z′ ∈ Z), where we write z =

∑
i∈I ziei for z ∈ Z. Given a

family (Xi)i∈I of normed spaces, then the Z direct sum (
⊕

i∈I Xi)Z of the family
(Xi) is defined to be the space {x = (xi)i∈I ∈

∏
i∈I Xi :

∑
i∈I ‖xi‖ei ∈ Z} endowed

with the norm ‖ ∑
i∈I ‖xi‖ei ‖Z . ψ− direct sums are examples of Z−direct sums.

A property P defined for normed spaces is said to be preserved under the Z-
direct-sum-operation, if the Z-direct sums of a family (Xi)i∈I of normed spaces
satisfies P whenever all Xi do so.

The following proposition shows that, under some conditions, “normal structure”
is preserved under the Z-direct-sum-operation. This result improves the first per-
manence result for normal structure obtained by Belluce, Kirk, and Steiner [2].

Proposition 4. [11, Theorem 2, Corollary 3 and Corollary 4] Let Z be a substitution
space with index set I = {1, . . . , N} such that

‖z + z′‖ < 2 whenever ‖z‖ = ‖z′‖ = 1, zi ≥ 0, z′i ≥ 0 for all i ∈ I,

and zi = z′i only for these i ∈ I for which zi = z′i = 0.

Thus, normal structure is preserved under the Z-direct-sum-operation. In particu-
lar, if Z is strictly convex or Z = lNp for any p with 1 < p ≤ ∞.

In case I = {1, ..., N} and ψ is strictly convex, it follows from [9] that the norm
‖ · ‖ψ is monotone and strictly convex on CN . We note in passing that this result
actually holds for Z−direct sum : The Z− direct sums (

⊕
iXi)Z is uniformly convex

if and only if Z and each of the Banach space Xi are uniformly convex with a
common modulus of convexity (see Dowling [5]).

Remark 5. It is easy to see that the ultrapower of Z−direct sum (
⊕

iXi)Z is iso-
metric to the Z−direct sum (

⊕
i X̃i)Z of ultrapowers. Thus in particular,
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˜(X1 ⊕ · · · ⊕XN )ψ ' (X̃1⊕· · ·⊕ X̃N )ψ. This follows from the fact that the Z−norm
is monotone and from the continuity of norms.

It is known that X is uniformly convex if and only if X̃ is strictly convex (see
[17]). Combining these results and Remark 5 gives

Corollary 6. [9] Let X1, ..., XN be Banach spaces and ψ ∈ ΨN . Then (X1 ⊕ · · · ⊕
XN )ψ is uniformly convex if and only if X1, ...XN are uniformly convex and ψ is
strictly convex.

Thus, in the light of super-reflexivity, we can extend “normal structure” to “uni-
form normal structure” for ψ-direct sums whenever ψ is strictly convex.

Corollary 7. Let X1, ..., XN be super-reflexive Banach spaces and Z be uniformly
convex. Then, the Z-direct sum (X1 ⊕ · · · ⊕XN )Z has uniform normal structure if
and only if X1, ..., XN have uniform normal structure.

Proof. Note that, by Khamsi [10], it suffices to show that the ultrapower
˜(X1 ⊕ · · · ⊕XN )Z has normal structure. But this is an immediate consequence

of Remark 5 together with Proposition 4. ¤
It is well-known that every uniformly nonsquare space is super-reflexive (see [8]).

Thus, Corollary 7 and [4, Corollary 3.7] give

Corollary 8. Let X1, ..., XN be Banach spaces and Z be uniformly convex. Then,
if CNJ(1, Xi) < 2 for i = 1, 2, ..., N, the Z-direct sum (X1⊕· · ·⊕XN )Z has uniform
normal structure.

It is interesting to see if we can conclude that CNJ(1, (X1 ⊕ · · · ⊕XN )Z) < 2 in
Corollary 8.

4. Smoothness of the ψ-direct sums

A Banach space X is said to be smooth if for any x ∈ SX , ∇x is a singleton. We
recall that a continuous convex function ψ has left and right derivatives ψ′L, ψ′R. Let
G be defined on [0, 1] by

G(0) = [−1, ψ′R(0)], G(1) = [ψ′L(1), 1],

G(t) = [ψ′L(t), ψ′R(t)] (0 < t < 1).

Given ψ ∈ Ψ, t ∈ [0, 1], let

x(t) =
1

ψ(t)
(1− t, t)

so that ‖x(t)‖ψ = 1. In [3], the authors identified the dual of (C2, ‖.‖ψ) with C2

and used this fact to provide a proof of the following lemma.

Lemma 9. [3, Lemma 4] For ψ, G, and x defined above,
(1) ∇x(t) = {(ψ(t)− tγ, ψ(t) + (1− t)γ) : γ ∈ G(t)} for 0 < t < 1,
(2) ∇x(0) = {(1, z(1 + γ)) : γ ∈ G(0), |z| = 1}, and
(3) ∇x(1) = {(z(1− γ), 1) : γ ∈ G(1), |z| = 1}.

In general, using Theorem 2 and Lemma 9, we have the following:
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Lemma 10. Let (x, y) ∈ SX⊕ψY and t = ‖y‖
‖x‖+‖y‖ . Thus

(1) ∇(x,y) = {((ψ(t)− tγ)f, (ψ(t) + (1− t)γ)g) : γ ∈ G(t), f ∈ ∇x/‖x‖ and

g ∈ ∇y/‖y‖} for 0 < t < 1,

(2) ∇(x,y) = {(f, (1 + γ)g) : γ ∈ G(0), f ∈ ∇x and g ∈ SY ∗} for t = 0, and

(3) ∇(x,y) = {((1− γ)f, g) : γ ∈ G(1), g ∈ ∇y and f ∈ SX∗} for t = 1.

Proof. We prove (1). Let F = (f, g) ∈ ∇(x,y), then

F ((x, y)) = f(x) + g(y)

≤ ‖f‖‖x‖+ ‖g‖‖y‖

=
‖f‖‖x‖+ ‖g‖‖y‖

(‖f‖+ ‖g‖)(‖x‖+ ‖y‖)(‖f‖+ ‖g‖)(‖x‖+ ‖y‖)

≤ ϕ

( ‖g‖
‖f‖+ ‖g‖

)
ψ

( ‖y‖
‖x‖+ ‖y‖

)
(‖f‖+ ‖g‖)(‖x‖+ ‖y‖)

= ‖F‖ϕ‖(x, y)‖ψ = 1.

Thus, we have ‖f‖‖x‖ + ‖g‖‖y‖ = 1 and f(x) = ‖f‖‖x‖ g(y) = ‖g‖‖y‖, hence
(‖f‖, ‖g‖) ∈ ∇(‖x‖,‖y‖) and f

‖f‖ ∈ ∇ x
‖x‖

, g
‖g‖ ∈ ∇ y

‖y‖
. We observe that (‖x‖, ‖y‖) =

1
ψ(t)(1− t, t), thus it follows from Lemma 9 that

‖f‖ = ψ(t)− tγ and ‖g‖ = ψ(t) + (1− t)γ, for some γ ∈ G(t).

Consequently, we have (f, g) = (‖f‖ f
‖f‖ , ‖g‖ g

‖g‖) = ((ψ(t) − tγ) f
‖f‖ , (ψ(t) + (1 −

t))γ g
‖g‖). Thus, we have proved that ∇(x,y) ⊂ {((ψ(t)−tγ)f, (ψ(t)+(1−t)γ)g) : γ ∈

G(t), f ∈ ∇x/‖x‖ and g ∈ ∇y/‖y‖}. On the other hand, let F = ((ψ(t)− tγ)f, (ψ(t)+
(1− t)γ)g) where γ ∈ G(t), f ∈ ∇x/‖x‖ and g ∈ ∇y/‖y‖. Consider, by using Lemma
9,

F ((x, y)) = (ψ(t)− tγ)f(x) + (ψ(t) + (1− t)γ)g(y)

= (ψ(t)− tγ)‖x‖+ (ψ(t) + (1− t)γ)‖y‖
= (‖x‖+ ‖y‖)((ψ(t)− tγ)(1− t) + (ψ(t) + (1− t)γ)t

)

=
1

ψ(t)
(
(ψ(t)− tγ)(1− t) + (ψ(t) + (1− t)γ)t

)

= 1.

Hence, (1) has been proved. The proof of (2) and (3) can be proceeded similarly. ¤

We say that a function ψ is smooth if the following conditions hold:
(1) ψ is smooth at every t ∈ (0, 1), i.e., the derivative of ψ exists at t,
(2) the right derivative of ψ at 0 is −1, and
(3) the left derivative of ψ at 1 is 1.

Theorem 11. Let X and Y be Banach spaces and ψ ∈ Ψ. Then X⊕ψ Y is smooth
if and only if X and Y are smooth and ψ is smooth.
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Proof. Necessity. Assume that X ⊕ψ Y is smooth. Because X is isometric to
X ⊕ψ {0} which is a subspace of X ⊕ψ Y , then X and similarly Y must be smooth.
It remains to prove that ψ is smooth, but by Lemma 10, if ψ is not smooth, there
exists (x, y) ∈ SX⊕ψY such that ∇(x,y) contains more than one point which can not
happen, and the smoothness of ψ is proved

Sufficiency. This follows from Lemma 10. ¤

Again, since, for every Banach space X, X is uniformly smooth if and only of X̃
is smooth, we obtain

Corollary 12. Let X and Y be Banach spaces and ψ ∈ Ψ. Then X ⊕ψ Y is
uniformly smooth if and only if X and Y are uniformly smooth and ψ is smooth.

5. U-spaces and u-spaces

A Banach space X is called a U -space if for any ε > 0, there exists δ > 0 such
that for any x, y ∈ SX , we have ‖x + y‖ ≤ 2(1− δ) whenever f(y) < 1− ε for some
f ∈ ∇x (see [13]). A Banach space X is called a u-space if for any x, y ∈ SX with
‖x + y‖ = 2, we have ∇x = ∇y. Obviously, every U -space is a u-space.

Remark 13. Let us collect together some properties of u-spaces and U -spaces:
(1) If X∗ is a u-space, then X is a u-space. The converse holds whenever X is

reflexive.
(2) If X is a U -space, then X is a u-space. The converse holds whenever dimX <

∞.
(3) X̃ is a u-space if and only if X is a U -space.

Proof. (1) Let x, y ∈ SX be such that ‖x + y‖ = 2. We prove that ∇x = ∇y. Let
f ∈ ∇x, and h ∈ ∇x+y. It follows that h(x) = h(y) = 1 and ‖f + h‖ = 2. By the
assumption that X∗ is a u-space and h(y) = 1, we have f(y) = 1. This implies that
∇x ⊂ ∇y, and then ∇x = ∇y as required.

(2) The first assertion is obvious and the latter one follows from the compactness
of the unit ball.

(3) It is known that X̃ is a U -space if and only if X is a U -space (see [6] or
[15]). In virtue of (2), it suffices to prove that X is a U -space whenever X̃ is a u-
space. Suppose that X is not a U -space. Then there exist an ε0 > 0 and sequences
{xn}, {yn} ⊂ SX , and {fn} ⊂ SX∗ such that fn(xn) = 1 and fn(xn−yn) ≥ ε0 for all
n ∈ N, and ‖xn + yn‖ → 2 as n →∞. We put x̃ = (xn)U , ỹ = (yn)U and f̃ = (fn)U .
Thus ‖x̃ + ỹ‖ = 2, f̃(x̃) = 1 and f̃(ỹ) ≤ 1 − ε0 < 1. This means that ∇ex 6= ∇ey
which implies that X̃ is not a u-space. ¤

U -spaces can be considered as the “uniform” version of u-spaces. The following
diagram explains this claim as well as it shows how the u-spaces are well-placed (see
[1], [4], [6], [14], and [15]):

X is UC ⇔ X̃ is UC ⇔ X̃ is SC

X is US ⇔ X̃ is US ⇔ X̃ is S
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X is UNC ⇔ X̃ is UNC ⇔ X̃ is NC

X is a U-space ⇔ X̃ is a U-space ⇔ X̃ is a u-space

CNJ(1, X) < 2 ⇒ UNS
⇑

UC ⇒ U ⇒ UNSQ US ⇒ U ⇒ UNSQ
⇓ ⇓ ⇓ ⇓ ⇓ ⇓

SC ⇒ u ⇒ NSQ S ⇒ u ⇒ NSQ

UC ≡ Uniformly Convex, SC ≡ Strictly Convex, US ≡ Uniformly Smooth, S
≡ Smooth, UNC ≡ Uniformly Noncreasy , NC ≡ Noncreasy, CNJ(·) ≡ a general-
ized Jordan-von Neumann constant, UNS ≡ Uniform Normal Structure, UNSQ ≡
Uniformly Nonsquare, NSQ ≡ Nonsquare, U ≡ a U -space, u ≡ a u-space

Examples of u-spaces which are not U -spaces can be obtained from the direct
product spaces (R2

p1
⊕R2

p2
⊕R2

p3
⊕· · · )2 where (pn) is a sequence of positive numbers

strictly decreasing to 1, and (l2⊕l3⊕l4⊕· · · )2 where each ln is the ln-space. Actually,
both spaces are strictly convex, but with the James constant and the Jordan-von
Neumann constant are both equal to 2, i.e., the spaces are not uniformly nonsquare,
and hence can not be U -spaces. Sims and Smith [18] have shown that the space
(l2 ⊕ l3 ⊕ l4 ⊕ · · · )2 has asymptotic property (P) but not property (P).

Examples of infinite dimensional u-spaces that are not strictly convex or smooth
are easily established.

Let ψ ∈ Ψ. We say that ψ is a u-function, if for any interval [a, b] ⊂ (0, 1), we
have ψ is smooth at a and b whenever ψ is affine on [a, b].

Theorem 14. Let X and Y be Banach spaces and ψ ∈ Ψ. Then the Banach space
X ⊕ψ Y is a u-space if and only if X and Y are u-spaces and ψ is a u-function.

Proof. Necessity . Suppose there exist a and b ∈ [0, 1] such that ψ is affine on [a, b]
but ψ′−(a) < ψ′+(a) = ψ′−(b). Fix x0 ∈ SX , f0 ∈ ∇x0 , y0 ∈ SY , and g0 ∈ ∇y0 .
Consider w = 1

ψ(a)((1 − a)x0, ay0) and z = 1
ψ(b)((1 − b)x0, by0). We have w, z ∈

SX⊕ψY and ‖w + z‖ψ = 2. Indeed,

‖w + z‖ψ =
∥∥∥∥
(

1− a

ψ(a)
x0 +

1− b

ψ(b)
x0,

a

ψ(a)
y0 +

b

ψ(b)
y0

)∥∥∥∥
ψ

=
(

1
ψ(a)

+
1

ψ(b)

)
ψ

(
a

ψ(a) + b
ψ(b)

1
ψ(a) + 1

ψ(b)

)

=
(

1
ψ(a)

+
1

ψ(b)

)
ψ

(
a

1
ψ(a)

1
ψ(a) + 1

ψ(b)

+ b

1
ψ(b)

1
ψ(a) + 1

ψ(b)

)

=
(

1
ψ(a)

+
1

ψ(b)

) (
1

ψ(a)

1
ψ(a) + 1

ψ(b)

ψ(a) +
1

ψ(b)

1
ψ(a) + 1

ψ(b)

ψ(b)

)

= 2.
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To obtain a contradiction, it remains to show that ∇z 6= ∇w. Now, for γ ∈
[ψ′−(b), ψ′+(b)], we have

ψ(b)− bγ ≤ ψ(b)− bψ′−(b) = ψ(a)− aψ′+(a) < ψ(a)− aψ′−(a).

Thus, ((ψ(a)− aψ′−(a))f0, (ψ(a) + (1− a)ψ′−(a))g0) ∈ ∇w \ ∇z, that is ∇z 6= ∇w.
Sufficiency. Let us prove that X⊕ψY is a u-space. Let w and z be elements in the

unit sphere of X⊕ψY such that ‖w+z‖ψ = 2. Put w = (x1, y1) and z = (x2, y2). We
have ‖(‖x1‖+‖x2‖, ‖y1‖+‖y2‖)‖ψ = 2 since 2 = ‖w+z‖ψ = ‖(x1 +x2, y1 +y2)‖ψ ≤
‖(‖x1‖ + ‖x2‖, ‖y1‖ + ‖y2‖)‖ψ ≤ ‖(‖x1‖, ‖x2‖)‖ψ + ‖(‖y1‖, ‖y2‖)‖ϕ = 2. By the
convexity of ψ, it follows that

2 = (‖x1‖+ ‖y1‖+ ‖x2‖+ ‖y2‖)ψ
( ‖y1‖+ ‖y2‖
‖x1‖+ ‖y1‖+ ‖x2‖+ ‖y2‖

)

≤ (‖x1‖+ ‖y1‖)ψ
( ‖y1‖
‖x1‖+ ‖y1‖

)
+ (‖x2‖+ ‖y2‖)ψ

( ‖y2‖
‖x2‖+ ‖y2‖

)

= 2.

Thus, ψ is affine on [a ∧ b, a ∨ b], where a = ‖y1‖
‖x1‖+‖y1‖ and b = ‖y2‖

‖x2‖+‖y2‖ . Since
‖w + z‖ = 2, there exists F = (f1, g1) ∈ X∗ ⊕ϕ Y ∗ such that F ∈ ∇w ∩∇z. Hence,

F (w) = f1(x1) + g1(y1)

≤ ‖f1‖‖x1‖+ ‖g1‖‖y1‖

=
‖f1‖‖x1‖+ ‖g1‖‖y1‖

(‖f1‖+ ‖g1‖)(‖x1‖+ ‖y1‖)(‖f1‖+ ‖g1‖)(‖x1‖+ ‖y1‖)

≤ ϕ

( ‖g1‖
‖f1‖+ ‖g1‖

)
ψ

( ‖y1‖
‖x1‖+ ‖y1‖

)
(‖f1‖+ ‖g1‖)(‖x1‖+ ‖y1‖)

= ‖F‖ϕ‖w‖ψ = 1.

Thus, we have

(α) f1(x1) = ‖f1‖‖x1‖ and g1(y1) = ‖g1‖‖y1‖.
In the same way, we also have

(β) f1(x2) = ‖f1‖‖x2‖ and g1(y2) = ‖g1‖‖y2‖.
Now we show that ∇w = ∇z. We consider first the case when all ‖x1‖, ‖y1‖, ‖x2‖,
‖y2‖ are positive. In this case, we can assume that 0 < a ≤ b < 1. (α) and (β) give

f1

‖f1‖ ∈ ∇ x1
‖x1‖

∩ ∇ x2
‖x2‖

and g1

‖g1‖ ∈ ∇ y1
‖y1‖

∩ ∇ y2
‖y2‖

. It follows that ‖ x1
‖x1‖ + x2

‖x2‖‖ = 2

and ‖ y1

‖y1‖ + y2

‖y2‖‖ = 2. Thus, ∇ x1
‖x1‖

= ∇ x2
‖x2‖

and ∇ y1
‖y1‖

= ∇ y2
‖y2‖

since both X and
Y are u-spaces.

If a < b, then, since ψ is affine on [a, b], a and b must be smooth points of ψ.
Consequently,

(γ) ψ(a)− aγ = ψ(b)− bγ and ψ(a) + (1− a)γ = ψ(b) + (1− b)γ,

where γ = ψ′(a) = ψ′(b).
By using (γ) together with Lemma 10 and the equations ∇ x1

‖x1‖
= ∇ x2

‖x2‖
and

∇ y1
‖y1‖

= ∇ y2
‖y2‖

, we have ∇z = ∇w.
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If a = b, then, by Lemma 10, we have

∇(x1,y1)

= {((ψ(a)− aγ)f, (ψ(a) + (1− a)γ)g) : γ ∈ G(a), f ∈ ∇x1/‖x1‖ and g ∈ ∇y1/‖y1‖}
= {((ψ(b)− bγ)f, (ψ(b) + (1− b)γ)g) : γ ∈ G(b), f ∈ ∇x1/‖x1‖ and g ∈ ∇y1/‖y1‖}
= {((ψ(b)− bγ)f, (ψ(b) + (1− b)γ)g) : γ ∈ G(b), f ∈ ∇x2/‖x2‖ and g ∈ ∇y2/‖y2‖}
= ∇(x2,y2).

Thus ∇z = ∇w as well.
Now we consider the case when exactly one of the numbers ‖x1‖, ‖x2‖, ‖y1‖, ‖y2‖

is equal to 0. We assume that ‖y1‖ = 0, thus a = 0 < b and 0 and b are smooth
points. By (α), (β), and by the assumption that X is a u-space, we have ∇x1 =
∇ x2
‖x2‖

. Since 0 is a smooth point, we have F = (f1, 0). This in turn implies that

ψ(b)− bψ′(b) = 1 and ψ(b) + (1− b)ψ′(b) = 0 since F ∈ ∇w ∩∇z. Thus, by Lemma
10,

∇(x2,y2)

= {((ψ(b)− bψ′(b))f, (ψ(b) + (1− b)ψ′(b))g) : f ∈ ∇x2/‖x2‖ and g ∈ ∇y2/‖y2‖}
= {(f, 0) : f ∈ ∇x2/‖x2‖}
= {(f, 0) : f ∈ ∇x1}
= ∇(x1,y1).

Finally, suppose two of the numbers ‖x1‖, ‖x2‖, ‖y1‖, ‖y2‖ are equal to 0. We can
assume that ‖y1‖ = ‖y2‖ = 0, thus a = b = 0. The proof of the equality ∇z = ∇w

is similar to the one of the case when a = b. ¤

Corollary 15. Let X and Y be Banach spaces and ψ ∈ Ψ. Then the following
statements are equivalent:

(1) X ⊕ψ Y is a U -space;
(2) X∗ ⊕ϕ Y ∗ is a U -space;
(3) X and Y are U -spaces and ψ is a u-function;
(4) X and Y are U -spaces and ϕ is a u-function, where ϕ is the dual function

of ψ.
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