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ALTERNATIVE PROOFS FOR SOME RESULTS OF
VECTOR-VALUED FUNCTIONS ASSOCIATED WITH

SECOND-ORDER CONE

JEIN-SHAN CHEN

Abstract. Let Kn be the Lorentz/second-order cone in IRn. For any function

f from IR to IR, one can define a corresponding vector-valued function f
soc

(x) on
IRn by applying f to the spectral values of the spectral decomposition of x ∈ IRn

with respect to Kn. It was shown by J.-S. Chen, X. Chen and P. Tseng that
this vector-valued function inherits from f the properties of continuity, Lipschitz
continuity, directional differentiability, Fréchet differentiability, continuous dif-
ferentiability, as well as semismoothness. It was also proved by D. Sun and J.
Sun that the vector-valued Fischer-Burmeister function associated with second-
order cone is strongly semismooth. All proofs for the above results are based
on a special relation between the vector-valued function and the matrix-valued
function over symmetric matrices. In this paper, we provide a straightforward
and intuitive way to prove all the above results by using the simple structure of
second-order cone and spectral decomposition.

1. Introduction

The second-order cone (SOC) in IRn, also called the Lorentz cone, is defined to
be

Kn := {(x1, x2) ∈ IR× IRn−1 | ‖x2‖ ≤ x1},
where ‖ · ‖ denotes the Euclidean norm. If n = 1, K1 is the set of nonnegative reals
IR+. Recently, there have been much study on second-order cone in optimization,
particularly in the context of applications and solution methods for second-order
cone program (SOCP) [1, 2, 9, 12, 14, 18, 22]. For any x = (x1, x2) ∈ IR × IRn−1,
we can decompose x as

(1) x = λ1u
(1) + λ2u

(2),

where λ1, λ2 and u(1), u(2) are the spectral values and the associated spectral vectors
of x, with respect to Kn, given by

λi = x1 + (−1)i‖x2‖,(2)

u(i) =





1
2

(
1, (−1)i x2

‖x2‖
)
, if x2 6= 0,

1
2

(
1, (−1)iw

)
, if x2 = 0,

(3)

for i = 1, 2, with w being any vector in IRn−1 satisfying ‖w‖ = 1. If x2 6= 0, the
decomposition (1) is unique. With this spectral decomposition, for any function
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f : IR → IR, the following vector-valued function associated with Kn (n ≥ 1) was
considered (see [9]):

(4) f
soc

(x) = f(λ1)u(1) + f(λ2)u(2) ∀x = (x1, x2) ∈ IR× IRn−1.

If f is defined only on a subset of IR, then f
soc

is defined on the corresponding
subset of IRn. The definition (4) is unambiguous whether x2 6= 0 or x2 = 0. The
above definition (4) is analogous to one associated with the semidefinite cone Sn,
see [20, 21].

The study of this function is motivated by second-order cone complementarity
problem (SOCCP), see [3, 4] and references therein. In fact, in the paper [4], it
studied the continuity and differentiability properties of the vector-valued function
f

soc
. In particular, it showed that the properties of continuity, strict continuity,

Lipschitz continuity, directional differentiability, differentiability, continuous differ-
entiability, and (ρ-order) semismoothness are each inherited by f

soc
from f . These

results parallel those obtained recently in [5] for matrix-valued functions and are
useful in the design and analysis of smoothing and nonsmooth methods for solv-
ing SOCP and SOCCP. The proofs are based on an elegant relation between the
vector-valued function f

soc
and its matrix-valued counterpart (see Lemma 4.1 of

[4]). This relation enables applying the results from [5] for matrix-valued functions
to the vector-valued function f

soc
. In this paper, we study an intuitive way to prove

all the aforementioned results without using the relation as will be seen in Sec. 3.
A popular approach to solving SOCCP is to reformulate it as an unconstrained

minimization problem. Specifically, it is to find a smooth (continuously differen-
tiable) function ψ : IRn × IRn → IR+ such that

(5) ψ(x, y) = 0 ⇐⇒ 〈x, y〉 = 0, x ∈ Kn, y ∈ Kn,

which yields that the SOCCP can be expressed as an unconstrained smooth (contin-
uously differentiable) minimization problem: min

ζ∈IRn
f(ζ) := ψ(F (ζ), G(ζ)), for some

F and G. For detailed reformulation, please refer to [3]. Such a ψ is usually called
a merit function. A popular choice of ψ is

(6) ψ(x, y) =
1
2
‖φ(x, y)‖2 x, y ∈ IRn,

where

(7) φ(x, y) := (x2 + y2)1/2 − x− y.

Here (·)2 and (·)1/2 are well-defined via the Jordan product as will be explained
in Sec. 2. The function φ is called Fischer-Burmeister function. It is the natural
extension of Fischer-Burmeister function over IRn to Kn. D. Sun and J. Sun proved
that φ is strongly semismooth in [19], while ψ was proved smooth (continuously
differentiable) everywhere by J.-S. Chen and P. Tseng in [3]. In this paper, we also
provide an alternative proof for property of strong semismoothness of φ in Sec. 4.

In what follows, for any differentiable (in the Fréchet sense) mapping F : IRn →
IRm, we denote its Jacobian(not transposed) at x ∈ IRn by ∇F (x) ∈ IRm×n, i.e.,
(F (x + u)− F (x)−∇F (x)u)/‖u‖ → 0 as u → 0. “ :=′′ means “define”. We write
z = O(α) (respectively, z = o(α)), with α ∈ IR and z ∈ IRn, to mean ‖z‖/|α| is
uniformly bounded (respectively, tends to zero) as α → 0.
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2. Basic Concepts and Known Results

In this section, we review some basic materials regarding vector-valued functions.
These contain continuity, (local) Lipschitz continuity, directional differentiability,
differentiability, continuous differentiability, as well as (ρ-order) semismoothness.
We also recall some known results for vector-valued functions for which we will
provide alternative proofs later.

Let the mapping F : IRn → IRm. Then F is continuous at x ∈ IRn if F (y) → F (x)
as y → x; and F is continuous if F is continuous at every x ∈ IRn. We say F is
strictly continuous (also called ‘locally Lipschitz continuous’) at x ∈ IRn if there
exist scalars κ > 0 and δ > 0 such that

‖F (y)− F (z)‖ ≤ κ‖y − z‖ ∀y, z ∈ IRn with ‖y − x‖ ≤ δ, ‖z − x‖ ≤ δ;

and F is strictly continuous if F is strictly continuous at every x ∈ IRn. We say F
is directionally differentiable at x ∈ IRn if

F ′(x;h) := lim
t→0+

F (x + th)− F (x)
t

exists ∀h ∈ IRn;

and F is directionally differentiable if F is directionally differentiable at every x ∈
IRn. F is differentiable (in the Fréchet sense) at x ∈ IRn if there exists a linear
mapping ∇F (x) : IRn → IRm such that

F (x + h)− F (x)−∇F (x)h = o(‖h‖).
If F is differentiable at every x ∈ IRn and ∇F is continuous, then F is continuously
differentiable. We notice that, in the above expression about strict continuity of
F , if δ can be taken to be ∞, then F is called Lipschitz continuous with Lipschitz
constant κ.

It is well-known that if F is strictly continuous, then F is almost everywhere
differentiable by Rademacher’s Theorem–see [6] and [17, Sec. 9J]. In this case, the
generalized Jacobian ∂F (x) of F at x (in the Clarke sense) can be defined as the
convex hull of the generalized Jacobian ∂BF (x), where

∂BF (x) :=
{

lim
xj→x

∇F (xj)
∣∣F is differentiable at xj ∈ IRn

}
.

The notation ∂B is adopted from [15]. In [17, Chap. 9], the case of m = 1 is
considered and the notations “∇̄” and “∂̄” are used instead of, respectively, “∂B”
and “∂”. Assume F : IRn → IRm is strictly continuous, then F is said to be
semismooth at x if F is directionally differentiable at x and, for any V ∈ ∂F (x+h),
we have

F (x + h)− F (x)− V h = o(‖h‖).
Moreover, F is called ρ-order semismooth at x (0 < ρ < ∞) if F is semismooth at
x and, for any V ∈ ∂F (x + h), we have

F (x + h)− F (x)− V h = O(‖h‖1+ρ).

The following lemma, proven by D. Sun and J. Sun [20, Thm. 3.6] using the
definition of generalized Jacobian, enables one to study the semismooth property
of f

soc
by examining only those points x ∈ IRn where f

soc
is differentiable and thus
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work only with the Jacobian of f
soc

, rather than the generalized Jacobian. It is a
very useful working lemma for verifying semismoothness property.

Lemma 2.1. Suppose F : IRn → IRn is strictly continuous and directionally differ-
entiable in a neighborhood of x ∈ IRn. Then, for any 0 < ρ < ∞, the following two
statements are equivalent:

(a) For any v ∈ ∂F (x + h) and h → 0,

F (x + h)− F (x)− vh = o(‖h‖) (respectively, O(‖h‖)1+ρ).

(b) For any h → 0 such that F is differentiable at x + h,

F (x + h)− F (x)−∇F (x + h)h = o(‖h‖) (respectively, O(‖h‖)1+ρ).

We say F is semismooth (respectively, ρ-order semismooth) if F is semismooth
(respectively, ρ-order semismooth) at every x ∈ IRn. We say F is strongly semis-
mooth if it is 1-order semismooth. Convex functions and piecewise continuously
differentiable functions are examples of semismooth functions. The composition
of two (respectively, ρ-order) semismooth functions is also a (respectively, ρ-order)
semismooth function. The property of semismoothness, as introduced by Mifflin
[13] for functionals and scalar-valued functions and further extended by L. Qi and
J. Sun [16] for vector-valued functions, is of particular interest due to the key role it
plays in the superlinear convergence analysis of certain generalized Newton methods
[10, 11, 15, 16, 23]. For extensive discussions of semismooth functions, see [8, 13, 16].

For any x = (x1, x2) ∈ IR× IRn−1 and y = (y1, y2) ∈ IR× IRn−1, we define their
Jordan product as

(8) x ◦ y =
(
xT y, y1x2 + x1y2

)
.

We write x2 to mean x◦x and write x+y to mean the usual componentwise addition
of vectors. Then, ◦, +, together with e = (1, 0, . . . , 0) ∈ IRn, give rise to a Jordan
algebra associated with Kn [7, Chap. II]. If x ∈ Kn, then there exists a unique
vector in Kn, which we denote by x1/2, such that (x1/2)2 = x1/2 ◦x1/2 = x. For any
x = (x1, x2) ∈ IR× IRn−1, we also define the symmetric matrix

(9) Lx =
[
x1 xT

2

x2 x1I

]
,

viewed as a linear mapping from IRn to IRn×n. The matrix Lx has various interesting
properties that were studied in [9]. Especially, we have Lx · y = x ◦ y for any
x, y ∈ IRn.

Now, we summarize the results shown in [4] for which we will provide alternative
proofs that are straightforward and intuitive in the subsequent sections.

Proposition 2.2. For any f : IR → IR, the following results hold:
(a) f

soc
is continuous at an x ∈ IRn with eigenvalues λ1, λ2 if and only if f is

continuous at λ1, λ2.
(b) f

soc
is directionally differentiable at an x ∈ IRn with eigenvalues λ1, λ2 if

and only if f is directionally differentiable at λ1, λ2

(c) f
soc

is differentiable at an x ∈ IRn with eigenvalues λ1, λ2 if and only if f is
differentiable at λ1, λ2.
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(d) f
soc

is continuously differentiable at an x ∈ IRn with eigenvalues λ1, λ2 if
and only if f is continuously differentiable at λ1, λ2.

(e) f
soc

is strictly continuous at an x ∈ IRn with eigenvalues λ1, λ2 if and only
if f is strictly continuous at λ1, λ2.

(f) f
soc

is Lipschitz continuous (with respect to ‖ ·‖) with constant κ if and only
if f is Lipschitz continuous with constant κ.

(g) f
soc

is semismooth if and only if f is semismooth.

Proposition 2.3. The vector-valued Fischer-Burmeister function associated with
second-order cone defined as (7) is strongly semismooth.

3. Alternative Proofs of Continuity and Differentiability

In this section, we present alternative proofs for Prop. 2.2 of Sec. 2 which is
one of the main purposes of this paper. Unlike the existing proofs which employed
an elegant lemma ([4, Lem. 4.1]), our arguments come from an intuitive way only
using the simple structure of second-order cone and basic definitions. We need some
technical lemmas before starting the alternative proofs.

Lemma 3.1. Let λ1 ≤ λ2 be the spectral values of x ∈ IRn and m1 ≤ m2 be the
spectral values of y ∈ IRn. Then we have

(10) |λ1 −m1|2 + |λ2 −m2|2 ≤ 2 ‖x− y‖2 ,

and hence, |λi −mi| ≤
√

2 ‖x− y‖ , ∀i = 1, 2.

Proof. The proof follows from a direct computation. ¤
Lemma 3.2. Let x = (x1, x2) ∈ IR× IRn−1 and y = (y1, y2) ∈ IR× IRn−1.

(a) If x2 6= 0, y2 6= 0, then we have

(11) ‖u(i) − v(i)‖ ≤ 1
‖x2‖‖x− y‖ , ∀i = 1, 2 ,

where u(i), v(i) are the unique spectral vectors of x and y, respectively.
(b) If either x2 = 0 or y2 = 0, then we can choose u(i), v(i) such that the left

hand side of inequality (11) is zero.

Proof. (a) From the spectral factorization (1)-(3), we know that

u(i) =
1
2

(
1 , (−1)i x2

‖x2‖
)

, v(i) =
1
2

(
1 , (−1)i y2

‖y2‖
)

,

where ui), v(i) are unique. Thus, we have u(i) − v(i) = 1
2

(
0 , (−1)i( x2

‖x2‖ −
y2

‖y2‖)
)

.

Then

‖u(i) − v(i)‖ =
1
2

∥∥∥∥
x2

‖x2‖ −
y2

‖y2‖

∥∥∥∥ =
1
2

∥∥∥∥
x2 − y2

‖x2‖ +
(‖y2‖ − ‖x2‖)y2

‖x2‖ · ‖y2‖

∥∥∥∥

≤ 1
2

(
1

‖x2‖‖x2 − y2‖+
1

‖x2‖

∣∣∣∣‖y2‖ − ‖x2‖
∣∣∣∣
)

≤ 1
2

(
1

‖x2‖‖x2 − y2‖+
1

‖x2‖‖x2 − y2‖
)
≤ 1
‖x2‖‖x− y‖,
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where the first inequality follows from the triangle inequality.
(b) We can choose the same spectral vectors for x and y by the spectral factorization
(1)-(3) since either x2 = 0 or y2 = 0. Then, it is obvious. ¤

Lemma 3.3. For any w 6= 0 ∈ IRn, we have ∇w

(
w

‖w‖
)

=
1
‖w‖

(
I − wwT

‖w‖2

)
.

Proof. The verification is routine, so we omit it. ¤

Now, we are ready to present our alternative proofs for Prop. 2.2. As mentioned,
all of our proofs are from intuitive definitions as well as the structure of second-
order cone. Some portion of the proofs are similar to the original ones, we omit
them when there is the case.

Proof. (a) “⇐” Suppose f is continuous at λ1, λ2. For any fixed x ∈ IRn and y → x,
let the spectral factorizations of x, y be x = λ1u

(1)+λ2u
(2) and y = m1v

(1)+m2v
(2).

Then, we discuss two cases.
Case (i): If x2 6= 0, then we have

f
soc

(y)− f
soc

(x) = f(m1)
(

v(1) − u(1)

)
+

(
f(m1)− f(λ1)

)
u(1)(12)

+ f(m2)
(

v(2) − u(2)

)
+

(
f(m2)− f(λ2)

)
u(2).

Since f is continuous at λ1, λ2, and from Lemma 3.1, |mi − λi| ≤
√

2 ‖y − x‖, we
obtain f(mi) −→ f(λi) as y → x. Also by Lemma 3.2, we know that ‖v(i)−u(i)‖ −→
0 as y → x. Thus, equation (12) yields f

soc
(y) −→ f

soc
(x) as y → x, since both

f(mi) and ‖u(i)‖ are bounded. Hence, f
soc

is continuous at x ∈ IRn .
Case (ii): If x2 = 0, no matter y2 is zero or not, we can arrange that x, y have the

same spectral vectors. Thus, f
soc

(y)− f
soc

(x) =
(

f(m1)− f(λ1)
)

u(1) +
(

f(m2)−

f(λ2)
)

u(2) . Then, f
soc

is continuous at x ∈ IRn by similar arguments.

“⇒” The proof for this direction is straightforward and similar to the arguments in
[4, Prop. 5.2]. ¤

Proof. (b) “⇐” Suppose f is directionally differentiable at λ1, λ2. Fix any x =
(x1, x2) ∈ IR× IRn−1, then we discuss two cases as below.
Case (i): If x2 6= 0, then we have f

soc
(x) = f(λ1)u(1) + f(λ2)u(2) where λi =

x1 + (−1)i‖x2‖ and u(i) =
1
2

(
1 , (−1)i x2

‖x2‖
)

for all i = 1, 2. From Lemma 3.3, we

know that u(i) is Fréchet-differentiable with respect to x, with

(13) ∇xu(i) =
(−1)i

2‖x2‖




0 0

0 I − x2x
T
2

‖x2‖2


 , ∀i = 1, 2.
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Also by the expression of λi, we know that λi is Fréchet-differentiable with respect
to x, with

(14) ∇xλi =
(

1 , (−1)i x2

‖x2‖
)

= 2u(i) , ∀i = 1, 2.

Since f is directionally differentiable at λ1, λ2, then the chain rule and product rule
for directional differentiation give

(f
soc

)′(x;h) = f(λ1)∇xu(1)h + u(1)f ′(λ1;h)(∇xλ1)T

+ f(λ2)∇xu(2)h + u(2)f ′(λ2;h)(∇xλ2)T

=
f(λ2)− f(λ1)

2‖x2‖




0 0

0 I − x2x
T
2

‖x2‖2


h

+ 2f ′(λ1;h)u(1)(u(1))T + 2f ′(λ2;h)u(2)(u(2))T

=
f(λ2)− f(λ1)

λ2 − λ1




0 0

0 I − x2x
T
2

‖x2‖2


h

+ 2f ′(λ1;h)u(1)(u(1))T + 2f ′(λ2;h)u(2)(u(2))T ,

where the second equality uses equations (13) and (14), and the last equality employs
the fact that λ2 − λ1 = 2‖x2‖. Notice that we can obtain u(i)(u(i))T as follows by
direct computation :

u(i)(u(i))T =
1
4




1 (−1)i xT
2

‖x2‖
(−1)i x2

‖x2‖
x2x

T
2

‖x2‖2


 , ∀i = 1, 2.

Now let

(15) ã =
f(λ2)− f(λ1)

λ2 − λ1
h , b̃ =

f ′(λ2;h) + f ′(λ1;h)
2

, c̃ =
f ′(λ2;h)− f ′(λ1;h)

2
.

Then, we can rewrite the previous expression of (f
soc

)′(x;h) as

(f
soc

)′(x;h) = ã




0 0

0 I − x2x
T
2

‖x2‖2


 +




b̃
c̃xT

2

‖x2‖
c̃x2

‖x2‖
b̃x2x

T
2

‖x2‖2


(16)

=




b̃
c̃xT

2

‖x2‖
c̃x2

‖x2‖ ãI + (b̃− ã) x2xT
2

‖x2‖2


 .

This enables that f
soc

is directionally differentiable at x when x2 6= 0 with
(f

soc
)′(x;h) being in form of (16).

Case (ii): If x2 = 0, we compute the directional derivative (f
soc

)′(x;h) at x for any
direction h by definition. Let h = (h1, h2) ∈ IR × IRn−1. We have two subcases.
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First, consider the subcase of h2 6= 0. From the spectral factorization, we can choose

u(i) = 1
2

(
1 , (−1)i h2

‖h2‖

)
for all i = 1, 2, such that

{
f

soc
(x + th) = f(λ +4λ1)u(1) + f(λ +4λ2)u(2)

f
soc

(x) = f(λ)u(1) + f(λ)u(2),

where λ = x1 and 4λi = t

(
h1 + (−1)i‖h2‖

)
for all i = 1, 2. Thus, we obtain

f
soc

(x + th)− f
soc

(x) =
(

f(λ +4λ1)− f(λ)
)

u(1)+
(

f(λ +4λ2)− f(λ)
)

u(2).

The fact that

lim
t→0+

f(λ +4λ1)− f(λ)
t

= lim
t→0+

f(λ + t(h1 − ‖h2‖))− f(λ)
t

= f ′(λ;h1 − ‖h2‖) ,

and

lim
t→0+

f(λ +4λ2)− f(λ)
t

= lim
t→0+

f(λ + t(h1 + ‖h2‖))− f(λ)
t

= f ′(λ;h1 + ‖h2‖),

yields

lim
t→0+

f
soc

(x + th)− f
soc

(x)
t

(17)

= lim
t→0+

f(λ +4λ1)− f(λ)
t

u(1) + lim
t→0+

f(λ +4λ2)− f(λ)
t

u(2)

= f ′(λ;h1 − ‖h2‖)u(1) + f ′(λ;h1 + ‖h2‖)u(2) ,

where u(1) =
1
2

(
1,− h2

‖h2‖
)

, u(2) =
1
2

(
1,

h2

‖h2‖
)

. Hence, (f
soc

)′(x;h) exists with

form of (17).
Secondly, for the subcase of h2 = 0, the same argument applies except h2/‖h2‖

is replaced by any w ∈ IRn−1 with ‖w‖ = 1, i.e., choosing u(i) =
1
2
(1, (−1)iw), for

all i = 1, 2. Analogously,

(18) lim
t→0+

f
soc

(x + th)− f
soc

(x)
t

= f ′(λ;h1)u(1) + f ′(λ;h1)u(2).

Hence, (f
soc

)′(x;h) exists with form of (18). From the above, it shows that f
soc

is di-
rectionally differentiable at x when x2 = 0 and its directional derivative (f

soc
)′(x;h)

is either in form of (17) or (18).
“⇒” Suppose f

soc
is directionally differentiable at x ∈ IRn with spectral values

λ1, λ2, we will prove that f is directionally differentiable at λ1, λ2. For λ1 ∈ IR and
any direction d1 ∈ IR, let h := d1u

(1) + 0u(2) where x = λ1u
(1) + λ2u

(2). Then,
x + th = (λ1 + td1)u(1) + λ2u

(2), and

f
soc

(x + th)− f
soc

(x)
t

=
f(λ1 + td1)− f(λ1)

t
u(1).
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Since f
soc

is directionally differentiable at x, the above equation yields that

f ′(λ1; d1) = lim
t→0+

f(λ1 + td1)− f(λ1)
t

exists.

This means f is directionally differentiable at λ1. Similarly, f is also directionally
differentiable at λ2. ¤
Proof. (c) “⇐” The proof of this direction is identical to the proof shown as in (b),
but with “directionally differentiable” replaced by “differentiable”. We omit the
proof and only present the formula of f

soc
(x) as below. For x2 6= 0, we have

(19) ∇f
soc

(x) =




b
cxT

2

‖x2‖
cx2

‖x2‖ aI + (b− a)
x2x

T
2

‖x2‖2


 ,

where

(20) a =
f(λ2)− f(λ1)

λ2 − λ1
, b =

f ′(λ2) + f ′(λ1)
2

, c =
f ′(λ2)− f ′(λ1)

2
.

If x2 = 0, then

(21) ∇f
soc

(x) = f ′(λ)I.

“⇒” Let f
soc

be Fréchet-differentiable at x ∈ IRn with spectral eigenvalues λ1, λ2,
we will show that f is Fréchet-differentiable at λ1, λ2. Suppose not, then f is not
Fréchet-differentiable at λi for some i ∈ {1, 2}. Thus, either f is not directionally
differentiable at λi or, if it is, the right- and left-directional derivatives of f at λi

are unequal. In either case, this implies that there exist two sequences of non-zero
scalars tν and τν , ν = 1, 2, . . . , converging to zero, such that the limits

lim
ν→∞

f(λi + tν)− f(λi)
tν

, lim
ν→∞

f(λi + τν)− f(λi)
τν

exist (possible ∞ or −∞) and either are unequal or both equal to ∞ or are both
equal to −∞. Now for any x = λ1u

(1) + λ2u
(2), let h := 1 · u(1) + 0 · u(2) = u(1).

Then, x + th = (λ1 + t)u(1) + λ2u
(2) and f

soc
(x + th) = f(λ1 + t)u(1) + f(λ2)u(2).

Thus,

lim
ν→∞

f
soc

(x + tνh)− f
soc

(x)
tν

= lim
ν→∞

f
soc

(λ1 + tν)− f
soc

(λ1)
tν

u(1)

lim
ν→∞

f
soc

(x + τνh)− f
soc

(x)
τν

= lim
ν→∞

f
soc

(λ1 + τν)− f
soc

(λ1)
τν

u(1) .

It follows that these two limits either are unequal or are both non-finite. This
implies that f

soc
is not Fréchet-differentiable at x where is a contradiction. ¤

Proof. (d) “⇐” Suppose f is continuously differentiable. From equation (19), it
can been seen that ∇f

soc
is continuous at every x with x2 6= 0. It remains to show

that ∇f
soc

is continuous at every x with x2 = 0. Fix any x = (x1, 0) ∈ IRn, so
λ1 = λ2 = x1. Then, from equation (20), we have

lim
y→x

a = lim
y→x

f(λ2)− f(λ1)
λ2 − λ1

= f ′(x1)
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lim
y→x

b = lim
y→x

1
2
(f ′(λ2) + f ′(λ1)) = f ′(x1)

lim
y→x

c = lim
y→x

1
2
(f ′(λ2)− f ′(λ1)) = 0 .

Taking the limit in equation (19) as y → x yields lim
y→x

∇f
soc

(y) = f ′(x1)I =

∇f
soc

(x), which says ∇f
soc

is continuous at every x ∈ IRn .
“⇒” The proof for this direction is similar to the original proof of [4, Prop. 5.4], so
we omit it. ¤

Proof. (e) and (f) The original proofs in [4] use the working Lemma 2.1 directly
which is the same idea as the one used for the whole paper, so the proofs for part(e)
and (f) are identical to theirs. We therefore omit them. ¤

Proof. (g) “⇒” Suppose f
soc

is semismooth, then f
soc

is strictly continuous and
directionally differentiable. By part (b) and (e), f is strictly continuous and di-
rectionally differentiable. Now, for any α ∈ IR and any η ∈ IR such that f is
differentiable at α + η, part (c) yields that f

soc
is differentiable at x + h, where

x := (α, 0) ∈ IR × IRn−1 and h := (η, 0) ∈ IR × IRn−1. Hence, we can choose the
same spectral vectors for x + h and x such that

{
f

soc
(x + h) = f(α + η)u(1) + f(α + η)u(2),

f
soc

(x) = f(α)u(1) + f(α)u(2).

Since f
soc

is semismooth, by Lemma 2.1, we have

(22) f
soc

(x + h)− f
soc

(x)−∇f
soc

(x + h)h = o(‖h‖).

On the other hand, (21) says ∇f
soc

(x + h)h = f ′(α + η)Ih =
(

f ′(α + η)η , 0
)

.

Plugging this into equation (22), it yields that f(α+η)−f(α)−f ′(α+η)η = o(|η|).
Thus, by Lemma 2.1 again, it says that f is semismooth at α. Since α is arbitrary,
f is semismooth.
“⇐” Suppose f is semismooth, then f is strictly continuous and directionally dif-
ferentiable. By part (b) and (c), f

soc
is strictly continuous and directionally differ-

entiable. For any x ∈ IRn and h ∈ IRn such that f
soc

is differentiable at x + h, we
will verify that

f
soc

(x + h)− f
soc

(x)−∇f
soc

(x + h)h = o(‖h‖).

Case (i): If x2 6= 0, let λi be the spectral eigenvalues of x and u(i) be the associated
vectors. We denote x + h by z for convenience, i.e., z := x + h and let mi be the
spectral values of z with the associated vectors v(i). Hence, we have

{
f

soc
(x) = f(λ1)u(1) + f(λ2)u(2),

f
soc

(x + h) = f(m1)v(1) + f(m2)v(2).
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In addition, from (19), we know

∇f
soc

(x + h) =




b̂
ĉzT

2

‖z2‖
ĉz2

‖z2‖ âI − (b̂− â)
z2z

T
2

‖z2‖2


 ,

where

â =
f(m2)− f(m1)

m2 −m1
, b̂ =

f ′(m2) + f ′(m1)
2

, ĉ =
f ′(m2)− f ′(m1)

2
.

With this, we can write out f
soc

(x + h)− f
soc

(x)−∇f
soc

(x + h)h := (Ξ1,Ξ2) where
Ξ1 ∈ IR and Ξ2 ∈ IRn−1. Since the expansion is very long, for simplicity, we denote
Ξ1 be the first component and Ξ2 be the second component of the expansion. We
will show that Ξ1 and Ξ2 are both o(‖h‖).
First, we compute the first component Ξ1:

Ξ1 =
1
2

{
f(m1)− f(λ1)− f ′(m1)(h1 − zT

2 h2

‖z2‖ )
}

+
1
2

{
f(m2)− f(λ2)− f ′(m2)(h1 +

zT
2 h2

‖z2‖ )
}

=
1
2

{
f(m1)− f(λ1)− f ′(m1)

(
h1 − (‖z2‖ − ‖x2‖)

)
+ o(‖h‖)

}

+
1
2

{
f(m2)− f(λ2)− f ′(m2)

(
h1 + (‖z2‖ − ‖x2‖)

)
+ o(‖h‖)

}

= o

(
h1 − (‖z2‖ − ‖x2‖)

)
+ o(‖h‖) + o

(
h1 + (‖z2‖ − ‖x2‖)

)
+ o(‖h‖).

In the above expression of Ξ1, the third equality holds since the following:

zT
2 h2

‖z2‖ =
zT
2 (z2 − x2)
‖z2‖ = ‖z2‖ − ‖z2‖‖x2‖

‖z2‖ cos θ

= ‖z2‖ − ‖x2‖
(

1 + O(θ2)
)

= ‖z2‖ − ‖x2‖
(

1 + O(‖h‖2)
)

= ‖z2‖ − ‖x2‖
(

1 + o(‖h‖)
)

,

where θ is the angle between x2 and z2 and note that z2 − x2 = h2 gives O(θ2) =
O(‖h‖2). Also the last equality in expression of Ξ1 holds since f is semismooth and

mi − λi = h1 + (−1)i(‖z2‖ − ‖x2‖).
On the other hand, due to h1 +(−1)i(‖z2‖−‖x2‖) ≤ h1 +‖z2−x2‖ = h1 +‖h2‖ , we
observe that when ‖h‖ → 0 then h1 +(−1)i(‖z2‖−‖x2‖) → 0 and h1 +(−1)i(‖z2‖−
‖x2‖) = O(‖h‖). Thus, o

(
h1 +(−1)i(‖z2‖−‖x2‖)

)
= o(‖h‖), which yields the first

component Ξ1 is o(‖h‖).



308 JEIN-SHAN CHEN

Now consider the second component Ξ2:

Ξ2 = −1
2
f(m1)

z2

‖z2‖ +
1
2
f(m2)

z2

‖z2‖ +
1
2
f(λ1)

x2

‖x2‖ −
1
2
f(λ2)

x2

‖x2‖
− 1

2

(
f ′(m2)− f ′(m1)

)
z2h1

‖z2‖ −
f(m2)− f(m1)

m2 −m1
h2

−
{

1
2

(
f ′(m2)− f ′(m1)

)
− f(m2)− f(m1)

m2 −m1

}
z2z

T
2 h2

‖z2‖2

= −1
2

{
f(m1)

z2

‖z2‖ − f(λ1)
x2

‖x2‖ − f ′(m1)
z2h1

‖z2‖ −
2f(m1)
m2 −m1

h2

+
(

f ′(m1) +
2f(m1)
m2 −m1

)
z2z

T
2 h2

‖z2‖2

}

+
1
2

{
f(m2)

z2

‖z2‖ − f(λ2)
x2

‖x2‖ − f ′(m2)
z2h1

‖z2‖ −
2f(m2)
m2 −m1

h2

−
(

f ′(m2) +
2f(m2)
m2 −m1

)
z2z

T
2 h2

‖z2‖2

}

:= Ξ(1)
2 + Ξ(2)

2 ,

where Ξ(1)
2 denotes the first half part while Ξ(2)

2 denotes the second half part. We
will show that both Ξ(1)

2 and Ξ(2)
2 are o(‖h‖). For symmetry, it is enough to show

that Ξ(1)
2 is o(‖h‖). From the observations that





z2 = x2 + h2,
m2 −m1 = 2‖z2‖,
mi − λi = h1 + (−1)i(‖z2‖ − ‖x2‖) = O(‖h‖),

we have the following:

Ξ(1)
2 = −1

2

{
f(m1)

z2

‖z2‖ − f(λ1)
x2

‖x2‖ − f ′(m1)
z2h1

‖z2‖ −
2f(m1)
m2 −m1

h2

+
(

f ′(m1) +
2f(m1)
m2 −m1

)
z2z

T
2 h2

‖z2‖2

}

= −1
2

z2

‖z2‖
{

f(m1)− f(λ1)− f ′(m1)
(

h1 − zT
2 h2

‖z2‖
)}

+
1
2

(
f(m1)− f(λ1)

)(−h2

‖z2‖ +
z2z

T
2 h2

‖z2‖3

)

− 1
2
f(λ1)

(
z2

‖z2‖ −
x2

‖x2‖ −
h2

‖z2‖ +
z2z

T
2 h2

‖z2‖3

)
.

Following the same arguments as in the first component Ξ1, it can be seen that

f(m1)− f(λ1)− f ′(m1)
(

h1 − zT
2 h2

‖z2‖
)

= o(‖h‖).
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Since m1 − λ1 = h1 − (‖z2‖ − ‖x2‖) = O(‖h‖) and f is strictly continuous, then
f(m1)− f(λ1) = O(‖h‖). In addition, −h2/‖z2‖+ z2z

T
2 h2/‖z2‖3 = O(‖h‖). Hence,

(
f(m1)− f(λ1)

)(−h2

‖z2‖ +
z2z

T
2 h2

‖z2‖3

)
= O(‖h‖2) = o(‖h‖) .

Therefore, it remains to show that the last part of Ξ(1)
2 is o(‖h‖). Now, note that

z2

‖z2‖ −
x2

‖x2‖ −
h2

‖z2‖ +
z2z

T
2 h2

‖z2‖3
= x2

(
1
‖z2‖ −

1
‖x2‖ +

zT
2 h2

‖z2‖3

)
+ O(‖h‖2) .

Let θ(z2) := −1/‖z2‖, then ∇θ(z2) = − −1
‖z2‖2

z2

‖z2‖ =
z2

‖z2‖3
. This implies that

1
‖z2‖ −

1
‖x2‖ +

zT
2 h2

‖z2‖3
= θ(x2)− θ(z2)−∇θ(z2)(x2 − z2) = O(‖h‖2),

where the last equality is from first Taylor approximation. Thus, we obtain

f(λ1)
(

z2

‖z2‖ −
x2

‖x2‖ −
h2

‖z2‖ +
z2z

T
2 h2

‖z2‖3

)
= o(‖h‖) .

From all the above, we therefore verified that (22) is satisfied which says f
soc

is
semismooth under the case (i).
Case (ii): If x2 = 0, we need to discuss two subcases. First subcase, consider h2 6= 0.

Then x = (x1, 0) and x + h = (x1 + h1, h2). We can choose u(i) = 1
2

(
1, (−1)i h2

‖h2‖

)

such that x = λu(1) + λu(2) and x + h = m1u
(1) + m2u

(2) where λ = x1 and
mi = x1 + h1 + (−1)i‖h2‖, i = 1, 2. Hence,

{
f

soc
(x) = f(x1)u(1) + f(x1)u(2),

f
soc

(x + h) = f(m1)u(1) + f(m2)u(2).

Also from part (c), we know

∇f
soc

(x + h) =
f(m2)− f(m1)

m2 −m1




0 0

0 I − h2h
T
2

‖h2‖2




+ 2f ′(m1)u(1)(u(1))T + 2f ′(m2)u(2)(u(2))T ,

where

u(i)(u(i))T =
1
4


 1 (−1)i hT

2
‖h2‖

(−1)i h2
‖h2‖

h2hT
2

‖h2‖2


 , ∀i = 1, 2.

Therefore, by direct computations, we have

∇f
soc

(x + h)h =
(

1
2
f ′(m1)(h1 − ‖h2‖) , (1− h1

‖h2‖)h2

)

+
(

1
2
f ′(m2)(h1 + ‖h2‖) , (1 +

h1

‖h2‖)h2

)
.
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Combining all of these, we obtain that

f
soc

(x + h)− f
soc

(x)−∇f
soc

(x + h)h

=
{

f(m1)u(1) + f(m2)u(2)

}
−

{
f(x1)u(1) + f(x1)u(2)

}

−
{(

1
2
f ′(m1)(h1 − ‖h2‖) , (1− h1

‖h2‖)h2

)

+
(

1
2
f ′(m2)(h1 + ‖h2‖) , (1 +

h1

‖h2‖)h2

)}

=
(

1
2

{
f(m1)− f(x1)− f ′(m1)(h1 − ‖h2‖)

}

+
1
2

{
f(m2)− f(x1)− f ′(m2)(h1 + ‖h2‖)

}
,

1
2

{
f(m1)− f(x1)− f ′(m1)(h1 − ‖h2‖)

}
(− h2

‖h2‖)

+
1
2

{
f(m2)− f(x1)− f ′(m2)(h1 + ‖h2‖)

}
(

h2

‖h2‖)
)

= o(h1 − ‖h2‖)u(1) + o(h1 + ‖h2‖)u(2).

The third equality holds since f is semismooth and Lemma 2.1. When h goes to
zero, both h1 − ‖h2‖ and h1 + ‖h2‖ go to zero, so the above expression yields that
(22) is satisfied. Hence, f

soc
is semismooth under this subcase.

Secondly, for the subcase of h2 = 0, then x = (x1, 0) and x + h = (x1 + h1, 0).

We can choose u(i) = 1
2

(
1, (−1)iw

)
with ‖w‖ = 1 such that x = λu(1) + λu(2) and

x + h = mu(1) + mu(2), where λ = x1 and m = x1 + h1. Hence,
{

f
soc

(x) = f(x1)u(1) + f(x1)u(2)

f
soc

(x + h) = f(x1 + h1)u(1) + f(x1 + h1)u(2) .

Also (21) says ∇f
soc

(x + h) = f ′(x1 + h1)I. Therefore, ∇f
soc

(x + h)h = (f ′(x1 +
h1)h1, 0). Combining all of these, we obtain that

f
soc

(x + h)− f
soc

(x)−∇f
soc

(x + h)h

=
{

f(x1 + h1)u(1) + f(x1 + h1)u(2)

}

−
{

f(x1)u(1) + f(x1)u(2)

}
−

(
f ′(x1 + h1)h1 , 0

)

=
(

f(x1 + h1)− f(x1)− f ′(x1 + h1)h1 , 0
)

=
(

o(|h1|) , 0
)

,
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where the third equality holds since f is semismooth and Lemma 2.1. When h
goes to zero, it implies h1 goes to zero, so the above expression implies that (22) is
satisfied which says f

soc
is semismooth in this subcase.

From all the above, we proved that if f is semismooth then f
soc

is semismooth. ¤

4. Semismoothness property of φ

It was shown by L. Qi and J. Sun in [16] that for NCP case a key to superlinear
convergence is a certain semismoothness property of φ. Indeed, the property of
semismoothness of φ is of some interest since it leads to investigation of nonsmooth
methods. In this section, we will also give an alternative proof for this property. The
idea is straightforward though it involves more algebraic computations. This kind
of nonlinear analysis would help understanding and analyzing other merit functions.
Let ρ : IRn × IRn → IRn be defined by

(23) ρ(x, y) := (x2 + y2)1/2.

To prove φ is strongly semismooth, it is enough to show that ρ is strongly semis-
mooth. In other words, we will show that ρ is strictly continuous, directionally
differentiable and satisfies conditions of Lemma 2.1, hence it is strongly semis-
mooth. Before the long proof, we need some technical lemmas that will be used
very often for the analysis of semismoothness of vector-valued Fischer-Burmeister
function associated with second-order cone.

Lemma 4.1. [3, Lem. 3.2] For any x = (x1, x2), y = (y1, y2) ∈ IR×IRn−1 with x2+y2

on the boundary of Kn, we have x2
1 = ‖x2‖2, y2

1 = ‖y2‖2, x1y1 = xT
2 y2, x1y2 = y1x2.

Lemma 4.2. [3, Lem. 3.3] For any x = (x1, x2) and y = (y1, y2) ∈ IR× IRn−1 with
x1x2 + y1y2 6= 0, we have

(
x1 − (x1x2 + y1y2)T x2

‖x1x2 + y1y2‖
)2

≤
∥∥∥∥x2 − x1

x1x2 + y1y2

‖x1x2 + y1y2‖

∥∥∥∥
2

≤ ‖x‖2 + ‖y‖2 − 2‖x1x2 + y1y2‖.
Lemma 4.3. If x = (x1, x2) ∈ IR× IRn−1 and y = (y1, y2) ∈ IR× IRn−1 with x2 +y2

on the boundary of Kn, then for any h = (h1, h2) ∈ IR × IRn−1 and k = (k1, k2) ∈
IR× IRn−1 we have

(a) 〈x1x2 + y1y2, x1h2 + h1x2 + y1k2 + k1y2〉 = (x2
1 + y2

1)
(
〈x, h〉+ 〈y, k〉

)
,

(b) 〈x ◦ h + y ◦ k, x2 + y2〉 = 4(x2
1 + y2

1)
(
〈x, h〉+ 〈y, k〉

)
.

Proof. (a) By direct computation and applying Lemma 4.1 in the first equality, we
obtain

〈x1x2 + y1y2, x1h2 + h1x2 + y1k2 + k1y2〉
= x2

1〈x2, h2〉+ y2
1〈x2, h2〉+ x3

1h1 + y2
1x1h1

+ x2
1y1k1 + y3

1k1 + x2
1〈y2, k2〉+ y2

1〈y2, k2〉

= (x2
1 + y2

1)
(
〈x, h〉+ 〈y, k〉

)
.
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(b) This is a consequence of part (a), since

〈x ◦ h + y ◦ k, x2 + y2〉

= 2(x2
1 + y2

1)
(
〈x, h〉+ 〈y, k〉

)
+ 2〈x1x2 + y1y2, x1h2 + h1x2 + y1k2 + k1y2〉

= 4(x2
1 + y2

1)
(
〈x, h〉+ 〈y, k〉

)
,

where the first equality holds because x2 + y2 = (2x2
1 + 2y2

1, 2x1x2 + 2y1y2). ¤
Lemma 4.4. For x = (x1, x2) ∈ IR × IRn−1 and y = (y1, y2) ∈ IR × IRn−1 with
‖x‖2 + ‖y‖2 = 2‖x1x2 + y1y2‖ > 0, let u := x2 + y2 and z := (x + h)2 + (y + k)2

where h = (h1, h2) ∈ IR× IRn−1 and k = (k1, k2) ∈ IR× IRn−1. If we denote m1,m2

as the spectral values of z while λ1, λ2 the spectral values of u, then we have

m1 − λ1 = O(‖(h, k)‖2), m2 − λ2 = O(‖(h, k)‖).
Proof. Since m1,m2 are the spectral values of z, we know that

m1 = ‖x + h‖2 + ‖y + k‖2 − 2‖(x1 + h1)(x2 + h2) + (y1 + k1)(y2 + k2)‖,
m2 = ‖x + h‖2 + ‖y + k‖2 + 2‖(x1 + h1)(x2 + h2) + (y1 + k1)(y2 + k2)‖.

Also λ1, λ2 are spectral values of u, we have

λ1 = ‖x‖2 + ‖y‖2 − 2‖x1x2 + y1y2‖,
λ2 = ‖x‖2 + ‖y‖2 + 2‖x1x2 + y1y2‖.

We denote z = (z1, z2) ∈ IR× IRn−1 and u = (u1, u2) ∈ IR× IRn−1, then we obtain

m1 − λ1

=
(
‖x + h‖2 + ‖y + k‖2 − ‖x‖2 − ‖y‖2

)
−

(
‖z2‖ − ‖u2‖

)

= 2
(
〈x, h〉+ 〈y, k〉

)
+

(
‖h‖2 + ‖k‖2

)
−

(
‖z2‖ − ‖u2‖

)

= 2
(
〈x, h〉+ 〈y, k〉

)

− 4‖(x1 + h1)(x2 + h2) + (y1 + k1)(y2 + k2)‖2 − 4‖x1x2 + y1y2‖2

‖z2‖+ ‖u2‖
+ O(‖(h, k)‖2)

= 2
(
〈x, h〉+ 〈y, k〉

)
− 8
‖z2‖+ ‖u2‖

(
〈x1x2 + y1y2, x1h2 + h1x2 + y1k2 + k1y2〉

+ O(‖(h, k)‖2)
)

+ O(‖(h, k)‖2)

= 2
(
〈x, h〉+ 〈y, k〉

)
− 4‖u2‖
‖z2‖+ ‖u2‖

(
〈x, h〉+ 〈y, k〉

)
+ O(‖(h, k)‖2)

=
2(〈x, h〉+ 〈y, k〉)
‖z2‖+ ‖u2‖

(
‖z2‖ − ‖u2‖

)
+ O(‖(h, k)‖2)
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=
2(〈x, h〉+ 〈y, k〉)
(‖z2‖+ ‖u2‖)2

(
‖z2‖2 − ‖u2‖2

)
+ O(‖(h, k)‖2)

=
2(〈x, h〉+ 〈y, k〉)
(‖z2‖+ ‖u2‖)2

(
8〈x1x2 + y1y2, x1h2 + h1x2 + y1k2 + k1y2〉+ O(‖(h, k)‖2)

)

+ O(‖(h, k)‖2)

=
16‖u2‖

(‖z2‖+ ‖u2‖)2
(
〈x, h〉+ 〈y, k〉

)2

+ O(‖(h, k)‖2)

= O(‖(h, k)‖2),

where the fifth and ninth equalities hold due to the following (by applying Lemma
4.3):

(24) 〈x1x2 + y1y2, x1h2 + h1x2 + y1k2 + k1y2〉 =
‖u2‖

2

(
〈x, h〉+ 〈y, k〉

)
.

Using the same ideas as above, we also obtain

m2 − λ2

= 2
(
〈x, h〉+ 〈y, k〉

)

+
4‖(x1 + h1)(x2 + h2) + (y1 + k1)(y2 + k2)‖2 − 4‖x1x2 + y1y2‖2

‖z2‖+ ‖u2‖
+ O(‖(h, k)‖2)

= 2
(
〈x, h〉+ 〈y, k〉

)
+

8
‖z2‖+ ‖u2‖

(
〈x1x2 + y1y2, x1h2 + h1x2 + y1k2 + k1y2〉

+ O(‖(h, k)‖2)
)

+ O(‖(h, k)‖2)

= 2
(
〈x, h〉+ 〈y, k〉

)
+

4‖u2‖
‖z2‖+ ‖u2‖

(
〈x, h〉+ 〈y, k〉

)
+ O(‖(h, k)‖2)

= O(‖(h, k)‖).
Thus, we complete the proof. ¤

It can be verified that the vector-valued function ρ given as (23) is strictly con-
tinuous and directionally differentiable by following the similar arguments as in the
original proof in [19] by D. Sun and J. Sun. Therefore, to prove ρ is strongly semis-
mooth, it is enough to verify that ρ satisfies the condition in Lemma 2.1(b). We
show the detailed verifications in the following proposition which is another main
work of this paper.

Proposition 4.5. The vector-valued function ρ given as (23) is strongly semis-
mooth. Hence, the vector-valued function φ defined as (7) is strongly semismooth.

Proof. We will have to discuss three cases to complete the proof.
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Case (1): If (x, y) = (0, 0), to show ρ is strongly semismooth at (0, 0), we need to
verify the condition of Lemma 2.1, that is,

(25) ρ(h, k)− ρ(0, 0)−∇ρ(h, k) ·
(

h
k

)
= O(‖(h, k)‖2),

for any (h, k) → (0, 0) such that ρ is differentiable at (h, k). Since ρ is differentiable
at (h, k) and ∇ρ(h, k) = [∇xρ(h, k) ∇yρ(h, k)] =

[
L−1

(h2+k2)1/2Lh L−1
(h2+k2)1/2Lk

]

(see [3, Prop. 3.1(b)] or [9, Cor. 5.2]), we have

ρ(h, k)− ρ(0, 0)−∇ρ(h, k) ·
(

h
k

)

= (h2 + k2)1/2 − L−1
(h2+k2)1/2Lh · h− L−1

(h2+k2)1/2Lk · k
= L−1

(h2+k2)1/2L(h2+k2)1/2 · (h2 + k2)1/2 − L−1
(h2+k2)1/2 · h2 − L−1

(h2+k2)1/2 · k2

= L−1
(h2+k2)1/2

(
(h2 + k2)1/2 ◦ (h2 + k2)1/2

)
− L−1

(h2+k2)1/2 · (h2 + k2)

= L−1
(h2+k2)1/2 · 0

= O(‖(h, k)‖2).

Hence (25) is satisfied, which means ρ is semismooth at (0, 0)
Case (2): If (x, y) 6= (0, 0) with x2 + y2 lying in the interior of Kn, it was already
known (see [9]) that ρ is differentiable at such (x, y). Hence, it is strongly semis-
mooth at such (x, y).
Case (3): If (x, y) 6= (0, 0) with x2+y2 on the boundary of Kn, that is, ‖x‖2+‖y‖2 =
2‖x1x2 + y1y2‖ > 0 (Note that x2 + y2 = (‖x‖2 + ‖y‖2, 2x1x2 + 2y1y2) ). Let
u := x2 + y2 with spectral values λ1, λ2, then we have

u1/2 = ρ(x, y) = (x2 + y2)1/2

=
(√

(‖x‖2 + ‖y‖2)/2,
x1x2 + y1y2√

(‖x‖2 + ‖y‖2)/2

)

=
(√

x2
1 + y2

1,
x1x2 + y1y2√

x2
1 + y2

1

)
,

where the third and fourth equalities is true due to Lemma 4.1. Now, by Lemma
2.1 again, we need to verify, for any (h, k) → (0, 0) such that ρ is differentiable at
(x + h, y + k), that

(26) ρ(x + h, y + k)− ρ(x, y)−∇ρ(x + h, y + k) ·
(

h
k

)
= O(‖(h, k)‖2).

Since ρ is differentiable at (x + h, y + k), we know

∇ρ(x + h, y + k) = [∇xρ(x + h, y + k) ∇yρ(x + h, y + k)]

=
[
L−1

((x+h)2+(y+k)2)1/2Lx+h L−1
((x+h)2+(y+k)2)1/2Ly+k

]
.
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Let z := (x + h)2 + (y + k)2 with spectral values m1,m2, we have

z1/2 = ρ(x + h, y + k)

=
(√

m1 +
√

m2

2
,

√
m2 −√m1

2
(x1 + h1)(x2 + h2) + (y1 + k1)(y2 + k2)
‖(x1 + h1)(x2 + h2) + (y1 + k1)(y2 + k2)‖

)

=
(√

m1 +
√

m2

2
,

2√
m1 +

√
m2

[(x1 + h1)(x2 + h2) + (y1 + k1)(y2 + k2)]
)

,

where

m1 := ‖x + h‖2 + ‖y + k‖2 − 2‖(x1 + h1)(x2 + h2) + (y1 + k1)(y2 + k2)‖,
m2 := ‖x + h‖2 + ‖y + k‖2 + 2‖(x1 + h1)(x2 + h2) + (y1 + k1)(y2 + k2)‖.

Now let f : IR+ → IR+ denote the function f(·) =
√

(·), we have ∇f
soc

(z) = 1
2L−1

z1/2

(This is a result in the proof of [9, Cor. 5.2]). It together with part (c) of Prop. 2.2
gives

L−1
z1/2 = 2∇f

soc
(z) =




2b
2czT

2

‖z2‖
2cz2

‖z2‖ 2aI + 2(b− a)
z2z

T
2

‖z2‖2


 ,

where

a =
f(m2)− f(m1)

m2 −m1
, b =

f ′(m2) + f ′(m1)
2

, c =
f ′(m2)− f ′(m1)

2
.

In summary, up to here, we have

z1/2 =
(

f(m2)+f(m1)
2 , f(m2)−f(m1)

2
z2
‖z2‖

)
,

u1/2 =
(

f(λ2)+f(λ1)
2 , f(λ2)−f(λ1)

2
u2
‖u2‖

)
,

∇ρ(x + h, y + k) =
[
L−1

z1/2Lx+h L−1
z1/2Ly+k

]
.

Thus, we obtain

ρ(x + h, y + k)− ρ(x, y)−∇ρ(x + h, y + k) ·
(

h
k

)

= z1/2 − u1/2 − L−1
z1/2Lx+h · h− L−1

z1/2Ly+k · k

= z1/2 − u1/2 − L−1
z1/2

(
x ◦ h + y ◦ k + h2 + k2

)
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=
(

f(m2) + f(m1)
2

,
f(m2)− f(m1)

2
z2

‖z2‖
)

−
(

f(λ2) + f(λ1)
2

,
f(λ2)− f(λ1)

2
u2

‖u2‖
)

−




2b
2czT

2

‖z2‖
2cz2

‖z2‖ 2aI + 2(b− a)
z2z

T
2

‖z2‖2




·
[ 〈x, h〉+ 〈y, k〉+ ‖h‖2 + ‖k‖2

x1h2 + h1x2 + y1k2 + k1y2 + 2h1h2 + 2k1k2

]

:=
(

Ξ1,Ξ2

)
,

where Ξ1 ∈ IR denotes the first component while Ξ2 ∈ IRn−1 represents the second
component. We will show that Ξ1 and Ξ2 are both O(‖(h, k)‖2). First of all, we
compute the first component Ξ1:

Ξ1 =
1
2
f(m2) +

1
2
f(m1)− 1

2
f(λ2)− 1

2
f(λ1)

−
(

f ′(m2) + f ′(m1)
)(

〈x, h〉+ 〈y, k〉+ ‖h‖2 + ‖k‖2

)

−
(

f ′(m2)− f ′(m1)
)

1
‖z2‖〈z2, x1h2 + h1x2 + y1k2 + k1y2 + 2h1h2 + 2k1k2〉

=
1
2

[
f(m1)− f(λ1)− f ′(m1)

(
2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2

)

+ f ′(m1)
1
‖z2‖〈z2, 2x1h2 + 2h1x2 + 2y1k2 + 2k1y2 + 4h1h2 + 4k1k2〉

]

+
1
2

[
f(m2)− f(λ2)− f ′(m2)

(
2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2

)

− f ′(m2)
1
‖z2‖〈z2, 2x1h2 + 2h1x2 + 2y1k2 + 2k1y2 + 4h1h2 + 4k1k2〉

]

=
1
2

[
f(m1)− f(λ1)− f ′(m1)41

]
+

1
2

[
f(m2)− f(λ2)− f ′(m2)42

]
,

where

41 = 2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2

− 1
‖z2‖〈z2, 2x1h2 + 2h1x2 + 2y1k2 + 2k1y2 + 4h1h2 + 4k1k2〉,

42 = 2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2

+
1
‖z2‖〈z2, 2x1h2 + 2h1x2 + 2y1k2 + 2k1y2 + 4h1h2 + 4k1k2〉.
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We further observe that

42 = 2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2 +
1
‖z2‖〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

= 2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2

+
1
‖z2‖

(
‖z2‖2 − 〈z2, u2〉+ 〈z2, 2h1h2 + 2k1k2〉

)

= 2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2 + ‖z2‖ − ‖z2‖‖u2‖ cos θ

‖z2‖ + O(‖(h, k)‖2)

= 2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2 +
(
‖z2‖ − ‖u2‖(1 + O(θ2)

)
+ O(‖(h, k)‖2)

= 2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2 +
(
‖z2‖ − ‖u2‖

)
+ O(‖(h, k)‖2)

= (m2 − λ2) + O(‖(h, k)‖2),

where θ is the angle between z2 and u2 and O(θ2) = O(‖(h, k)‖2) due to ‖z2−u2‖ =
O(‖(h, k)‖). In addition, the last equality holds by the following equation in proof
of Lemma 4.4:

(27) m2 − λ2 = 2〈x, h〉+ 2〈y, k〉+ ‖h‖2 + ‖k‖2 + ‖z2‖ − ‖u2‖.
Hence, we have

1
2

[
f(m2)− f(λ2)− f ′(m2)42

]

=
1
2

[
f(m2)− f(λ2)− f ′(m2)

(
(m2 − λ2) + O(‖(h, k)‖2)

)]

= O(|m2 − λ2|2) + O(‖(h, k)‖2)

= O(‖(h, k)‖2),

where the second equality is true since f is strongly semismooth at λ2 and f ′(λ2) is
bounded, while the last equality holds due to Lemma 4.4. Therefore, it remains to
show that the other term about λ1 in the expression of Ξ1 is O(‖(h, k)‖2). However,
we can not use the same idea as above to prove it since f is not strongly semismooth
at λ1 = 0. Our approach way is as below. We rewrite 41 as

41 = 2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2 − 1
‖z2‖〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

= 2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2

− 1
‖z2‖

(
‖z2‖2 − 〈z2, u2〉+ 〈z2, 2h1h2 + 2k1k2〉

)

= 2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2

− ‖z2‖+
1
‖z2‖〈z2, u2〉 − 1

‖z2‖〈z2, 2h1h2 + 2k1k2〉
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= 2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2 − ‖z2‖+
‖z2‖‖u2‖ cos θ

‖z2‖
− 1
‖z2‖〈z2, 2h1h2 + 2k1k2〉

= 2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2 −
(
‖z2‖ − ‖u2‖(1− θ2/2 + O(θ4)

)

− 1
‖z2‖〈z2, 2h1h2 + 2k1k2〉

= 2m1 +
(
‖z2‖ − ‖u2‖

)
− 2

(
〈x, h〉+ 〈y, k〉

)
+ ‖u2‖(−θ2/2)

− 1
‖z2‖〈z2, 2h1h2 + 2k1k2〉+ O(θ4)

:= 2m1 + 4̃1 + O(θ4),

where θ is the angle between z2 and u2 and the last equality holds due to Lemma
4.4. We will show that 4̃1 is actually O(‖(h, k)‖3) in the following.

4̃1 =
(
‖z2‖ − ‖u2‖

)
− 2

(
〈x, h〉+ 〈y, k〉

)

+ ‖u2‖(−θ2/2)− 1
‖z2‖〈z2, 2h1h2 + 2k1k2〉

=
‖z2‖2 − ‖u2‖2

‖z2‖+ ‖u2‖ − 2
(
〈x, h〉+ 〈y, k〉

)

+ ‖u2‖(−θ2/2)− 1
‖z2‖〈z2, 2h1h2 + 2k1k2〉

=
4

‖z2‖+ ‖u2‖
(
‖x1h2 + h1x2 + y1k2 + k1y2‖2 + 〈u2, h1h2 + k1k2〉

+ ‖u2‖(〈x, h〉+ 〈y, k〉) + O(‖(h, k)‖3)
)
− 2

(
〈x, h〉+ 〈y, k〉

)

+ ‖u2‖(−θ2/2)− 1
‖z2‖〈z2, 2h1h2 + 2k1k2〉

=
4‖u2‖

‖z2‖+ ‖u2‖
(
〈x, h〉+ 〈y, k〉

)
− 2

(
〈x, h〉+ 〈y, k〉

)

+
4‖x1h2 + h1x2 + y1k2 + k1y2‖2

‖z2‖+ ‖u2‖ + ‖u2‖(−θ2/2)

+
(

4
‖z2‖+ ‖u2‖ −

2
‖z2‖

)
〈u2, h1h2 + k1k2〉+ O(‖(h, k)‖3)

=
〈x, h〉+ 〈y, k〉
‖z2‖+ ‖u2‖

(
4‖u2‖ − 2(‖z2‖+ ‖u2‖)

)

+
4‖x1h2 + h1x2 + y1k2 + k1y2‖2

‖z2‖+ ‖u2‖ + ‖u2‖(−θ2/2) + O(‖(h, k)‖3)
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=
2(〈x, h〉+ 〈y, k〉)
(‖z2‖+ ‖u2‖)2

(
‖u2‖2 − ‖z2‖2

)

+
4‖x1h2 + h1x2 + y1k2 + k1y2‖2

‖z2‖+ ‖u2‖ + ‖u2‖(−θ2/2) + O(‖(h, k)‖3)

=
−8(〈x, h〉+ 〈y, k〉)

(‖z2‖+ ‖u2‖)2
(
‖u2‖(〈x, h〉+ 〈y, k〉)

)

+
4‖x1h2 + h1x2 + y1k2 + k1y2‖2

‖z2‖+ ‖u2‖ + ‖u2‖(−θ2/2) + O(‖(h, k)‖3)

=
−8‖u2‖

(‖z2‖+ ‖u2‖)2
(

(〈x, h〉+ 〈y, k〉)
)2

+
8‖u2‖ · ‖x1h2 + h1x2 + y1k2 + k1y2‖2

(‖z2‖+ ‖u2‖)2 + ‖u2‖(−θ2/2) + O(‖(h, k)‖3)

=
8‖u2‖

(‖z2‖+ ‖u2‖)2
(
‖x1h2 + h1x2 + y1k2 + k1y2‖2 − (〈x, h〉+ 〈y, k〉)2

)

+ ‖u2‖(−θ2/2) + O(‖(h, k)‖3),

where the fifth equality is true since the following equation:
(

4
‖z2‖+ ‖u2‖ −

2
‖z2‖

)
〈u2, h1h2 + k1k2〉 = O(‖(h, k)‖3).

On the other hand, the first two terms in the last equality of expression of 4̃1 could
be cancelled as shown below:

8‖u2‖
(‖z2‖+ ‖u2‖)2

(
‖x1h2 + h1x2 + y1k2 + k1y2‖2 − (〈x, h〉+ 〈y, k〉)2

)
+ ‖u2‖(−θ2/2)

=
8‖u2‖

(2‖u2‖)2
(
‖x1h2 + h1x2 + y1k2 + k1y2‖2 − (〈x, h〉+ 〈y, k〉)2

)

+
〈z2, u2〉 − ‖u2‖ · ‖z2‖

‖z2‖ + O(‖(h, k)‖3)

=
2

‖u2‖
(
‖x1h2 + h1x2 + y1k2 + k1y2‖2 − (〈x, h〉+ 〈y, k〉)2

)

+
〈u2 + d2, u2〉 − ‖u2‖ · ‖u2 + d2‖

‖z2‖ + O(‖(h, k)‖3)

=
2

‖u2‖
(
‖x1h2 + h1x2 + y1k2 + k1y2‖2 − (〈x, h〉+ 〈y, k〉)2

)

+
(〈u2, d2〉)2 − (‖u2‖ · ‖d2‖)2

2‖u2‖3
+ O(‖(h, k)‖3)

=
2

‖u2‖
(
‖x1h2 + h1x2 + y1k2 + k1y2‖2 − (〈x, h〉+ 〈y, k〉)2

)

+
1

2‖u2‖3

([
4〈x1x2 + y1y2, x1h2 + h1x2 + y1k2 + k1y2〉
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+ 4〈x1x2 + y1y2, h1h2 + k1k2〉
]2

− ‖u2‖2 ·
[
4‖x1h2 + h1x2 + y1k2 + k1y2‖2 + O(‖(h, k)‖3)

])
+ O(‖(h, k)‖3)

=
2

‖u2‖
(
‖x1h2 + h1x2 + y1k2 + k1y2‖2 − (〈x, h〉+ 〈y, k〉)2

)

+
4

2‖u2‖3

(
‖u2‖ ·

[
(〈x, h〉+ 〈y, k〉) + 〈u2, h1h2 + k1k2〉

]2

− ‖u2‖2 · ‖x1h2 + h1x2 + y1k2 + k1y2‖2

)
+ O(‖(h, k)‖3)

=
2

‖u2‖
(
‖x1h2 + h1x2 + y1k2 + k1y2‖2 − (〈x, h〉+ 〈y, k〉)2

)

+
2

‖u2‖
(

(〈x, h〉+ 〈y, k〉)2 − ‖x1h2 + h1x2 + y1k2 + k1y2‖2

)
+ O(‖(h, k)‖3)

= O(‖(h, k)‖3),

where we denote d2 := z2 − u2 and equation (24) is applied in the sixth equality.
Thus, we proved 4̃1 is O(‖(h, k)‖3), which implies that 41 = 2m1 + 4̃1 is 2m1 +
O(‖(h, k)‖3). Then, we obtain

1
2

[
f(m1)− f(λ1)− f ′(m1)(41)

]

=
1
2

[
f(m1)− f(λ1)− f ′(m1)

(
2m1 + O(‖(h, k)‖3)

)]

= f ′(m1) ·O(‖(h, k)‖3)

= O(‖(h, k)‖2),

where the second equality holds since f ′(m1) = 1
2
√

m1
, f(λ1) = 0 and the third

equality is true because f ′(m1) = O

(
1

‖(h,k)‖

)
(by applying Lemma 4.2 and 4.4).

Therefore, we completed proving that the first component Ξ1 is O(‖(h, k)‖2).
Now, we move onto the second component Ξ2. Recall that we have z2 = u2 + d2

and m2 −m1 = 2‖z2‖. Thus, we can simplify Ξ2 as below:

Ξ2 =
1
2

(
f(m2)− f(m1)

)
z2

‖z2‖ −
1
2

(
f(λ2)− f(λ1)

)
u2

‖u2‖
−

(
f ′(m2)− f ′(m1)

)(
〈x, h〉+ 〈y, k〉+ ‖h‖2 + ‖k‖2

)
z2

‖z2‖
− 2

(
f(m2)− f(m1)

m2 −m1

)(
x1h2 + h1x2 + y1k2 + k1y2 + 2h1h2 + 2k1k2

)

−
(

f ′(m2) + f ′(m1)
)

z2

‖z2‖2
〈z2, x1h2 + h1x2 + y1k2 + k1y2 + 2h1h2 + 2k1k2〉
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+ 2
(

f(m2)− f(m1)
m2 −m1

)
z2

‖z2‖2
〈z2, x1h2 + h1x2 + y1k2 + k1y2 + 2h1h2 + 2k1k2〉

= −1
2

[
f(m1)

z2

‖z2‖ − f(λ1)
u2

‖u2‖
− f ′(m1)

(
2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2

)
z2

‖z2‖
− f(m1)

1
‖z2‖

(
z2 − u2 + 2h1h2 + 2k1k2

)

+ f ′(m1)
z2

‖z2‖2
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

+ f(m1)
z2

‖z2‖3
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

]

+
1
2

[
f(m2)

z2

‖z2‖ − f(λ2)
u2

‖u2‖
− f ′(m2)

(
2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2

)
z2

‖z2‖
− f(m2)

1
‖z2‖

(
z2 − u2 + 2h1h2 + 2k1k2

)

− f ′(m2)
z2

‖z2‖2
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

+ f(m2)
z2

‖z2‖3
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

]

:= Ξ(1)
2 + Ξ(2)

2 ,

where Ξ(1)
2 denotes the first half part of the above expression while Ξ(2)

2 denotes the
second part. We will show that both Ξ(1)

2 and Ξ(2)
2 are O(‖(h, k)‖2). We look at

Ξ(2)
2 first:

Ξ(2)
2 =

1
2

{
f(m2)

z2

‖z2‖ − f(λ2)
u2

‖u2‖
− f ′(m2)

(
2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2

)
z2

‖z2‖
− f(m2)

1
‖z2‖

(
z2 − u2 + 2h1h2 + 2k1k2

)

− f ′(m2)
z2

‖z2‖2
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

+ f(m2)
z2

‖z2‖3
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

}

=
1
2

{
z2

‖z2‖ ·
[
f(m2)− f(λ2)− f ′(m2)

(
2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2
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+
1
‖z2‖〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

)]
+ f(λ2)

(
z2

‖z2‖ −
u2

‖u2‖
)

+ f(m2)
(
− (z2 − u2 + 2h1h2 + 2k1k2)

‖z2‖
+

z2

‖z2‖3
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

)}

=
1
2

{
z2

‖z2‖ ·
[
f(m2)− f(λ2)− f ′(m2)

(
m2 − λ2 + O(‖(h, k)‖2)

)]

+ f(λ2)
(

z2

‖z2‖ −
u2

‖u2‖ −
(z2 − u2 + 2h1h2 + 2k1k2)

‖z2‖
+

z2

‖z2‖3
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

)

+
(

f(m2)− f(λ2)
)(

− (z2 − u2 + 2h1h2 + 2k1k2)
‖z2‖

+
z2

‖z2‖3
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

)}
,

where we add and subtract f(λ2) z2
‖z2‖ in the second equality; we also add and sub-

tract
1
2
f(λ2)

(
− (z2 − u2 + 2h1h2 + 2k1k2)

‖z2‖ +
z2

‖z2‖3
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

)

in the third equality. In addition, the equation (27) is also used in the last equality.
Since f is strongly semismooth at λ2, by the same arguments as in the first

component Ξ1, we have

f(m2)− f(λ2)− f ′(m2)
(

m2 − λ2 + O(‖(h, k)‖2)
)

= O(‖(h, k)‖2).

Note that f(m2)− f(λ2) = O(‖(h, k)‖) because m2 − λ2 = O(‖(h, k)‖) as well as f
is strictly continuous at λ2. On the other hand, it is not hard to verify that(
− (z2 − u2 + 2h2h2 + 2k1k2)

‖z2‖ +
z2

‖z2‖3
〈z2, z2−u2 +2h1h2 +2k1k2〉

)
= O(‖(h, k)‖).

Hence, we obtain that the third term of Ξ(2)
2 is O(‖(h, k)‖), i.e.,

(
f(m2)− f(λ2)

)(
− (z2 − u2 + 2h2h2 + 2k1k2)

‖z2‖
+

z2

‖z2‖3
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

)
= O(‖(h, k)‖2).

Thus, it remains to show that the second term of Ξ(2)
2 is O(‖(h, k)‖2). Note that

z2

‖z2‖ −
u2

‖u2‖ −
(z2 − u2 + 2h1h2 + 2k1k2)

‖z2‖ +
z2

‖z2‖3
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

=
u2 + d2

‖z2‖ − u2

‖u2‖ −
(d2 + 2h1h2 + 2k1k2)

‖z2‖ +
u2 + d2

‖z2‖3
〈z2, d2 + 2h1h2 + 2k1k2〉
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=
u2 + d2

‖z2‖ − u2

‖u2‖ −
d2

‖z2‖ +
u2 + d2

‖z2‖3
〈z2, d2〉+ O(‖(h, k)‖2)

= u2

(
1
‖z2‖ −

1
u2

+
〈z2, d2〉
‖z2‖3

)
+ O(‖(h, k)‖2).

If we let θ(z2) := −1/‖z2‖, then a previous technique leads to

1
‖z2‖ −

1
‖u2‖ +

〈z2, d2〉
‖z2‖3

= θ(u2)− θ(z2)−∇θ(z2)(u2 − z2) = O(‖(h, k)‖2),

where the last equality is from Taylor approximation. Thus, we obtain

f(λ2)
(

z2

‖z2‖ −
u2

‖u2‖ −
(z2 − u2 + 2h1h2 + 2k1k2)

‖z2‖
+

z2

‖z2‖3
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

)
= O(‖(h, k)‖2).

So far, we therefore proved that Ξ(2)
2 is O(‖(h, k)‖2).

Finally, we will go back to show Ξ(1)
2 is O(‖(h, k)‖2). Again, the idea used for Ξ(2)

2

can not be applied to Ξ(1)
2 since f is not semismooth at λ1 = 0. However, Ξ(1)

2 can
be rewritten as below.

Ξ(1)
2 = −1

2

{
f(m1)

z2

‖z2‖ − f(λ1)
u2

‖u2‖
− f ′(m1)

(
2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2

)
z2

‖z2‖
− f(m1)

1
‖z2‖

(
z2 − u2 + 2h1h2 + 2k1k2

)

+ f ′(m1)
z2

‖z2‖2
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

+ f(m1)
z2

‖z2‖3
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

}

= −1
2

{
z2

‖z2‖ ·
[
f(m1)− f(λ1)− f ′(m1)

(
2〈x, h〉+ 2〈y, k〉+ 2‖h‖2 + 2‖k‖2

− 1
‖z2‖〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

)]
+ f(λ1)

(
z2

‖z2‖ −
u2

‖u2‖
)

+ f(m1)
(
− (z2 − u2 + 2h1h2 + 2k1k2)

‖z2‖
+

z2

‖z2‖3
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

)}

= −1
2

{
z2

‖z2‖ ·
[
f(m1)− f(λ1)− f ′(m1)

(
41 + O(‖(h, k)‖3)

)]

+ f(m1)
(
− (z2 − u2 + 2h1h2 + 2k1k2)

‖z2‖
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+
z2

‖z2‖3
〈z2, z2 − u2 + 2h1h2 + 2k1k2〉

)}
.

Then follow the same arguments as in the first component Ξ1, we can obtain

f(m1)− f(λ1)− f ′
(
41 + O(‖(h, k)‖3)

)
= O(‖(h, k)‖2).

On the other hand, it is not hard to show that(
− (z2 − u2 + 2h1h2 + 2k1k2)

‖z2‖ +
z2

‖z2‖3
〈z2, z2−u2 +2h1h2 +2k1k2〉

)
= O(‖(h, k)‖),

and f(m1) = O(‖(h, k)‖) by Lemma 4.4. Thus, we obtain that the second term
of expression of Ξ(1)

2 is O(‖(h, k)‖2). With this, we therefore complete that Ξ(1)
2

is O(‖(h, k)‖2). From all the above, we proved that (Ξ1,Ξ2) is O(‖(h, k)‖2) which
implies ρ is strongly semismooth in Case (3). ¤

5. Conclusion

We have provided alternative proofs for some results of vector-valued functions
associated with second-order cone, which are useful for designing and analyzing
smoothing and nonsmooth methods for solving SOCP and SOCCP. Our proofs in-
volve more algebraic computations than existing proofs do, in general. Nonetheless,
our proofs come from the straightforward, intuitive thinking and basic definitions
as well as the simple structure of second-order cone. We believe that the intuitive
way we presented here would be helpful for analysis of other merit functions used
for solving SOCP and SOCCP that is one of our future research interests.

Acknowledgement. The author thanks for the referees for their careful reading
of the paper and helpful suggestions.
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