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WELL-POSED SADDLE POINT PROBLEMS

E. CAPRARI AND R. E. LUCCHETTI

Abstract. We provide a new well-posedness concept for saddle-point problems.
We characterize it by means of the behavior of the sublevel sets of an associated
function. We then study the concave-convex case in Euclidean spaces. Applying
these results in the setting of Convex Programming, we get a result on the con-
vergence of the pair solution-Lagrange multiplier of approximating problems to
the pair solution-Lagrange multiplier of the limit problem.

1. Introduction

Let (F , d) be some complete metric space of functions f : X × Y −→ R, where
X, Y are complete metric spaces.

We are interested in the saddle point problem engendered by f , denoted by S(f),
i.e. in finding (x̄, ȳ) such that:

f(x, ȳ) ≤ f(x̄, ȳ) ≤ f(x̄, y),

∀x ∈ X, ∀y ∈ Y . As it is well-known, and immediate to prove, for any function f ,
the following inequality holds:

sup
x∈X

inf
y∈Y

f(x, y) ≤ inf
y∈Y

sup
x∈X

f(x, y).

Let us define
βf (y) = sup

x∈X
f(x, y),

αf (x) = inf
y∈Y

f(x, y)

and
ωf (x, y) = βf (y)− αf (x)

(We shall omit the subscript f when it is not needed, and we shall use sometimes
the subscript n when we deal with a sequence of functions {fn}).
Then, from the inequality above we have, for each (x, y) ∈ X × Y ,

ω(x, y) ≥ 0.

The following proposition is known and easy to prove.

Proposition 1.1. The following are equivalent:
• There exists (x̄, ȳ) such that:

(1) supx∈X αf (x) = αf (x̄);
(2) infy∈Y βf (y) = βf (ȳ);
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(3) supx∈X infy∈Y f(x, y) = infy∈Y supx∈X f(x, y);
• (x̄, ȳ) is a saddle point for f .

We say that the saddle point problem engendered by f has value, provided Con-
dition 3. holds. Thus, for every point x̄ maximizing α, for every point ȳ minimizing
β, if the problem has value, then the pair (x̄, ȳ) is a saddle point for f . Conversely,
the existence of a saddle point (x̄, ȳ) guarantees that the problem has value, that x̄
maximizes α and that ȳ minimizes β. I. e. the following proposition holds.

Proposition 1.2. Solving the saddle point problem S(f) is equivalent to solving
the following (minimum) problem:

find (x̄, ȳ) ∈ X × Y such that ω(x̄, ȳ) = 0.

Let us then define the set of all saddle points of the function f :

S = {(x̄, ȳ) ∈ X × Y such that ω(x̄, ȳ) = 0} .

The following well-posedness concept for a saddle point problem is due to Cavazzuti
and Morgan ([CM]).

Definition 1.1. The saddle point problem S(f) is Tykhonov well-posed if:
(1) there exists only one saddle point (x̄, ȳ);
(2) ∀(xn, yn) ∈ X × Y such that ω(xn, yn) −→ 0, it is (xn, yn) −→ (x̄, ȳ).

This means that the minimum problem engendered by ωf has value zero, and it
is Tykhonov well-posed.

Sometimes uniqueness of the saddle point is a too stringent requirement. Thus,
as in the case of Tykhonov well-posedness, the previous definition can be adapted
by requiring only existence (and not uniqueness) in the first item, and convergence
to a saddle point, up to a subsequence, in the second one.

Definition 1.2. The saddle point problem S(f) is Tykhonov well-posed in the
generalized sense if:

(1) there exists at least one saddle point of f ;
(2) ∀(xn, yn) ∈ X × Y such that ω(xn, yn) −→ 0, there exists a subsequence

(xnk
, ynk

) such that (xnk
, ynk

) −→ (x̄, ȳ), where (x̄, ȳ) is a saddle point of f .

We want now to provide a new well-posedness concept for the saddle point prob-
lem, in the spirit of an analogous one given for minimum problems in [Zo1, Zo2] (see
also [LZ]). This definition looks interesting since, differently from Tykhonov well-
posedness, it takes into account possible small perturbations in the target function,
that frequently occur, due to the introduction of approximations in the model, or
to round off errors and so on. Since we are supposing F to be endowed with some
metric, we can consider sequences {fn} ⊂ F converging to f and associated {βn},
{αn} and {ωn}.
Definition 1.3. The saddle point problem S(f) is well-posed (with respect to the
metric d on F) if:

(1) there exists only one saddle point (x̄, ȳ);
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(2) ∀fn −→ f ,
{

αn(x) > −∞ for at least one x,
βn(y) < +∞ for at least one y

eventually, and ∀(xn, yn) ∈ X ×Y such that ωn(xn, yn)− inf ωn(x, y) −→ 0,
it is (xn, yn) −→ (x̄, ȳ).

Definition 1.4. The saddle point problem S(f) is well-posed (with respect to the
metric d on F ) in the generalized sense if:

(1) there exists at least one saddle point of f ;
(2) ∀fn −→ f ,

{
αn(x) > −∞ for at least one x,
βn(y) < +∞ for at least one y

eventually, and ∀(xn, yn) ∈ X ×Y such that ωn(xn, yn)− inf ωn(x, y) −→ 0,
there exists a subsequence (xnk

, ynk
) such that (xnk

, ynk
) −→ (x̄, ȳ), where

(x̄, ȳ) is a saddle point of f .

A slightly weaker notion of well-posedness can be taken into account, often called
in the literature Hadamard well-posedness. This means that in the definition above
one considers only sequences {(xn, yn)} such that ωn(xn, yn) = inf ωn, i.e exact and
not only approximate solutions of the approximating problems.

2. Characterization of well-posedness via level sets

In this section we want to characterize a well-posed saddle point problem engen-
dered by a function f , by using its associated function ω and its level sets.
Given a lower semicontinuous, lower bounded function g on a complete metric space
Z, we set

ga := {z ∈ Z : g(z) ≤ inf
y∈Z

g(y) + a}
and

diam ga = sup
y,z∈ga

d (y, z) .

Characterizing well-posedness of the saddle point problem is naturally related to
the good behavior of the minimum problem engendered by the function ω. It is
well-known that, if Z is a complete metric space and g an extended real valued,
lower semicontinuous function on Z, Tykhonov well-posedness of g is equivalent to
saying that lima→0+ diam ga = 0. Thus, first of all, we need to make assumptions in
order to guarantee lower semicontinuity of ω or, equivalently, lower semicontinuity
of β and upper semicontinuity of α. To do this, observe that, setting

epi β := {(y, r) : β(y) ≤ r},
and, dually,

hypo α := {(x, r) : α(x) ≥ r},
we have that

epi β =
⋂

x∈X

epi f(x, ·), hypo α =
⋂

y∈Y

hypo f(·, y).
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It follows that, if x 7→ f(x, y) is an upper semicontinuous function for all y ∈ Y ,
then hypo f(·, y) is a closed set, and thus hypo α is a closed set and so α is upper
semicontinuous. The same line of reasoning can be applied to β. We summarize
these simple remarks in the following proposition.

Proposition 2.1. Let f : X × Y −→ R be a given function. Suppose:
• x 7→ f(x, y) is upper semicontinuous for all y ∈ Y ;
• y 7→ f(x, y) is lower semicontinuous for all x ∈ X.

Then β is lower semicontinuous, α is upper semicontinuous and ω is lower semi-
continuous.

Define now
T a

f := ∪{
ωa

g : g ∈ F , d(g, f) ≤ a
}

.

Remark 2.1. It is intended that ωa
g = X × Y if inf ωg(x, y) = +∞. This case must

be taken into account since ω itself is defined in terms of suprema, and it is easy to
produce examples of functions f for which ωf (x, y) = ∞ for all pairs (x, y).

We are now able to prove the first result.

Theorem 2.1. If the saddle point problem S(f) is well-posed, then

diam (T a
f )

a↓0−→ 0.

Proof. By contradiction suppose there exists ε > 0 such that ∀a > 0 diam(T a
f ) > ε.

Take a = 1
n . Then there exist

fn −→ f, gn −→ g, (xn, yn) and (un, vn)

such that

0 ≤ ωfn(xn, yn) ≤ inf ωfn(x, y) +
1
n

, 0 ≤ ωgn(un, vn) ≤ inf ωgn(x, y) +
1
n

and
δ((xn, yn), (un, vn)) ≥ ε.

(Here δ denotes a compatible distance on the space X × Y ). This is impossible
because the problem is well-posed, and thus the sequences {(xn, yn)} and {(un, vn)}
must converge to the same element, the unique saddle point. ¤

In the other opposite, the following result holds.

Theorem 2.2. Let f : X × Y −→ R be a given function. Suppose:
• x 7→ f(x, y) is upper semicontinuous for all y ∈ Y ;
• y 7→ f(x, y) is lower semicontinuous for all x ∈ X.

Suppose moreover inf ω(x, y) = 0 and

(2) diam (T a
f )

a↓0−→ 0.

Then the saddle point problem S(f) is well-posed.



WELL-POSED SADDLE POINT PROBLEMS 275

Proof. First of all there exists one and only one saddle point (x̄, ȳ) because

inf ω(x, y) = 0, diam (ωa
f )

a↓0−→ 0, and ω is lower semicontinuous. Moreover, ob-
serve that condition (1) in Definition 1.3 holds thanks to (2). Now, take fn −→ f
and (xn, yn) such that

ωn(xn, yn)− inf ωn(x, y) −→ 0.

Define
εn := max {d(fn, f), ωn(xn, yn)− inf ωn(x, y)} .

It is εn ↓ 0 and for each fixed ε > 0 there exists N such that ∀n ≥ N

diam (T εn
f ) < ε.

This means that {(xn, yn)} is a Cauchy sequence and so it converges. Let (x0, y0)
be its limit. Then (x0, y0) ∈ ∩a>0(T a

f ). This set however must be a singleton, and
it contains (x̄, ȳ) too. Thus (x0, y0) = (x̄, ȳ) and the proof is complete. ¤

3. Well-posedness and existence theorems

The Weierstrass theorem is considered the most general and elegant existence
theorem for minimum problems. Actually, it does not merely state existence but,
as it is easy to see from its proof, it claims Tykhonov well-posedness in generalized
sense. In this section we want to analyze the relation between well-posedness and
general existence theorems for saddle points.

Theorem 3.1. Let X and Y be compact sets, let f : X × Y → R be such that:
• x 7→ f(x, y) is upper semicontinuous for all y ∈ Y ;
• y 7→ f(x, y) is lower semicontinuous for all x ∈ X.

Suppose moreover that the saddle problem has a solution. Then S(f) is Tykhonov
well-posed in the generalized sense.

Proof. Take (xn, yn) ∈ X × Y such that ω(xn, yn) −→ 0. By compactness of X × Y
there exists a subsequence (xnk

, ynk
) such that (xnk

, ynk
) −→ (x∗, y∗). Being ω lower

semicontinuous it is

0 = lim inf
n−→+∞ω(xnk

, ynk
) ≥ ω(x∗, y∗) ≥ 0,

that is (x∗, y∗) ∈ S. ¤

The next theorem extends the above result, in a straightforward way, to gener-
alized well-posedness. The distance considered in the space F is a compatible one
with uniform convergence of functions.

Theorem 3.2. In the assumptions of Theorem 3.1, the problem S(f) is well-posed
in the generalized sense, with respect to uniform convergence.

Proof. Take fn −→ f uniformly. Then, as it is easy to see,

ωn(xn, yn)− ω(xn, yn) −→ 0

and
inf ωn(x, y) −→ inf ω(x, y).
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Being the problem S(f) Tykhonov well-posed in the generalized sense, it follows
that

ω(xn, yn) −→ inf
x,y

ω(x, y) = 0,

and we conclude by means of Theorem 3.1. ¤
Thus, under the topological properties for X, Y and f of Theorem 3.1, we see

that well-posedness is a consequence of the existence of the value for the saddle
point problem. This follows from proposition 1.1, as αf is upper semicontinuous,
βf lower semicontinuous, and so they assume maximum (resp. minimum) on the
compact set X (resp. Y ). We recall now (in a simplified form) the most celebrated
theorem guaranteeing that a saddle point problem has a value ([Si]).

Theorem 3.3. (Sion) Let X and Y be compact and convex sets. Suppose:
• x 7→ f(x, y) is upper semicontinuous and quasi concave for all y ∈ Y ;
• y 7→ f(x, y) is lower semicontinuous and quasi convex for all x ∈ X.

Then
sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

sup
x∈X

f(x, y).

Thus we can conclude:

Corollary 3.1. Under the assumptions of the Sion theorem, the saddle point prob-
lem is well-posed in the generalized sense, with respect to the uniform convergence
on the space of the target functions.

4. Concave/Convex case in Euclidean spaces

Let F be the family of the convex lower semicontinuous functions defined on an
Euclidean space. It is known that for f ∈ F uniqueness of the minimum point does
actually imply its Tykhonov well-posedness. It is not difficult to prove (see [Lu] and
also later) that this actually implies well-posedness with respect to Kuratowski con-
vergence on F . We now want to analyze the same issue for the saddle point problem.
So we shall assume that X × Y is an Euclidean space, that f(·, y) is concave and
upper semicontinuous ∀y ∈ Y and that f(x, ·) is convex and lower semicontinuous
∀x ∈ X (for short, we shall say in the following that f is concave/convex). We start
with a preliminary result concerning the minimization of convex functions.

Theorem 4.1. Suppose f concave/convex and that there is only one saddle point
(x̄, ȳ) ∈ X × Y. Then the problem S(f) is Tykhonov well-posed.

Proof. From Proposition 2.1 we know that ωf is lower semicontinuous. Exactly with
the same argument we can conclude that ω is convex too. From the assumption, we
conclude that ω has a unique minimum point, that is (x̄, ȳ), and that ω(x̄, ȳ) = 0.
Thus the minimum problem engendered by ω is Tykhonov well-posed with value
zero and this is equivalent to say that the saddle point problem is Tykhonov well-
posed. ¤

Thus the situation in the saddle point problem in Euclidean spaces, is similar
to that one for the minimum problems, where uniqueness of the solution implies
Tykhonov well-posedness. Actually, in the setting of the minimum problems, a
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further step can be done, since uniqueness is actually equivalent to well-posedness,
with respect to uniform convergence on bounded sets (for instance). Is it the same
for the saddle point problem? The answer is negative, as shown in the following
example.

Example 4.1. Consider, on R×R

f(x, y) = xy

and let

fn(x, y) = xy +
1
n

x(y − 1).

The concave/convex problem engendered by f is not well-posed, with respect to uni-
form convergence on bounded sets, because condition (2) in Definition 1.3 does not
hold since

ωn(x, y) = +∞ ∀(x, y).

On the other hand, it is clear that when we perturb a function in order to solve an
easier problem, the involved perturbations should not be totally arbitrary. Thus, we
can ask whether more suitable perturbations allow claiming for well-posedness. This
is the content of our next results. To start with, we prove now a result concerning
minimum problems. More precisely, we see that uniqueness of the minimum point
implies well-posedness of the problem, when we consider Kuratowski convergence
on the set of objective functions. We consider in this case Kuratowski convergence,
rather than, for instance, uniform convergence on bounded sets, as we are interested
in applying the result also to extended real valued functions. For this (larger) class of
functions, Kuratowski convergence is more appropriate. We recall that a sequence
{fn} of functions converges in Kuratowski sense to a function f if the following
conditions are verified:
1. ∀xn −→ x

lim inf
n→+∞fn(xn) ≥ f(x);

2. ∀x ∃xn −→ x s.t.
lim sup
n→+∞

fn(xn) ≤ f(x).

Lemma 4.1. Let f : X −→ (−∞,+∞] be convex, lower semicontinuous and with
unique minimum point x̄. Then f is well-posed with respect to Kuratowski con-
vergence of functions, i.e., if fn is a convex and lower semicontinuous function
for all n, if fn

K−→ f , then inf fn > −∞ eventually, and if {xn} is such that
fn(xn)− inf fn −→ 0, then xn −→ x̄.

Proof. First of all, let us see that inf fn > −∞ eventually. By contradiction, suppose
there are a subsequence {nk} and a sequence {xk} such that fnk

(xk) → −∞. If
{xk} has a limit point x, then it is f(x) = −∞, and this is a contradiction. Thus
it must be ‖xk‖ → ∞. Consider yk = xk

‖xk‖ and let d be any limit point of yk. Take
zk → x̄ such that fnk

(zk) → f(x̄). Consider

wk = (1− 1
‖xk‖)zk +

1
‖xk‖xk → x̄ + d.
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Since
fnk

(wk) ≤ (1− 1
‖xk‖)fnk

(zk)

eventually, then
f(x̄ + d) ≤ lim inf fnk

(wk) ≤ f(x̄).
This provides the needed contradiction. The second part of the proof exploits a
similar argument. Take {xn} such that fn(xn)− inf fn−→0. If {xn} has a bounded
subsequence, then there are a subsequence nk and x such that xnk

−→ x. Thus

f(x) ≤ lim inf
k−→+∞

fnk
(xnk

) = lim inf
k−→+∞

inf fnk
≤ lim sup

k−→+∞
inf fnk

≤ inf f.

Then x = x̄ and this shows that every limit point of xn is x̄. Suppose now ‖xn‖ → ∞
and take zn −→ x̄ such that

lim sup fn(zn) ≤ f(x̄).

Fix a > ‖x̄‖ and consider

yn = λnxn + (1− λn)zn,

with λn such that ‖yn‖ = a (implying λn −→ 0). Now, there is a subsequence {ynk
}

converging to some ȳ, with ‖ȳ‖ = a. It is

f(ȳ) ≤ lim inf
k−→+∞

fnk
(ynk

) ≤ lim inf
k−→+∞

(λnk
fnk

(xnk
) + (1− λnk

)fnk
(znk

)) ≤
≤ lim sup

k−→+∞
λnk

fnk
(xnk

) + lim sup
k−→+∞

(1− λnk
)fnk

(znk
) ≤ f(x̄).

This contradicts uniqueness of the minimum point and the proof is complete. ¤
Now consider

fn(x, y) = f(x, y) + gn(y)− hn(x),

where gn and hn are convex, nonnegative and such that gn,hn
UB−→ 0, where UB−→

indicates uniform convergence on bounded sets.
Observe that the functions fn are concave/convex and that fn

UB−→ f.

Theorem 4.2. βn
K−→ β , −αn

K−→ −α, and thus ωn
K−→ ω.

Proof. We shall prove that βn
K→ β. The proof for the functions −αn is the same.

We have to prove that:
1. ∀yn −→ y

lim inf
n→+∞βn(yn) ≥ β(y);

2. ∀y ∃yn −→ y s.t.

lim sup
n→+∞

βn(yn) ≤ β(y).

1. We deal with the case β(y) ∈ R. The case β(y) = ∞ is analogous and it is left
to the reader. Let ε be fixed. There exists

∧
x s.t.

f(
∧
x, y) ≥ β(y)− ε.

As
fn(

∧
x, yn) −→ f(

∧
x, y)
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and
βn(yn) ≥ fn(

∧
x, yn),

we have
lim inf
n→+∞βn(yn) ≥ lim inf

n→+∞fn(
∧
x, yn) ≥ f(

∧
x, y) ≥ β(y)− ε.

We now conclude as ε > 0 is arbitrary.
2. Let y be fixed. Take yn = y ∀n. As

fn(x, y) = f(x, y) + gn(y)− hn(x)

the required inequality easily follows from the fact that gn(y) → 0 and hn(x) ≥ 0
∀x ∈ X. Finally, since ωn is, for all n, the sum of two functions, one depending only
on the variable x, the other one depending only on y, it is clear that ωn

K−→ ω: the
proof is complete. ¤

Now we can state the following theorem.

Theorem 4.3. Let f be concave/convex and suppose there exists only one saddle
point (x̄, ȳ). Let F be the set of functions of the form

fn(x, y) = f(x, y) + gn(y)− hn(x),

with gn and hn convex, lower semicontinuous, nonnegative and such that gn,hn
UB−→

0. Then the saddle point problem S(f) is well-posed.

Proof. First of all observe that ω(x, y) and ωn(x, y) are convex and that ω admits
only one minimum point (x̄, ȳ) such that ω(x̄, ȳ) = 0. By Theorem 4.2 we have that
ωn

K−→ ω and by Lemma 4.1 the problem

minω(x, y)

is well-posed with respect to Kuratowski convergence, i.e. for each (xn, yn) such
that ωn(xn, yn)− inf ωn −→ 0, it is (xn, yn) −→ (x̄, ȳ). ¤
Remark 4.1. A particular case that can be considered is

fn(x, y) = f(x, y) + εng(y)− σnh(x),

with f(x, y) concave/convex, εn, σn −→ 0+, g and h convex and lower bounded.
Observe also that the assumption gn, hn non negative can be relaxed to uniformly
coercive.

We provide now our last result. It deals with the following convex programming
P (p, a, b):

P(p, a, b)
{

minimize f(x)− 〈p, x〉,
s.t. g(x) ≤ a, Lx = b,

where f : Rn → R is a convex function, g : Rn → Rl is convex (coordinatewise),
L : Rn → Rk is a linear, onto operator, while p, a, b are vectors in the appropriate
spaces and serve as parameters. Let us call V (p, a, b) the value function of this
problem:

V (p, a, b) = inf{f(x)− 〈p, x〉 : s.t. g(x) ≤ a, Lx = b}.
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Even if it is a redundant assumption, we suppose that f is coercive (i.e.
lim‖x‖→∞

f(x)
‖x‖ = ∞), in order to have a big set of parameters for which the prob-

lem has finite value. It is well-known and easy to prove that V (·, a, b) is a concave
function for all (a, b) and V (p, ·, ·) is convex for all p. Thus V is a concave/convex
function.
Let us recall that for a concave/convex function F (·, ·) the subdifferential at a point
(x, y), denoted by ∂F (x, y), consists of all pairs (x∗, y∗) such that:

−F (u, y) ≥ −F (x, y) + 〈x∗, u− x〉 ∀u ∈ X,

F (x, v) ≥ F (x, y) + 〈y∗, v − y〉 ∀v ∈ Y.

In other words,
x∗ ∈ ∂(−F (·, y))(x), y∗ ∈ ∂(F (x, ·)(y),

where the subdifferentials in the line above are intended in the sense of the convex
analysis.

As it is well-known, (x̄, λ̄) is a pair (solution-Lagrange multiplier) for the convex
programming problem P(p, a, b) above if and only if

(x̄, λ̄) ∈ ∂V (p, a, b).

So, let us suppose, as above, that for a given triple of parameters (p, a, b) there
is existence and uniqueness of the pair (solution-Lagrange multiplier). Can we say
anything about well-posedness of the problem? Our next result shows that we have
in this setting Hadamard well-posedness.

Our proof relies on a result by T. Rockafellar ([Ro], Theorem 35.8) asserting
that a concave/convex function whose subdifferential at a given point reduces to
a singleton, is actually (Fréchet) differentiable at that point, and on the following
result, that holds in general Banach spaces X, Y (with duals X∗, Y ∗).

Proposition 4.1. Suppose the concave/convex function is Fréchet differentiable at
a point (x, y). Then the subdifferential multifunction:

∂F : X × Y → X∗ × Y ∗,

is norm-norm upper semicontinuous at (x, y).

Proof. We can suppose, without loss of generality, that (x, y) = (0, 0), ∂F (0, 0) =
{0, 0}, F (0, 0) = 0. By contradiction, suppose there is {(xn, yn)} such that
(xn, yn) → (0, 0), and (x∗n, y∗n) such that, for all n, (x∗n, y∗n) ∈ ∂F (xn, yn) , and
‖(x∗n, y∗n)‖ > 5ε, for some ε > 0. We assume ‖y∗n‖ > 5ε (along a subsequence), the
other case being completely analogous. By definition of Fréchet differentiability,
there is δ > 0 such that:

F (u, v) ≤ ε(‖u‖+ ‖v‖),
provided ‖u‖ ≤ δ, ‖v‖ ≤ δ. There is dn such that ‖dn‖ = 1 and

〈y∗n, dn〉 > 5ε,

for all n. We have that

F (xn, v) ≥ F (xn, yn) + 〈y∗n, v − yn〉 ∀v ∈ Y,

and thus
〈y∗n, v〉 ≤ F (xn, v)− F (xn, yn) + 〈y∗n, yn〉.
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Set v = δdn in the above formula, with n so large that ‖xn‖ < δ, |F (xn, yn)| < εδ,
|〈y∗n, yn〉| < εδ. Thus

5εδ ≤ |F (xn, δdn)|+ |F (xn, yn)|+ |〈y∗n, yn〉| ≤ 2εδ + εδ + εδ,

a contradiction. ¤
Theorem 4.4. Consider the convex programming P (p, a, b) above. Suppose P (p̄, ā, b̄)
has one and only one pair (solution-Lagrange multiplier) (x, λ). Let an → ā, bn →
b̄, pn → p̄. If (xn, λn) is a pair (solution-Lagrange multiplier) for the problem
P (an, bn, pn), then xn → x, λn → λ.

Proof. As already remarked, a pair (solution-Lagrange multiplier) corresponds to a
pair in the subdfferential of the value function. Thus it is enough to apply Theorem
35.8 in [Ro] and Proposition 4.1. ¤
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