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ITERATIVE APPROXIMATION OF FIXED POINTS OF A CLASS
OF MAPPINGS IN A HILBERT SPACE

NORIMICHI HIRANO AND SHOUHEI ITO

ABSTRACT. In the present paper, we show the strong convergence of a Mann
type iterative scheme for a class of mappings to fixed points

1. INTRODUCTION

In the present paper, we consider an iterative scheme for a class of mappings
in a Hilbert space H and establish the strong convergence of the iteration to fixed
points of the mappings. Throughout this paper, we denote by H a real Hilbert space.
The inner product and the norm of H is denoted by (-,-) and |||, respectively. A
mapping T : D(T) — H is said to be strictly pseudocontractive if there exists a
number ¢ > 1 such that the inequality

[l —yll < [|(1+7)(z —y) —ri(Tz = Ty)|

holds for all z,y € D(T) and r > 0, where D(T) denotes the domain of 7. A
mapping A is said to be strongly accretive if there exists a positive number k such
that

(Az — Ay, z —y) > k|lz—y|? for all z,y € D(A).

It is known that a mapping 7' : D(A) — H is strictly pseudocontractive if and
only if I — T is strongly accretive(cf. Chidume|[2]). Though we restricted ourselves
to a Hilbert space, one can see that the definition of strictly pseudocontractive
mapping is valid in any Banach space. For pseudocontractive mappings, the strong
convergence of Mann type iteration defined by

T € H,
Tnt1 = (1 —ap)zy + apTxy, n>1

has been studied by many authors(cf. [2], [3], [4], and [5]).

In the present paper, we consider a class of mappings defined below. Let Eq, Fs
be subspaces of H such that Fy | Fy and H = E; @ E5. We impose the following
conditions on T': D(T') — H

(T1) For each y € D(T)N E», T'(y+ ) : D(T) N Ey — H is a Lipschitz mapping
with Lipschitz constant [y;
(T2) For each x € D(T)N Ey, T(x +-) : D(T') N B3 — H is a Lipschitz mapping
with Lipschitz constant [o;
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(T3) For each y € D(T) N E2, T(y+ ) : D(T) N Ey — H is strictly pseudo
contractive. i.e., there exists k; > 0 such that

(I =T)(@1+y)— I —T)(w2+y), 21 — x2) > ki |71 — 22>

for all x1,x9 € D(T) N Ey;
(T4) For each x € D(T)N Ey, T(x +-) : D(T) N Ey — H is strictly pseudo
contractive, i.e., there exists ko > 0 such that

(I =T)x+y1) — (T =T)(z+y2),y1 — y2) > ka2 ||y1 — w2

for all y1,y2 € D(T') N Eo;

A broad class of mappings satisfies conditions (T1)-(T4). Here we give examples
of mappings which satisfy (T1)-(T4). First we consider a variational case. Let
f(z,y) = 2* +y* — 5y for ,y € R. One can easily verify that f : R? — R is not a
convex function. But we have that for each z € R, y — f(z,y) is a convex function.
We also have that for each y € R, 2 — f(z,y) is a convex function. Then we can see
that on any bounded subset D of R?, the mapping T : (z,y) — (x + 9f(z,y)/0x,
y+ 0f(z,y)/0y) satisties (T1)-(T4). A fixed point (z,y) € R? of T corresponds to
the point (x,y) satisfying 0f(x,y)/0x = df(x,y)/0y = 0. Similarly, we can consider
a concave-convex function. Let g(x,y) = a* — y* — 5y for ,5y € R. Then as above,
we can see that for each z € R, y — f(z,y) is concave function, and for each y € R,
x — f(z,y) is a convex function. Then if we put T'(z,y) = (z + dg(x,y)/0x,
y — 0g(x,y)/dy) for x,y € R2 Then T satisfies (T1)-(T4) on any bounded set
D C R?. Let T : R?> — R? be a mapping defined by

T x> — 4y 9

satisfies (T1)-(T4) on each bounded subset of R?. It is easy to see that the mapping T
defined above is not variational problem. Iterative shcemes for mappings satisfying
conditions (T1)-(T4) are important from the view point of practical applications.
For example, the Bathe free energy function which appears in the coding theory

satisfies (T1)-(T4)(cf. [6]).

We now state our main result.

Theorem 1. Let T : H — H satisfy (T'1) — (T'4). Suppose that F(T') # ¢ and
c=kiky — max{(l + ll)ll, (1 + lg)lg} > 0.
Let {z,} be a sequence defined by

21 = T1 + Y1, x1 € F1,y1 € Fa,
(P) 2 = Tpt1+ Yn Tnt1 = (1 — an)an + anPiT(2y)
Zntl = Tpal + Yntl  Ynt1 = (1 - ﬁn)yn + 6”P2T(Z7,’l)

for n > 1 with {a,},{Bn} C (0,1] satisfying

(1) lim,, o oy =lim, oo B, =0, Zzozl Tn = OQ,
D=t @I (1= py;) < oo,and 370 Bl (1 — py;) < o0
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for some 0 < p < min {c/k1,c/ka}, where 7, = min{ay, 3,} for n > 1. Then {z,}
converges strongly to a fixed point of 7.

Remark. The condition 1 is satisfied if oo, = 8, = 1/pn forn > 2 and oy = 31 = 0.

Throughout the rest of this paper, we assume that the assumption of Theorem
is satisfied. For i = 1,2, we denote by P; the projections from F; onto H.

Lemma 1. (1) There exists a Lipschitz mapping w2 : By — FEs with Lipschiz
constant ly/ky such that

PyT(x + p2(x)) = @a(x) for x € Eq

(2) There exists a Lipschitz mapping ¢1 : Eo — Ey with Lipschiz constant ly/ky
such that
PiT(z+ p1(2)) = ¢1(2) for z € Ey
Proof. We prove (1). The assertion (2) follows by the same argument. Let x € Ej.
For simplicity, we put Ta(y) = PoT'(xz 4+ y) for y € E3. Then since T, : Ey — E»
is strictly pseudocontractive, there exists a unique fixed point y € Es of Th(cf. [1]).
Therefore the mapping @2 : E1 — FEs can be defined as pa(xz) = y. We will see
that g is a Lipshitz mapping. Let x1,29 € F;. Then
0= (p2(x1) — p2(x2), (I = T)(z1 + p2(x1)) = (I = T)(z2 + p2(22)))
= (p2(@1) — p2(@2), (I = T) (21 + p2(21)) — (I = T) (@1 + p2(x2)))
+ (p2(21) — pa(x2), (I = T)(@1 + p2(x2)) — (I = T)(@2 + p2(22)))

> kg [|pa(21) — pa(s)|

— (pa(z1) = pa(@2), (21 + p2(22)) — T(22 + 2(22))) -

Then
ko [[2(21) — @a(a2) ||
<(T(x1 + p2(x2)) — T2 + 2(22), p2(71) — @2(22))
<l lz1 = 2| lp2(21) — pa(z2)| -
That is
[p2(z1) — p2(@2)|| < (lLi/k2) |21 — 2]
This completes the proof. O

Proof of Theorem. Let {z,} be the sequence defined by (P). Let n > 1. Then by
the same arguement as in the proof of Liu[3], we have that

Ty = Tptl + nTy — oy P12y,
= (14 ap)zpy1 + anPL(I =T — ki 1)z, — (2 — k1) an@pni1
+ anTn + an P (T2, — Tzy,)
=1+ an)Tpy1 +anPL(I =T — ki 1)z,
— (2= Fk1)an [(1 — apn)zn + anPiT 2]
+ anxy + an P (T2, — Tzy,)
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= (14 ap)zpy1 + anPL(I =T — ki 1)z, — (1 — ky) oy,
+ (2 = k)02 Py (2, — Tzp) + an P (T2, — Tzy).
Recalling that PiT(yn + ¢1(yn)) = ©1(yn), we have that
Tn = 1(yn) = (1 + o) (@nt1 — p1(yn)) + an P = T = kaI) (2, — ¢1(yn))
— (1 = k)on(zn — p1(yn)) + (2 — kl)aipl(zn —Tzn)
+ an Py (T2, — Tzy,).
Then since PyT(y, + -) is strictly pseudocontractive, we have
(2) e —e1(un)ll = 1+ an) lzni = e1(a)ll = (1 = F1)an |20 — @1(yn) |
— (2= k)2 ||Pi(zn — Tzn)|| — an || P1(T2), — T2)]| -
Noting that ||PiTz, — ©1(yn)|| < 1 |zn — ©1(yn)]| , we have
[1P1(2n — Tzn) || < [[P1(2n — o1(yn)) | + 1PL(T 20 — ©1(yn))]
= (1 +0) flzn —1(yn)ll -
We also have
HPl(Tz;L — Tzn)H <l || Tnt1 — all
< bl + Do l|lzn = 1(yn)ll-
Therefore we find
[2n — e1(yn)ll = (1 + an) [lznir — e1(yn)ll = (1 = k1) an lzn — @1(yn) |l
—[(2 = k)an(1+0) + L1+ h)ap] [lzn — o1 (ya)l-
Here we put
C(k1,l1,0) = [L4+ (1= k)an + (1 +1)a2(2 — k1 + 1)](1 + o)~ h
Then we find
[Zn1 = e1(yn) |l < Clhr, b, o) [lzn — e1(yn)l -
It then follows that
[Zn41 — 01(yns1) |
< Ok, I an)([[on = e1(yn) | + 01 (ynt1) = 1(yn) )
< Ok, b1y o) (| — @1 (yn) | + (l2/Fk1) [Yn+1 — ynll)
< Ok, I, an) (e — @1(yn) | + (2/k1)Bn ||y — P2z,
By the same argument as above, we find that
HP2<yn - TZ;)H
< || Pa(zy, = ©2(xn41))|| + || P2(T2, — pa(@ns))||
= (1+12) lyn = 2(@nt1)| -

Therefore we have

a1 — ynll < (1 +12)8n |[yn — w2(vn41)]]
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We also have by (T2) that

[y = 2(Zns) |l < llyn — 2(zn)ll + lp2(2n) = 2(znt1)]]
< lyn = pa(@a)l| + (1 /k2) 20 — Tnia ]
< lyn = pa(@n)ll + (1/k2)(l + Do |20 — @1(yn)l -

Combining inequalities above, we find

me—l - Wl(@/n-{-l)“
< Ok, by, an) (1 + (lil2/krk2) (1 + 12) (1 + 1) anfBn) [[2n — 01(yn) |

+ C(k1, 11, an) (1 + 12)(l2/k1) B |yn — @2(zn) | -

On the other hand, we have

Yn = Yn+1 + BnYn — ﬁnPQTZ;
= (1+ Bn)yn+1 + Bol2(I =T — k1l )zp+1 — (2 — k1) anyn+1
+ Buyn + Bn P (Tzn-l-l - Tquq,)
= (14 6Bn)Yn+1 + BnPo(I =T — kI)zp4+1
— (2 = k2) By [ﬁnyn +(1— /Bn)P2TZ;L]
+ BnYn + ﬂnPQ(TZn_H — TZ;z)
= (14 Bn)yn+1 + BnPo(I = T — ka2l)znt1 — (1 — k2)Bnyn
+ (2 — ko) B2 P2 (2, — T2)) + BuPo(Tzny1 — T2L).

Recalling that PoT(zp+1 + @2(n+1)) = w2(nt1), we have that

Yn — P2(Tnt1)
= (14 Bn) Wn+1 — p2(@nt1)) + Bul2(I =T — koI )(2n+1 — p2(Tnt1))
— (1= k2)Bn(yn — p2(xns1)) + (2 = ko) B Po(z, — T2p)
+ BuPo (T2, — Tzpi1).

Then since PoT'(zy4+1 + -) is strictly pseudocontractive, we have

(3) lyn — @2(n41)|
= (L4 Bn) lyn+1 — p2(@ns) | = (1 = k2)Bn lyn — @2(@n41)|
— (2= ko) B2 || Pa(2y, — T2)|| = B || Po(T2, — Tzt || -

Noting that ||T'z], — p2(zn+1)|| < l2 |yn — w2(zn+1)]| , we have

| P2z, = Tz)|| < 1P2(yn — 2(@ns)|| + || P2(T 2, — p2(2n11))]]
= (1+12) [lyn — p2(@ns1)]| -

We also have

| P2(T2, = Tzng)|| < la(lo +1)Bn [|yn — p2(zns1)]l -

255
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Therefore we find
lyn — @2(@n+1)||
2 (L4 Bn) lyn+1 — p2(@ns) | = (L = k2)Bn lyn — @2(@n41)|
— (2= k2)Ba(1 +12) + la(1 +12) 3] [lyn — p2(wns1)|| -
Consequently, we have
[yn+1 = 2(@ns1)|| < Clk2, 12, Bn) [lyn — p2(znt1)]l,
where
Clka,la, Bn) = [1+ (1 = k2)Bn + (1 + 1) B5(2 — ko + )] (1 + Ba) .
We can see from the definition of {x,} that
[#n41 = @all < (L4 1)om (|20 — ©1(yn) |-
Then we have
[Yyn+1 — p2(Tn41)ll
< Clka, b2, Bn)(lyn — p2(zn) | + l02(@n41) — @2(zn)l])
< Clka, b2, Bn)(lyn — p2(@n) | + (11 /k2) [|#n41 — 2 l])
< C(ka, b2, Bn)([[yn — 2(zn) || + (1 /k2)an(l + 1) [lzn — 01(yn) |l -
It then follows that
[zn+1 = 1) || + [Yyn+1 — p2(@n41) |
< Okl o) (1 + (Il /kika) (14 12)(1 + l)anBn) [lzn — ©1(yn) )
+ C(k1, 11, an) (1 + 12)(l2/k1) Bn |yn — p2(zn) |
+ C(k2, b2, Bn)([[yn — p2(zn)|| + (l1/k2)an (L + 1) 20 — ©1(yn) |-
That is
[Zn+1 — @1 (Un+ )| + [[Yn+1 — p2(Tn41) |
< Cnll#n = @1(yn)ll + D llyn — @2(@n)ll,
where
Cn = C(ky, Iy, 00) (1 + (I1lo/krko) (1 + I2) (1 + l1) 0 Bn)
+ C(k2,l2, Bn) (1 /k2)an (1 + 1)
and
D,, = C(ka,la, Bn) + C(k1,l1, an)(1 + l2)(l2/k1) Bn.
Let £ > 0 such that p + ¢ < min{c/k1,c/ko} . Then recalling that lim, . o, =

lim,,— o0 B, = 0, we have, from the definition of C'(k1, (1, o) and C(ka, l2, (,,), that
for n sufficiently large

Cn <1—kian+ 1 +1)(1/k2)n +ean <1— pay

and
D, <1—pB,.
Here we put

cn = ||zn — @1(yn)|| + lyn — ©2(xn)|] for n > 1.
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Then from the inequality above, we find
Cnt1 < (1 — pyn)en for n sufficiently large.

That is, there exists ng > 1 such that for each n > ny,

(4) cn1 < iy, (1= p)Cng -

Since > 7y, = oo, we have that lim,_ HZ:no(l — pyk) = 0. This implies that
lim,,_ .5 ¢, = 0. That is

(5) lim_([lan — 1 ()| + lyn — @2(@n)|) = 0.

n—-

Here we recall that
[Zn+1 — znll < (0 + Dan |20 — ©1(yn) |l for all n > 1.

Then we have by (4) that for each n > ng and m > 1,

m

Wt — 2all <3 Insk — 2nsic |
k=1

m
<41 angho1 |Tnik—1 = 01Ynin—) |
h=1

m
<(i+1) ZanJrk—lH?iso_l(l = Pj)-
k=1

Then by the assumption, we have that

lm || Zppm —znl =0 uniformly for m > 1.
n—:uoo

Thus we find that x,, — = € H strongly. Similarly, we have that y, — y € H
strongly. It then follows from (5) that

r=a(y)  andy=(2)
That is T'(z + y) =  + y. This completes the proof. l
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