

ITERATIVE APPROXIMATION OF FIXED POINTS OF A CLASS OF MAPPINGS IN A HILBERT SPACE

NORIMICHI HIRANO AND SHOUHEI ITO

ABSTRACT. In the present paper, we show the strong convergence of a Mann type iterative scheme for a class of mappings to fixed points

1. Introduction

In the present paper, we consider an iterative scheme for a class of mappings in a Hilbert space H and establish the strong convergence of the iteration to fixed points of the mappings. Throughout this paper, we denote by H a real Hilbert space. The inner product and the norm of H is denoted by $\langle \cdot, \cdot \rangle$ and $\|\cdot\|$, respectively. A mapping $T: D(T) \longrightarrow H$ is said to be strictly pseudocontractive if there exists a number t > 1 such that the inequality

$$||x - y|| \le ||(1 + r)(x - y) - rt(Tx - Ty)||$$

holds for all $x, y \in D(T)$ and r > 0, where D(T) denotes the domain of T. A mapping A is said to be strongly accretive if there exists a positive number k such that

$$\langle Ax - Ay, x - y \rangle \ge k \|x - y\|^2$$
 for all $x, y \in D(A)$.

It is known that a mapping $T:D(A)\longrightarrow H$ is strictly pseudocontractive if and only if I-T is strongly accretive(cf. Chidume[2]). Though we restricted ourselves to a Hilbert space, one can see that the definition of strictly pseudocontractive mapping is valid in any Banach space. For pseudocontractive mappings, the strong convergence of Mann type iteration defined by

$$\begin{cases} x_1 \in H, \\ x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T x_n & n \ge 1 \end{cases}$$

has been studied by many authors(cf. [2], [3], [4], and [5]).

In the present paper, we consider a class of mappings defined below. Let E_1, E_2 be subspaces of H such that $E_1 \perp E_2$ and $H = E_1 \oplus E_2$. We impose the following conditions on $T: D(T) \longrightarrow H$

- (T1) For each $y \in D(T) \cap E_2$, $T(y + \cdot) : D(T) \cap E_1 \longrightarrow H$ is a Lipschitz mapping with Lipschitz constant l_1 ;
- (T2) For each $x \in D(T) \cap E_1$, $T(x + \cdot) : D(T) \cap E_2 \longrightarrow H$ is a Lipschitz mapping with Lipschitz constant l_2 ;

²⁰⁰⁰ Mathematics Subject Classification. Primary 05C38, 15A15; Secondary 05A15, 15A18. Key words and phrases. Mann iteration, pseudocontractive mapping.

(T3) For each $y \in D(T) \cap E_2$, $T(y + \cdot) : D(T) \cap E_1 \longrightarrow H$ is strictly pseudo contractive. i.e., there exists $k_1 > 0$ such that

$$\langle (I-T)(x_1+y)-(I-T)(x_2+y), x_1-x_2\rangle \ge k_1 \|x_1-x_2\|^2$$

for all $x_1, x_2 \in D(T) \cap E_1$;

(T4) For each $x \in D(T) \cap E_1$, $T(x + \cdot) : D(T) \cap E_2 \longrightarrow H$ is strictly pseudo contractive, i.e., there exists $k_2 > 0$ such that

$$\langle (I-T)(x+y_1) - (I-T)(x+y_2), y_1-y_2 \rangle \ge k_2 \|y_1-y_2\|^2$$

for all $y_1, y_2 \in D(T) \cap E_2$;

A broad class of mappings satisfies conditions (T1)-(T4). Here we give examples of mappings which satisfy (T1)-(T4). First we consider a variational case. Let $f(x,y) = x^4 + y^4 - 5xy$ for $x,y \in \mathbb{R}$. One can easily verify that $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ is not a convex function. But we have that for each $x \in \mathbb{R}$, $y \longrightarrow f(x,y)$ is a convex function. We also have that for each $y \in \mathbb{R}$, $x \longrightarrow f(x,y)$ is a convex function. Then we can see that on any bounded subset D of \mathbb{R}^2 , the mapping $T:(x,y) \longrightarrow (x+\partial f(x,y)/\partial x,y+\partial f(x,y)/\partial y)$ satisfies (T1)-(T4). A fixed point $(x,y) \in \mathbb{R}^2$ of T corresponds to the point (x,y) satisfying $\partial f(x,y)/\partial x = \partial f(x,y)/\partial y = 0$. Similarly, we can consider a concave-convex function. Let $g(x,y) = x^4 - y^4 - 5xy$ for $x,y \in \mathbb{R}$. Then as above, we can see that for each $x \in \mathbb{R}$, $y \longrightarrow f(x,y)$ is concave function, and for each $y \in \mathbb{R}$, $x \longrightarrow f(x,y)$ is a convex function. Then if we put $T(x,y) = (x + \partial g(x,y)/\partial x,y - \partial g(x,y)/\partial y)$ for $x,y \in \mathbb{R}^2$. Then T satisfies (T1)-(T4) on any bounded set $D \subset \mathbb{R}^2$. Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a mapping defined by

$$T: \begin{pmatrix} x \\ y \end{pmatrix} \longrightarrow \begin{pmatrix} x^3 - 4y \\ y^3 - 5x - 1 \end{pmatrix}, \quad (x, y) \in \mathbb{R}^2$$

satisfies (T1)-(T4) on each bounded subset of \mathbb{R}^2 . It is easy to see that the mapping T defined above is not variational problem. Iterative sheems for mappings satisfying conditions (T1)-(T4) are important from the view point of practical applications. For example, the Bathe free energy function which appears in the coding theory satisfies (T1)-(T4)(cf. [6]).

We now state our main result.

Theorem 1. Let $T: H \longrightarrow H$ satisfy (T1) - (T4). Suppose that $F(T) \neq \phi$ and $c = k_1k_2 - \max\{(1+l_1)l_1, (1+l_2)l_2\} > 0$.

Let $\{z_n\}$ be a sequence defined by

(P)
$$\begin{cases} z_1 = x_1 + y_1, & x_1 \in E_1, y_1 \in E_2, \\ z'_n = x_{n+1} + y_n & x_{n+1} = (1 - \alpha_n)x_n + \alpha_n P_1 T(z_n) \\ z_{n+1} = x_{n+1} + y_{n+1} & y_{n+1} = (1 - \beta_n)y_n + \beta_n P_2 T(z'_n) \end{cases}$$

for $n \geq 1$ with $\{\alpha_n\}, \{\beta_n\} \subset (0,1]$ satisfying

(1)
$$\begin{cases} \lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = 0, & \sum_{n=1}^{\infty} \gamma_n = \infty, \\ \sum_{m=1}^{\infty} \alpha_m \prod_{j=1}^m (1 - \rho \gamma_j) < \infty, \text{ and } & \sum_{m=1}^{\infty} \beta_m \prod_{j=1}^m (1 - \rho \gamma_j) < \infty \end{cases}$$

for some $0 < \rho < \min\{c/k_1, c/k_2\}$, where $\gamma_n = \min\{\alpha_n, \beta_n\}$ for $n \ge 1$. Then $\{z_n\}$ converges strongly to a fixed point of T.

Remark. The condition 1 is satisfied if $\alpha_n = \beta_n = 1/\rho n$ for $n \ge 2$ and $\alpha_1 = \beta_1 = 0$.

Throughout the rest of this paper, we assume that the assumption of Theorem is satisfied. For i = 1, 2, we denote by P_i the projections from E_i onto H.

Lemma 1. (1) There exists a Lipschitz mapping $\varphi_2: E_1 \longrightarrow E_2$ with Lipschitz constant l_1/k_2 such that

$$P_2T(x + \varphi_2(x)) = \varphi_2(x)$$
 for $x \in E_1$

(2) There exists a Lipschitz mapping $\varphi_1: E_2 \longrightarrow E_1$ with Lipschiz constant l_2/k_1 such that

$$P_1T(z + \varphi_1(z)) = \varphi_1(z)$$
 for $z \in E_2$

Proof. We prove (1). The assertion (2) follows by the same argument. Let $x \in E_1$. For simplicity, we put $T_2(y) = P_2T(x+y)$ for $y \in E_2$. Then since $T_2 : E_2 \longrightarrow E_2$ is strictly pseudocontractive, there exists a unique fixed point $y \in E_2$ of $T_2(\text{cf. }[1])$. Therefore the mapping $\varphi_2 : E_1 \longrightarrow E_2$ can be defined as $\varphi_2(x) = y$. We will see that φ_2 is a Lipshitz mapping. Let $x_1, x_2 \in E_1$. Then

$$0 = \langle \varphi_{2}(x_{1}) - \varphi_{2}(x_{2}), (I - T)(x_{1} + \varphi_{2}(x_{1})) - (I - T)(x_{2} + \varphi_{2}(x_{2})) \rangle$$

$$= \langle \varphi_{2}(x_{1}) - \varphi_{2}(x_{2}), (I - T)(x_{1} + \varphi_{2}(x_{1})) - (I - T)(x_{1} + \varphi_{2}(x_{2})) \rangle$$

$$+ \langle \varphi_{2}(x_{1}) - \varphi_{2}(x_{2}), (I - T)(x_{1} + \varphi_{2}(x_{2})) - (I - T)(x_{2} + \varphi_{2}(x_{2})) \rangle$$

$$\geq k_{2} \|\varphi_{2}(x_{1}) - \varphi_{2}(x_{2})\|^{2}$$

$$- \langle \varphi_{2}(x_{1}) - \varphi_{2}(x_{2}), T(x_{1} + \varphi_{2}(x_{2})) - T(x_{2} + \varphi_{2}(x_{2})) \rangle.$$

Then

$$k_{2} \|\varphi_{2}(x_{1}) - \varphi_{2}(x_{2})\|^{2}$$

$$\leq \langle T(x_{1} + \varphi_{2}(x_{2})) - T(x_{2} + \varphi_{2}(x_{2}), \varphi_{2}(x_{1}) - \varphi_{2}(x_{2})) \rangle$$

$$\leq l_{1} \|x_{1} - x_{2}\| \|\varphi_{2}(x_{1}) - \varphi_{2}(x_{2})\|.$$

That is

$$\|\varphi_2(x_1) - \varphi_2(x_2)\| \le (l_1/k_2) \|x_1 - x_2\|.$$

This completes the proof.

Proof of Theorem. Let $\{z_n\}$ be the sequence defined by (P). Let $n \geq 1$. Then by the same argument as in the proof of Liu[3], we have that

$$\begin{aligned} x_n &= x_{n+1} + \alpha_n x_n - \alpha_n P_1 T z_n \\ &= (1 + \alpha_n) x_{n+1} + \alpha_n P_1 (I - T - k_1 I) z_n' - (2 - k_1) \alpha_n x_{n+1} \\ &\quad + \alpha_n x_n + \alpha_n P_1 (T z_n' - T z_n) \\ &= (1 + \alpha_n) x_{n+1} + \alpha_n P_1 (I - T - k_1 I) z_n' \\ &\quad - (2 - k_1) \alpha_n \left[(1 - \alpha_n) x_n + \alpha_n P_1 T z_n \right] \\ &\quad + \alpha_n x_n + \alpha_n P_1 (T z_n' - T z_n) \end{aligned}$$

$$= (1 + \alpha_n)x_{n+1} + \alpha_n P_1(I - T - k_1 I)z'_n - (1 - k_1)\alpha_n x_n + (2 - k_1)\alpha_n^2 P_1(z_n - Tz_n) + \alpha_n P_1(Tz'_n - Tz_n).$$

Recalling that $P_1T(y_n + \varphi_1(y_n)) = \varphi_1(y_n)$, we have that

$$x_n - \varphi_1(y_n) = (1 + \alpha_n)(x_{n+1} - \varphi_1(y_n)) + \alpha_n P_1(I - T - k_1 I)(z'_n - \varphi_1(y_n))$$

$$- (1 - k_1)\alpha_n(x_n - \varphi_1(y_n)) + (2 - k_1)\alpha_n^2 P_1(z_n - Tz_n)$$

$$+ \alpha_n P_1(Tz'_n - Tz_n).$$

Then since $P_1T(y_n + \cdot)$ is strictly pseudocontractive, we have

(2)
$$||x_n - \varphi_1(y_n)|| \ge (1 + \alpha_n) ||x_{n+1} - \varphi_1(y_n)|| - (1 - k_1)\alpha_n ||x_n - \varphi_1(y_n)|| - (2 - k)\alpha_n^2 ||P_1(z_n - Tz_n)|| - \alpha_n ||P_1(Tz'_n - Tz_n)||.$$

Noting that $||P_1Tz_n - \varphi_1(y_n)|| \le l_1 ||x_n - \varphi_1(y_n)||$, we have

$$||P_1(z_n - Tz_n)|| \le ||P_1(z_n - \varphi_1(y_n))|| + ||P_1(Tz_n - \varphi_1(y_n))||$$

= $(1 + l_1) ||x_n - \varphi_1(y_n)||$.

We also have

$$||P_1(Tz'_n - Tz_n)|| \le l_1 ||x_{n+1} - x_n||$$

$$\le l_1(l_1 + 1)\alpha_n ||x_n - \varphi_1(y_n)||.$$

Therefore we find

$$||x_n - \varphi_1(y_n)|| \ge (1 + \alpha_n) ||x_{n+1} - \varphi_1(y_n)|| - (1 - k_1)\alpha_n ||x_n - \varphi_1(y_n)|| - [(2 - k_1)\alpha_n^2(1 + l_1) + l_1(1 + l_1)\alpha_n^2] ||x_n - \varphi_1(y_n)||.$$

Here we put

$$C(k_1, l_1, \alpha_n) = [1 + (1 - k_1)\alpha_n + (1 + l_1)\alpha_n^2(2 - k_1 + l_1)](1 + \alpha_n)^{-1}.$$

Then we find

$$||x_{n+1} - \varphi_1(y_n)|| \le C(k_1, l_1, \alpha_n) ||x_n - \varphi_1(y_n)||.$$

It then follows that

$$||x_{n+1} - \varphi_1(y_{n+1})||$$

$$\leq C(k_1, l_1, \alpha_n)(||x_n - \varphi_1(y_n)|| + ||\varphi_1(y_{n+1}) - \varphi_1(y_n)||)$$

$$\leq C(k_1, l_1, \alpha_n)(||x_n - \varphi_1(y_n)|| + (l_2/k_1)||y_{n+1} - y_n||)$$

$$\leq C(k_1, l_1, \alpha_n)(||x_n - \varphi_1(y_n)|| + (l_2/k_1)\beta_n ||y_n - P_2Tz'_n||).$$

By the same argument as above, we find that

$$\begin{aligned} \|P_2(y_n - Tz'_n)\| \\ &\leq \|P_2(z'_n - \varphi_2(x_{n+1}))\| + \|P_2(Tz'_n - \varphi_2(x_{n+1}))\| \\ &= (1 + l_2) \|y_n - \varphi_2(x_{n+1})\|. \end{aligned}$$

Therefore we have

$$||y_{n+1} - y_n|| \le (1 + l_2)\beta_n ||y_n - \varphi_2(x_{n+1})||$$

We also have by (T2) that

$$||y_n - \varphi_2(x_{n+1})|| \le ||y_n - \varphi_2(x_n)|| + ||\varphi_2(x_n) - \varphi_2(x_{n+1})||$$

$$\le ||y_n - \varphi_2(x_n)|| + (l_1/k_2) ||x_n - x_{n+1}||$$

$$\le ||y_n - \varphi_2(x_n)|| + (l_1/k_2)(l_1 + 1)\alpha_n ||x_n - \varphi_1(y_n)||.$$

Combining inequalities above, we find

$$||x_{n+1} - \varphi_1(y_{n+1})|| \le C(k_1, l_1, \alpha_n)(1 + (l_1 l_2/k_1 k_2)(1 + l_2)(1 + l_1)\alpha_n \beta_n) ||x_n - \varphi_1(y_n)|| + C(k_1, l_1, \alpha_n)(1 + l_2)(l_2/k_1)\beta_n ||y_n - \varphi_2(x_n)||.$$

On the other hand, we have

$$y_{n} = y_{n+1} + \beta_{n}y_{n} - \beta_{n}P_{2}Tz'_{n}$$

$$= (1 + \beta_{n})y_{n+1} + \beta_{n}P_{2}(I - T - k_{1}I)z_{n+1} - (2 - k_{1})\alpha_{n}y_{n+1}$$

$$+ \beta_{n}y_{n} + \beta_{n}P_{1}(Tz_{n+1} - Tz'_{n})$$

$$= (1 + \beta_{n})y_{n+1} + \beta_{n}P_{2}(I - T - kI)z_{n+1}$$

$$- (2 - k_{2})\beta_{n} \left[\beta_{n}y_{n} + (1 - \beta_{n})P_{2}Tz'_{n}\right]$$

$$+ \beta_{n}y_{n} + \beta_{n}P_{2}(Tz_{n+1} - Tz'_{n})$$

$$= (1 + \beta_{n})y_{n+1} + \beta_{n}P_{2}(I - T - k_{2}I)z_{n+1} - (1 - k_{2})\beta_{n}y_{n}$$

$$+ (2 - k_{2})\beta_{n}^{2}P_{2}(z'_{n} - Tz'_{n}) + \beta_{n}P_{2}(Tz_{n+1} - Tz'_{n}).$$

Recalling that $P_2T(x_{n+1} + \varphi_2(x_{n+1})) = \varphi_2(x_{n+1})$, we have that

$$y_n - \varphi_2(x_{n+1})$$

$$= (1 + \beta_n)(y_{n+1} - \varphi_2(x_{n+1})) + \beta_n P_2(I - T - k_2 I)(z_{n+1} - \varphi_2(x_{n+1}))$$

$$- (1 - k_2)\beta_n(y_n - \varphi_2(x_{n+1})) + (2 - k_2)\beta_n^2 P_2(z'_n - Tz'_n)$$

$$+ \beta_n P_2(Tz'_n - Tz_{n+1}).$$

Then since $P_2T(x_{n+1}+\cdot)$ is strictly pseudocontractive, we have

(3)
$$||y_n - \varphi_2(x_{n+1})||$$

$$\geq (1 + \beta_n) ||y_{n+1} - \varphi_2(x_{n+1})|| - (1 - k_2)\beta_n ||y_n - \varphi_2(x_{n+1})||$$

$$- (2 - k_2)\beta_n^2 ||P_2(z'_n - Tz'_n)|| - \beta_n ||P_2(Tz'_n - Tz_{n+1})|| .$$

Noting that $||Tz'_n - \varphi_2(x_{n+1})|| \le l_2 ||y_n - \varphi_2(x_{n+1})||$, we have

$$\begin{aligned} \|P_2(z_n' - Tz_n')\| &\leq \|P_2(y_n - \varphi_2(x_{n+1}))\| + \|P_2(Tz_n' - \varphi_2(x_{n+1}))\| \\ &= (1 + l_2) \|y_n - \varphi_2(x_{n+1})\|. \end{aligned}$$

We also have

$$||P_2(Tz'_n - Tz_{n+1})|| \le l_2(l_2 + 1)\beta_n ||y_n - \varphi_2(x_{n+1})||.$$

Therefore we find

$$||y_n - \varphi_2(x_{n+1})|| \ge (1 + \beta_n) ||y_{n+1} - \varphi_2(x_{n+1})|| - (1 - k_2)\beta_n ||y_n - \varphi_2(x_{n+1})|| - [(2 - k_2)\beta_n^2(1 + l_2) + l_2(1 + l_2)\beta_n^2] ||y_n - \varphi_2(x_{n+1})||.$$

Consequently, we have

$$||y_{n+1} - \varphi_2(x_{n+1})|| \le C(k_2, l_2, \beta_n) ||y_n - \varphi_2(x_{n+1})||,$$

where

$$C(k_2, l_2, \beta_n) = [1 + (1 - k_2)\beta_n + (1 + l_2)\beta_n^2(2 - k_2 + l_2)](1 + \beta_n)^{-1}.$$

We can see from the definition of $\{x_n\}$ that

$$||x_{n+1} - x_n|| \le (1 + l_1)\alpha_n ||x_n - \varphi_1(y_n)||.$$

Then we have

$$||y_{n+1} - \varphi_2(x_{n+1})|| \le C(k_2, l_2, \beta_n)(||y_n - \varphi_2(x_n)|| + ||\varphi_2(x_{n+1}) - \varphi_2(x_n)||)$$

$$\le C(k_2, l_2, \beta_n)(||y_n - \varphi_2(x_n)|| + (l_1/k_2)||x_{n+1} - x_n||)$$

$$\le C(k_2, l_2, \beta_n)(||y_n - \varphi_2(x_n)|| + (l_1/k_2)\alpha_n(1 + l_1)||x_n - \varphi_1(y_n)||.$$

It then follows that

$$||x_{n+1} - \varphi_1(y_{n+1})|| + ||y_{n+1} - \varphi_2(x_{n+1})||$$

$$\leq C(k_1, l_1, \alpha_n)(1 + (l_1 l_2/k_1 k_2)(1 + l_2)(1 + l_1)\alpha_n \beta_n) ||x_n - \varphi_1(y_n)||)$$

$$+ C(k_1, l_1, \alpha_n)(1 + l_2)(l_2/k_1)\beta_n ||y_n - \varphi_2(x_n)||$$

$$+ C(k_2, l_2, \beta_n)(||y_n - \varphi_2(x_n)|| + (l_1/k_2)\alpha_n(1 + l_1) ||x_n - \varphi_1(y_n)||.$$

That is

$$||x_{n+1} - \varphi_1(y_{n+1})|| + ||y_{n+1} - \varphi_2(x_{n+1})||$$

$$\leq C_n ||x_n - \varphi_1(y_n)|| + D_n ||y_n - \varphi_2(x_n)||,$$

where

$$C_n = C(k_1, l_1, \alpha_n)(1 + (l_1 l_2/k_1 k_2)(1 + l_2)(1 + l_1)\alpha_n \beta_n) + C(k_2, l_2, \beta_n)(l_1/k_2)\alpha_n (1 + l_1)$$

and

$$D_n = C(k_2, l_2, \beta_n) + C(k_1, l_1, \alpha_n)(1 + l_2)(l_2/k_1)\beta_n.$$

Let $\varepsilon > 0$ such that $\rho + \varepsilon < \min\{c/k_1, c/k_2\}$. Then recalling that $\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = 0$, we have, from the definition of $C(k_1, l_1, \alpha_n)$ and $C(k_2, l_2, \beta_n)$, that for n sufficiently large

$$C_n \leq 1 - k_1 \alpha_n + (1 + l_1)(l_1/k_2)\alpha_n + \varepsilon \alpha_n < 1 - \rho \alpha_n$$

and

$$D_n < 1 - \rho \beta_n$$
.

Here we put

$$c_n = ||x_n - \varphi_1(y_n)|| + ||y_n - \varphi_2(x_n)||$$
 for $n \ge 1$.

Then from the inequality above, we find

$$c_{n+1} \leq (1 - \rho \gamma_n) c_n$$
 for n sufficiently large.

That is, there exists $n_0 \ge 1$ such that for each $n \ge n_0$,

(4)
$$c_{n+1} \le \prod_{k=n_0}^n (1 - \rho \gamma_k) c_{n_0}.$$

Since $\sum \gamma_n = \infty$, we have that $\lim_{n \to \infty} \prod_{k=n_0}^n (1 - \rho \gamma_k) = 0$. This implies that $\lim_{n \to \infty} c_n = 0$. That is

(5)
$$\lim_{n \to \infty} (\|x_n - \varphi_1(y_n)\| + \|y_n - \varphi_2(x_n)\|) = 0.$$

Here we recall that

$$||x_{n+1} - x_n|| \le (l_1 + 1)\alpha_n ||x_n - \varphi_1(y_n)||$$
 for all $n \ge 1$.

Then we have by (4) that for each $n > n_0$ and $m \ge 1$,

$$||x_{n+m} - x_n|| \le \sum_{k=1}^m ||x_{n+k} - x_{n+k-1}||$$

$$\le (l_1 + 1) \sum_{k=1}^m \alpha_{n+k-1} ||x_{n+k-1} - \varphi_1(y_{n+k-1})||$$

$$\le (l_1 + 1) \sum_{k=1}^m \alpha_{n+k-1} \prod_{j=n_0}^{n+k-1} (1 - \rho \gamma_j).$$

Then by the assumption, we have that

$$\lim_{n \to \infty} ||x_{n+m} - x_n|| = 0 \quad \text{uniformly for } m \ge 1.$$

Thus we find that $x_n \longrightarrow x \in H$ strongly. Similarly, we have that $y_n \longrightarrow y \in H$ strongly. It then follows from (5) that

$$x = \varphi_2(y)$$
 and $y = \varphi_1(x)$.

That is T(x+y) = x+y. This completes the proof.

REFERENCES

- [1] V. Barbu, Nonlinear semigroups and differential equations in banach spaces, Noordhoff, 1976.
- [2] C.E.Chidume, Iterative approximation of fixed points of lipschitzian strictly pseudocontractive mappings, Proc.Amer.Math.Soc. 99 (1987), 283–288.
- [3] Liwei Liu, Approximation of fixed points of a strictly pseudocontractive mapping, Proc.Am. Math. Soc. 125 (1997), 1363–1366.
- [4] M. O. Osilike, Stability of the mann and ishikawa iteration procedures for φ-strong pseudocontractions and nonlinear equation of the φ-strongly accretive type, J. Math. Anal.Appl. 227 (1998), 319–334.
- [5] Liu Li Shan, Fixed points of local strictly pseudo-contractive mappings of mann and ishikawa iteration with errors, Indian J. Pure Appl Math. 26 (1995), 649–659.

[6] A. L. Yuille, Cccp algorithms to minimize the bethe and kikuchi free energies:convergent alternative to belief propagation, Neural Computation 14 (2002), 1691–1722.

Manuscript received October 14, 2004

NORIMICHI HIRANO

Department of Mathematics, Graduate School of Environment and Information Sciences, Yokohama National Unviersity

SHOUHEI ITO

Department of Mathematics, Graduate School of Environment and Information Sciences, Yokohama National Unviersity