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ON THE MEMORY OF ATOMIC OPERATORS

MICHAEL DRAKHLIN AND ELENA LITSYN

Abstract. Properties of the memory of operator are considered. Roughly speak-
ing, the memory is an information about the preimages the operator remembers
given some information about images. We show that some properties of the mem-
ory allow to single out two classes of nonlinear operators generalizing the notion
of local operator between ideal function spaces. The first class, named atomic,
contains in particular all the linear shifts (inner superpositions), while the second
one, called coatomic, contains all the adjoints to the atomic operators, and, in
particular, the conditional expectations. Both classes include local (in particular,
Nemytskǐı) operators and are closed with respect to compositions of operators.
Results about representation of operators of both classes are provided.

1. Introduction

The question whether it is possible to represent a σ-homomorphism between two
measure spaces by an inverse of a measurable point map has by now rather long
history. The first and very remarkable result on this topic can be traced back to the
paper by J. von Neumann [20] and to his subsequent paper with P.R. Halmos [9].
In these papers it was proven, in modern terms, that (up to some insignificant
details) every σ-automorphism of standard measure space is representable by a
Borel measurable bijection. Further generalizations as well as some references on
representation of automorphisms of measure spaces can be found in [2]. Another
principal result in this direction was proven by R. Sikorski in [19]: he showed that
a σ-homomorphism of a standard measure space into an arbitrary measure space is
representable by a measurable point transformation, which in this case is, generally
speaking, not invertible.

The mentioned principles provide a powerful tool in representation theory of
linear operators. For instance, one of the most famous results obtained with the es-
sential use of this tool, was the theorem on representation of isometries of Lebesgue
spaces as weighted shift operators proven by J. Lamperti in [11] (see also chap-
ter 15.5 of [17] and chapter 10 of [16], where the dependence of this representation
result on one of the above principles is made even clearer). Another consequence
of the same tool is the class of statements on representation of linear disjointness
preserving operators (also called D-operators [21] or Riesz homomorphisms [22]),
i.e. the operators mapping functions with disjoint supports into functions with dis-
joint supports, in various spaces of measurable functions as weighted shifts. Such
a representation theorem can be easily proven for all linear continuous in measure
D-operators in the space of classes of measurable functions with the usual topology
of convergence in measure. This result in fact gave rise to many profound general-
izations and is widely used in many modern mathematical theories, especially in the
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theory of Banach lattices. For example, a general representation theorem for linear
order continuous D-operators as weighted shifts in Banach lattices of measurable
functions can be found in [22]. However, most of the generalizations have been
obtained in the framework of the linear operator theory, while only few particular
results are known as far as nonlinear operators are concerned.

We are inclined to think that it is unreasonable to expect as beautiful result on
representation of general nonlinear D-operators like as in the linear case. A step in
this direction was undertaken in [3]. A new class of operators (called atomic), pro-
viding such a reasonable generalization of inear D-operators to the nonlinear case
and inheriting many nice properties from the linear theory, was introduced there.
It was shown that the operators of this class arize naturally in various applications
like e.g. functional-differential equations or description of stochastic periodic pro-
cesses. All the constructions were heavily based on the notion of the memory of
an operator, which was introduced in the paper. Roughly speaking, it is a piece
of information about the preimages the operator is able to remember given a piece
of information about the images. One easily understands this definition while con-
sidering the classical notion of local (or locally defined) operators [18], which in
particular includes Nemytskǐı operators (also called superposition operators) [1],
stochastic integrals [13] in Lebesgue spaces, and differential operators in the spaces
of smooth functions [21, 10]. In fact, one easily observes that the well-known def-
inition of a local operator by I.V. Shragin [18] involves only the “structure of the
memory”. The definition of atomic operators follows the same idea and, moreover,
includes that of the local operators. Moreower, the considerations based on the
notion of the memory enable the authors of [3] to define another interesting class of
operators (called coatomic), which in a sense is dual to the class of atomic operators.
It includes, for instance, conditional expectations as well as all adjoint operators
to weighted shifts. The local operators may be viewed then as a particular case of
both atomic and coatomic operators.

In the present paper we will show that some properties of the operators’ memory
allow to define σ-homomorphisms, generating atomic and coatomic operators and
to describe the structure of these operators.

Thus, unlike in [3], our definitions of atomic and coatomic operators already
are not based on an apriori assumption on existence of a corresponding σ-homo-
morphism.

2. Notation and preliminaries

Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be two measure spaces, and Σ0
1 ⊂ Σ1, Σ0

2 ⊂ Σ2

be the σ-ideals of µ1- and µ2-nullsets respectively. We denote by Σ̃i := Σi/Σ0
i ,

i = 1, 2 the respective measure algebrae (see § 42 of [19]). For the elements of Σ̃i

(i.e. the equivalence classes of sets) will be denoted ẽi or [ei], i = 1, 2. Further on we
will however frequently abuse the notation and identify the elements of the measure
algebrae Σ̃i with the elements of the respective original σ-algebrae of sets Σi. A
map F : Σ̃1 → Σ̃2 is called a σ-homomorphism, if F (Ω1) = Ω2, F (Ω1\e) = Ω2\F (e)
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whenever e ∈ Σ̃1 and

F

( ∞⊔

i=1

ei

)
=

∞⊔

i=1

F (ei),

for any pairwise disjoint collection of {ei}∞i=1 ⊂ Σ̃1, where
⊔

stands for the disjoint
union. Every (Σ2,Σ1)-measurable map g: Ω2 → Ω1 satisfying

(2.1) µ2(g−1(e1)) = 0 when µ1(e1) = 0

generates a σ-homomorphism according to the formula F (ẽ1) := [g−1(e1)]. The
latter σ-homomorphism is said to be induced by a point map g, and in this case we
will write F = g−1.

A measure space (Ω,Σ, µ) is called standard, if Ω is a Polish space, Σ is either
the Borel σ-algebra or its completion with respect to finite Borel measure µ.

All the measure spaces we will be dealing with in the sequel are assumed to be
complete, and, for the sake of simplicity, the measures will be supposed to be finite.
Further, the notation Lp(Ω,Σ, µ;X ), where X is a separable Banach space, will
stand, as usual, for the classical Lebesgue space of X -valued functions measurable
with respect to Σ and µ-summable with power p (if p ∈ [1,+∞)) or µ-essentially
bounded (if p = +∞). These spaces are silently assumed to be equipped with their
strong topologies. If X is a separable metric space, then L0(Ω,Σ, µ;X ) stands for
the metric space of X -valued functions measurable with respect to Σ equipped with
the topology of convergence in measure.

Whenever there is no possibility for confusion, the references to X , Ω, Σ and/or µ
will be omitted. We will also omit in sequel sign (̃·), assuming that all considerations
are done modulo equivalence classes of sets.

3. Memory and comemory of an operator

Let Xi := X(Ωi,Σi, µi;Xi), i = 1, 2. Consider an operator T : X1 → X2. Fol-
lowing [3], we introduce now the concept of memory and the related concept of
comemory which are basic for our study.

Definition 3.1. We call the memory of an operator T : X1 → X2 on a set e2 ∈ Σ2

the family of all possible e1 ∈ Σ1 such that for any x, y ∈ X1 satisfying x |e1 = y |e1

it follows that T (x) |e2 = T (y) |e2 . In other words,

MemT (e2) := {e1 ∈ Σ1 : x |e1 = y |e1 ⇒ T (x) |e2 = T (y) |e2 } ,

Similarly, the comemory of operator T on a set e1 ∈ Σ1 is the family

ComemT (e1) := {e2 ∈ Σ2 : x |e1 = y |e1 ⇒ T (x) |e2 = T (y) |e2 } .

Recall that according to our convention all the equalities in the above definition
should be understood in almost everywhere sense.

It is clear from the definitions that

e1 ∈ MemT (e2) ⇐⇒ e2 ∈ ComemT (e1).

Example 3.1. Let X = X1 = X2. Define a shift operator Tg: L0(Ω1,Σ1, µ1;X ) →
L0(Ω2,Σ2, µ2;X ) (sometimes also called inner superposition) by the formula

(3.1) (Tgx)(ω2) := x(g(ω2))
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where g: Ω2 → Ω1 is a given (Σ2,Σ1)-measurable function. For this operator to be
well-defined on the classes of measurable functions we require

(3.2) e1 ∈ Σ1, µ1(e1) = 0 ⇒ µ2(g−1(e1)) = 0.

Then
MemTg(e2) = {e1 ∈ Σ1 : e1 ⊃ g(e2)}.

Example 3.2. Let Ω ⊂ R be a compact set supplied with the Lebesgue measure
µ, Σ being the respective σ-algebra of measurable subsets of Ω, X = R. We define
operator K : L1(Ω) → L1(Ω) by the formula

(Kx)(t) :=
∫

Ω
K(t, s)x(s) ds, t ∈ Ω,

where the function K(·, ·) is measurable, positive and essencially bounded on Ω×Ω.
Then

MemK(E) =
{ {Ω}, µ(E) 6= 0,

Σ, µ(E) = 0,

Let us present several properties of memory and comemory (they will appear
together with the proofs in the forthcoming paper [4]).

We have the following obvious properties of the comemory.

Proposition 3.1. For every operator T : X1 → X2 and for all e1 ∈ Σ1 the following
holds:

(i) if e2 ∈ ComemT (e1) and e′2 ⊂ e2, e′2 ∈ Σ2, then e′2 ∈ ComemT (e1). In
particular, ∅ ∈ ComemT (e1);

(ii) ComemT (Ω1) = Σ2;
(iii) ComemT (e1) is closed under at most countable unions of its elements;
(iv) e1 ⊂ e′1 implies ComemT (e1) ⊂ ComemT (e′1);
(v) the family ComemT (e1) contains maximum element (called “the maximum

comemory”) with respect to the inclusion.

Remark 3.1. In other terms (see § 3 of [19]), the conditions (i) and (ii) mean that
for all e1 ∈ Σ1 the family ComemT (e1) is a σ-ideal.

Below we list some similar properties of memory. The omitted proof is straight-
forward.

Proposition 3.2. For every operator T : X1 → X2 and for all e2 ∈ Σ2 the following
holds:

(i) if e1 ∈ MemT (e2) and e1 ⊂ e′1, e′1 ∈ Σ1, then e′1 ∈ MemT (e2). In particular,
Ω1 ∈ MemT (e2);

(ii) MemT (e2) is closed under finite intersections of its elements.

Remark 3.2. Similarly to the case of comemory, the above statement asserts (see § 3
of [19]), that the for all e2 ∈ Σ2 the family MemT (e2) is a filter.

Note that MemT (e2) does not need to be closed under countable intersection of
its elements and to contain a minimum element with respect to the inclusion (i.e.
it is, generally speaking, not a σ-filter), as the example below shows.



ON THE MEMORY OF ATOMIC OPERATORS 239

Example 3.3. Let Ω ⊂ Rn be a compact set supplied with the n-dimensional
Lebesgue measure µ, Σ being the respective σ-algebra of measurable subsets of Ω.
We define operator T : L∞(Ω) → L∞(Ω) by the formula

(Tx)(ω) := lim sup
r→0+

1
µ(Br(x0))

∫

Br(x0)
x(s) ds · 1(ω),

where Br(x0) ⊂ Rn stands for the ball of radius r > 0 centered at x0 ∈ intΩ. This
operator is nonlinear, bounded, but discontinuous. One has, obviously, Br(x0) ∈
MemT (Ω) for all r > 0 small enough, but

[{x0}] = ∅ 6∈ MemT (Ω).

Note that the above example was only possible because the operator was taken to
be discontinuous in measure. On the other hand, the following statement is valid.

Proposition 3.3. For every continuous operator

T : L0(Ω1,Σ1, µ1;X1) → L0(Ω2,Σ2, µ2;X2)

and for all e2 ∈ Σ2 the following holds:
(i) MemT (e2) is closed under at most countable intersections of its elements

(and therefore, is a σ-filter);
(ii) MemT (e2) contains minimum element (called ”the minimum memory”) with

respect to the inclusion.

Example 3.4. The minimum memory, i.e. the minimum element of the set

MemTg(e2) = {e1 ∈ Σ1 : e1 ⊃ g(e2)}
in the Example 3.1 is given by the unique element E ∈ Σ2 such that E ⊃ g(e2) and
µ2(E) is equal to the outer measure of the (not necessarily measurable) set g(e2).

4. Local, atomic and coatomic operators

Assume fixed a measure space (Ω,Σ, µ) and define Xi = L0(Ω,Σ, µ;Xi), i = 1, 2.
In this section we recall the notions of local, atomic and coatomic operators

introduced in [3] together with some examples and propositions helping deaper
understanding of the nature of the operators under considereation.

Definition 4.1. An operator T : X1 → X2 is called local, if

e ∈ MemT (e)

for all e ∈ Σ, that is, if x |e = y |e for x, y ∈ X1 implies T (x) |e = T (y) |e .

The following example is classical.

Example 4.1. Let X1 and X2 be separable metric spaces, f : Ω × X1 → X2

be a sup-measurable function (i.e. f(·, x(·)) is µ-measurable whenever x(·) is µ-
measurable). Then the Nemytskǐı operator N : L0(Ω,Σ, µ;X1) → L0(Ω,Σ, µ;X2)
(commonly known also under the name superposition operator [1]), defined by

(Nx)(ω) := f(ω, x(ω))

is local. If f : Ω×X1 → X2 is a Carathéodory function (i.e. f(ω, ·) is continuous for
µ-almost every ω ∈ Ω and f(·, x) is µ-measurable for all x ∈ R), then the Nemytskǐı
operator N becomes continuous in measure (i.e. as an operator in L0).
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Obviously, the class of local operators is closed under compositions and finite
sums (when the latter are defined, e.g. when X2 is an additive group).

The above general definition of local operators is due to I.V. Shragin [18] who
called them locally defined. We just reformulated his definition using the introduced
notion of memory. The theory of local operators constitutes an important new
chapter of functional analysis with applications in stochastic analysis and differential
equations (see e.g. [12, 13, 14, 21]). The reader is referred to these works for the
classification theory of local operators, their properties, further examples, etc.

Now we recall another definition generalizing the notion of local operator.
HereXi = Xi(Ωi,Σi, µi;Xi), i = 1, 2.

Definition 4.2. An operator T : X1 → X2 is called atomic, if there is a σ-homo-
morphism F : Σ1 → Σ2, satisfying

(4.1) [F (e1)] ∈ ComemT (e1)

for all e1 ∈ Σ1, that is, if from x |e1 = y |e1 for x, y ∈ X1 follows T (x)
∣∣
F (e1) =

T (y)
∣∣
F (e1) .

Obviously, every local operator is atomic. However, the class of atomic operators
is richer, as one can conclude from the following example.

Example 4.2. Every shift operator (see example 3.1)

Tg : L0(Ω1,Σ1, µ1;X ) → L0(Ω2,Σ2, µ2;X )

is atomic. To show this, it is enough to set F (e1) := g−1(e1).

The class of atomic operators is obviously closed under compositions.

Example 4.3. Let Σ2 be a σ-algebra of Borel subsets (or its µ2-completion) of a
metric space Ω2, X1 and X2 be separable metric spaces, f : Ω2 × X1 → X2 be a
Carathéodory function, and g: Ω2 → Ω1 be a (Σ2,Σ1)-measurable function satisfy-
ing (3.2). Then the operator T : L0(Ω1,Σ1, µ1;X1) → L0(Ω2,Σ2, µ2;X2) defined by
the relationship

(Tx)(ω2) := f(ω2, x(g(ω2)))

is atomic as a composition of a Nemytskǐı operator

N : y(·) 7→ f(·, y(·)),
which is local, and a shift Tg.

Another concept which seems to be interesting to study, is given by the following
definition. Again, here Xi := Xi(Ωi,Σi, µi;Xi), i = 1, 2.

Definition 4.3. An operator T : X1 → X2 is called coatomic, if there is a σ-ho-
momorphism Φ: Σ2 → Σ1, satisfying

(4.2) [Φ(e2)] ∈ MemT (e2)

for all e2 ∈ Σ2, that is, if from x
∣∣
Φ(e2) = y

∣∣
Φ(e2) for x, y ∈ X1 follows T (x) |e2 =

T (y) |e2 .
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It is not difficult to observe that a notion of a coatomic operator is in certain
sense dual to the notion of an atomic operator. However, both classes contain local
operators. Certainly, the class of coatomic operators is wider than that of local
operators.

Example 4.4. Assume that g: Ω2 → Ω1 is a bijection satisfying (3.2) and the
inverse function g−1: Ω1 → Ω2 has the same property:

(4.3) e2 ∈ Σ2, µ2(e2) = 0 ⇒ µ1(g(e2)) = 0.

Then the corresponding shift operator

Tg : L0(Ω1,Σ1) → L0(Ω2,Σ2)

is coatomic, for one can take Φ(e) := g(e).

In relation to the latter example we observe that, unlike the class of atomic
operators, the class of coatomic operators contains only rather particular shifts,
namely, only those described in the example 4.4.

In [3] the following statement is proved.

Proposition 4.1. Let (Ω2,Σ2, µ2) be a standard measure space and a (Σ1,Σ2)-
measurable function g: Ω2 → Ω1 satisfy (3.2). Then the shift operator

Tg : L0(Ω1,Σ1, µ1) → L0(Ω2,Σ2, µ2)

is coatomic, if and only if g is µ2-equivalent to a bijection and satisfies (4.3).

Thus we see that the class of coatomic operators does not coincide with that of
atomic operators. Moreover, it is not contained in the latter one. To prove this, we
need the following statement which seems to be of independent interest.

Proposition 4.2. Let X1 and X2 be reflexive Banach spaces. A linear bounded
operator

T : Lp(Ω1,Σ1, µ1;X1) → Lq(Ω2,Σ2, µ2;X2),
1 ≤ p, q < +∞, is coatomic (resp. atomic), if and only if its adjoint

T ′ : Lq′(Ω2,Σ2, µ2;X ′
2) → Lp′(Ω1,Σ1, µ1;X ′

1)

is atomic (resp. coatomic).

The proof can also be found in [3].

5. Short memory and full comemory operators

The properties of atomic and coatomic operators are studied in details in [3]. It
is shown that both classes inherit from Nemytskǐı operator the properties of non-
compactness in measure and weak degeneracy, while having different relationships
of acting, continuity and boundedness, as well as different convergence properties.

Let us point out, that the definition of atomic (coatomic) operator includes the
assumption of the existence of some homomorphism satisfying (4.1) ((4.2) respec-
tively). However, one can define some properties of the operators’ memory which
will garantee the existence of a corresponding homomorphism.

Here again Xi := Xi(Ωi,Σ1, µi;Xi), i = 1, 2.
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Definition 5.1. Operator T : X1 → X2 is called short memory, if for any ε > 0
there exists δ > 0, such that for any e2 ∈ Σ2 the condition

µ2(e2) < δ

implies the existence of e1 ∈ MemT (e2), satisfying

µ1(e1) < ε.

Definition 5.2. Operator T : X1 → X2 is called full comemory, if for any
collection {e1i ∈ Σ1}, satisfying the following condition

(5.1) Ω1 = ∪ie1i,

there exists a collection {e2i ∈ Σ2}, e2i ∈ ComemT (e1i), such that the following
equality

(5.2) Ω2 = ∪ie2i,

holds.

Theorem 5.1. Let operator T : X1 → X2 be full comemory and let the following
condition be fulfilled:

(5.3) ComemT (∅µ1) = ∅µ2 .

Then T is atomic.

Proof. Let us define map F : Σ1 → Σ2 as follows

(5.4) F (e1) = max ComemT (e1), e1 ∈ Σ1.

Let us show, that the map defined above is a homomorphism.
Indeed, the conditions of the theorem imply that

F (Ω1) = Ω2.

Furthermore, let e1 ∈ Σ1. Then, on one hand,

F (Ω1 \ e1 ∪ e1) = Ω2,

and on the other hand (from the definition of full comemory)

F (Ω1 \ e1 ∪ e1) ⊃ F (Ω1 \ e1) ∪ F (e1).

Since
(Ω1 \ e1) ∩ e1 = ∅µ1 ,

then taking into account (5.3)

F (Ω1 \ e1) ∩ F (e1) = ∅µ2 .

Thus,
F (Ω1 \ e1) = Ω2 \ F (e1).

the correctness of the equality

F (
∞⊔

i=1

ei) =
∞⊔

i=1

F (ei)

for each pairwise disjoint collection of µ1 measurable sets {ei}∞i−1 can be proved
by induction. The reference to the definition of atomic operator completes the
proof. ¤
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Let us discuss the essence of condition (5.3). Define for the operator T : X1(Ω1,
Σ1, µ1;X1) → X2(Ω2,Σ2, µ2;X2) a set Λ ∈ Σ2 by the following equality

(5.5) Λ = max ComemT (∅µ1).

If µ2(Λ) > 0, then we may put into correspondence to the operator T : X1 → X2 a
function ϕT : Λ → X2 such that for any function x ∈ X1 the equality

(5.6) (Tx)(t) = ϕT (t), t ∈ Λ

holds. Let us point out that if T : X1 → X2 is a linear operator, then

(5.7) ϕT (t) = 0, t ∈ Λ.

Further, let us define an operator T̃ : X1(Ω1,Σ1, µ1;X1) → X2(Ω2 \ Λ,Σ2(Ω2 \
Λ), µ2;X2) as follows:

(5.8) (∀x ∈ X1) (T̃ x)(t) = (Tx)(t), t ∈ Ω2 \ Λ.

Here Σ2(Ω2 \ Λ) is a restriction of Σ2 on Ω2 \ Λ.
In these notations the operator T : X1 → X2 can be represented in the form:

(5.9) (∀x ∈ X1) (Tx)(t) =
{

(T̃ x)(t), t ∈ Ω2 \ Λ,
ϕT (t), t ∈ Λ.

Moreover, for T̃ (5.3) holds, i.e.

(5.10) ComemT̃ (∅µ1) = ∅µ2 .

Corollary 5.1. Let T : X1(Ω1,Σ1, µ1;X1) → X2(Ω2,Σ2, µ2;X2) be full comem-
ory. Then T̃ : X1(Ω1,Σ1, µ1;X1) → X2(Ω2 \Λ,Σ2(Ω2 \Λ), µ2;X2), defined by (5.8)
is atomic.

Indeed, if T is full comemory then T̃ is also full comemory. Moreover, T̃
satisfies (5.10) in virtue of the definition of the set Λ. Then it follows from Theorem
5.1 that T̃ is atomic with respect to the homeomorphism F̃ : Σ1 → Σ2(Ω2 \ Λ)
defined by the equality:

F̃ (e) = max ComemT̃ (e1), e1 ∈ Σ1.

Theorem 5.2. If operator T : X1 → X2 is atomic then it is full comemory.

Proof. Let collection {e1i} be such that

Ω1 = ∪ie1i.

Let us now construct a collection {e′1i} according to the following rule:

e′11 = e11, e′12 = e12 \ e11, ..., e
′
1i = e1i \ ∪i−1

j=1e1j , ....

Clearly,
Ω1 = ∪ie

′
1i.

Moreover, {e′1i} consists of mutually disjoint sets.
Let F : Σ1 → Σ2 be a homomorphism, involved in the definition of atomic

operator T : X1 → X2. Then
Ω2 = ∪F (e′1i).

Since
F (e′1i) ⊂ F (e1i),
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then
Ω2 = ∪F (e1i).

This means that T : X1 → X2 is a full comemory operator. ¤
Theorems 5.1 and 5.2 allow to derive (compare with [3]) a representation of full

comemory operator and its’ properties.
Let us point out, that the sum of full comemory operators is, in general, not

full comemory as the following example shows.

Example 5.1. Let us consider operator T : L[0, 1] → L[0, 1],

(Tx)(t) = x(t) + x(
1
2
t), t ∈ [0, 1].

It could be checked easily that

ComemT ((
1
2
, 1)) = ∅,

maxComemT ((0,
1
2
)) = (0,

1
2
).

Thus, T is not full comemory.

Let Ej ∈ Σj , j = 1, 2. Let us define by Σj(Ej) a restriction of Σj on Ej , j = 1, 2.
For any e1 ∈ Σ1 define a family Comem(E2)T (e1) as follows:

(5.11) Comem(E2)T (e1) = {e2 ∈ Σ2(E2) : x|e1 = ye1 ⇒ Tx|e2 = Ty|e2}.
If E2 = Ω2, then E2 in (5.11) will be omitted, in order to adjust (5.11) with
Definition 3.1.

Definition 5.3. We say that operator T : X1 → X2 satisfies I-condition (T ∈ I-
condition) if there exists a collection of disjoint sets E2i, E2i ∈ Σ2, i = 1, 2, ...,
such that

Ω2 =
⊔

i

E2i,

and for any set e2 ∈ Σ2 the following equalities hold:

(5.12) max Comem(E2i)T [infMemT (e2 ∩ E2i)] = e2 ∩ E2i, i = 1, 2, ....

Let

(5.13) E1i := [inf MemT (E2i)], i = 1, 2, ....

Theorem 5.3. Let T ∈ I-condition and

(5.14) MemT (∅µ2) = Σ1.

Then a map
Φi : Σ2(E2i) → Σ1(E1i), i = 1, 2, ...,

defined by

(5.15) (∀e2i ∈ Σ2(E2i)) Φi(e2i) = [inf MemT (e2i)], i = 1, 2, ...,

is a homomorphism. Moreover, the operator

Ti : X1(E1i,Σ1(E1i), µ1;X1) → X2(E2i,Σ2(E2i), µ2;X2), i = 1, 2, ...,
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defined as the corresponding restriction of the operator

T : X1(Ω1,Σ1, µ1;X1) → X2(Ω2,Σ2, µ2;X2),

is coatomic with respect to this homomorphism.

Proof. Let us show that under conditions of the theorem, the map Φi, i = i, 2, ...,
defined by (5.14), is a homomorphism.

STEP 1. In virtue of the definition,

(5.16) Φi(E2i) = E1i.

STEP 2. Let us assume that the sets e′2i, e
′′
2i ∈ Σ2(E2i) are disjoint:

(5.17) e′2i ∩ e′′2i = ∅µ2 .

Then the intersection of their images under map Φi is also empty:

(5.18) Φi(e′2i) ∩ Φi(e′′2i) = ∅µ1 .

Indeed, if we assume that

e1i = [Φi(e′2i) ∩ Φi(e′′2i)] 6= ∅µ1 ,

then the set
maxComem(E2i)T (e1i)

belongs to e′2i and e′′2i simultaneously. Moreover, in virtue of (5.14), this set is not
empty. The last statement contradicts our assumption (5.17) and thus proves the
correctness of (5.18).

STEP 3. Let e2i ∈ Σ2(E2i). Then

(5.19) Φi([E2i\e2i] ∪ e2i) = Φi([E2i\e2i]) ∪ Φi(e2i).

Indeed, the inclusion

(5.20) E1i ⊃ Φi[E2i\e2i] ∪ Φi(e2i)

is evident. Let us prove the reverse inclusion:

(5.21) E1i ⊂ Φi[E2i\e2i] ∪ Φi(e2i).

Suppose that

(5.22) E1i\{Φi[E2i\e2i] ∪ Φi(e2i)} = e1i,

and moreover,
e1i 6= ∅µ1 .

Then, in virtue of (5.14),

maxComem(E2i)T (e1i) 6= ∅µ2 .

On the other hand,
maxComem(E2i)T (e1i) /∈ E2i\e2i,

maxComem(E2i)T (e1i) /∈ e2i.

Thus, (5.19) holds.
Since in virtue of step 2,

Φi([E2i\e2i]) ∩ Φi(e2i) = ∅µ1 ,
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then (5.19) implies

(5.23) Φi([E2i\e2i]) = E2i\Φi(e2i).

STEP 4. For any pairwise disjoint collection of {ek
2i}∞k=1 ⊂ Σ2(E2i), the equation

(5.24) Φi(
∞⊔

k=1

ek
2i) =

∞⊔

k=1

Φi(ek
2i).

can be proved by induction.
Thus, (5.16), (5.23) and (5.24) imply that the map Φi : Σ2(E2i) → Σ1(E1i), i =

1, 2, ..., is a homomorphism.
STEP 5. Definition 5.3 implies that for all e2i ∈ Σ2(E2i), i = 1, 2, ..., for x, y ∈
X1(E1iΣ1(E1i), µ1;X1),

x|Φi(e2i) = y|Φi(e2i)

implies
Ti(x)|e2i = Ti(y)|e2i .

This means, in virtue of Definition 4.3, that operator

Ti : X1(E1i,Σ1(E1i), µ1;X1) → X2(E2i,Σ2(E2i), µ2;X2), i = 1, 2, ...,

is coatomic with respect to homomorphism Φi, i = 1, 2, ..., defined in (5.15). ¤
Corollary 5.2. Let operator T : X1 → X2 satisfy the following conditions:

1. T : X1 → X2 is full comemory.
2. T ∈ I - condition.
3. ComemT (∅µ1) = ∅µ2 .
4. MemT (∅µ2) = Σ1.

Then T : X1 → X2 can be represented in the following form:

(Tx)(t) = (Tixi)(t), t ∈ E2i, i = 1, 2, ...,

where operators Ti : X1(E1i,Σ1(E1i), µ1;X1) → X2(E2i,Σ2(E2i), µ2;X2), i =
1, 2, ..., defined as the corresponding restrictions of operator T , are short mem-
ory, atomic and coatomic. Here xi is a restriction of function x ∈ X1 on the set
E1i = [inf MemT E2i].

6. Representation of full comemory operators

Assume that Σ1 ⊂ Σ′1, where Σ′1 is the largest σ-algebra of the subsets of Ω1. We
will need the following definition which first appeared in [15].

Definition 6.1. Let Σ1 ⊂ Σ′1 be σ-algebrae of subsets of Ω1. Then Σ1 is said to
satisfy Ω-condition with respect to Σ′1 (written Σ1 ∈ Ω(Σ′1)), if there is an at most
countable cover of Ω1 by pairwise disjoint sets Ω1 = tjΩ

j
1, Ωj

1 ∈ Σ′1, such that for
each j ∈ N one has Σ1 ∩ Ωj

1 = Σ′1 ∩ Ωj
1.

Let us now formulate the following result on the representation of continuous
atomic operators. We will start with two lemmas.

Lemma 6.1. [15] Let N : X1 → X2 be local operator, and Σ1 ∈ Ω(Σ′1). Then
N admits the unique extension to the local operator N ′ : X ′

1 → X2. Moreover, the
extended operator N ′ preserves the continuity of N (in measure).
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The next lemma together with its’ proof belong to E. Stepanov.

Lemma 6.2. Let (Ω1,Σ′1, µ1) and (Ω2,Σ2, µ2) be standard measure spaces, Σ1 ⊂ Σ′1
and F : Σ1 → Σ2 be a σ-homomorphism. Then any continuous operator T : X1 →
X2 atomic with respect to F can be represented as

(Tu)(t) = f(t, u(g(t))) for µ2 − a.e. t ∈ Ω2

for some Carathéodory function f : Ω2 ×X1 → X2, a measurable function g: Ω2 →
Ω1 satisfying

µ2(g−1(e1)) = 0 when µ1(e1) = 0
and every u ∈ X1, if and only if F (Σ1) ∈ Ω(Σ2).

Proof. The theorem 32.3 of [19] implies the existence of a measurable function g:
Ω2 → Ω1 satisfying (2.1) and [g−1(e1)] = F (e1) for every e1 ∈ Σ′1. According to
the representation theorem 3.1 from [3], one has T = N ◦ Tg, where N is a local
operator defined over L0(Ω2, F (Σ1), µ2;X1). If F (Σ1) ∈ Ω(Σ2), then according to
Lemma 6.1 the operator N admits a unique continuous local extension to the whole
space L0(Ω2,Σ2, µ2;X1), and hence is representable as

(Nv)(t) = f(t, v(t)) for µ2 − a.e. t ∈ Ω2,

where f : Ω2 ×X1 → X2 is a Carathéodory function.
Otherwise, if F (Σ1) 6∈ Ω(Σ2), then the theorem 7 from [15] asserts the existence

of a continuous local operator N : L0(Ω2, F (Σ1), µ2;X1) → L0(Ω2,Σ2, µ2;X2) which
cannot be represented as a Nemytskǐı operator generated by a Carathéodory func-
tion. Therefore, the operator T := N ◦ Tg is atomic with respect to F but cannot
be represented as indicated in the statement of the theorem.

¤
Theorem 6.1. Let (Ω1,Σ1, µ1) and (Ω2,Σ2, µ2) be standard measure spaces. Any
continuous full comemory operator T ;X1(Ω1,Σ1, µ1;X1) → X2(Ω2,Σ2, µ2;X2), sat-
isfying the condition

ComemT (∅µ1) = ∅µ2 ,

together with I-condition can be represented as

(6.1) (Tx)(t) = f(t, x(g(t))) for µ2 − a.e. x ∈ Ω2

for some Carathéodory function f : Ω2 ×X1 → X2, a measurable function g: Ω2 →
Ω1 satisfying (2.1) and every x ∈ X1.

Proof. The conditions of the theorem imply, in virtue of Theorem 5.1, that operator
T : X1 → X2 is atomic with respect to homomorphism F : Σ1 → Σ2, defined by
(5.4). Let us show that F (Σ1) ∈ Ω(Σ2). Since the T ∈ I-condition is valid, there
exists a collection of mutually disjoint sets E2i, E2i ∈ Σ2, i = 1, 2, ..., such that

Ω2 =
⊔

i

E2i

and for any set e2i ∈ Σ2(E2i), i = 1, 2, ..., the equality

maxComem(E2i)T [inf MemT (e2i)] = e2i

holds.
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Thus,
e2i ∈ F (Σ1) ∩ E2i.

This implies
F (Σ1) ∩ E2i = Σ2 ∩ E2i = Σ2(E2i).

The last equality means that F (Σ1) ∈ Ω(Σ2). Reference to the Lemma 6.2 completes
the proof. ¤
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