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ON A CLASS OF INFINITE HORIZON OPTIMAL CONTROL
PROBLEMS WITH PERIODIC COST FUNCTIONS

ARIE LEIZAROWITZ AND ALEXANDER J. ZASLAVSKI

Abstract. In this paper we study discrete time and continuous time infinite
horizon optimal control problems with periodic cost functions. For these problems
we obtain the reduction to finite cost and the representation formula, and the
existence of optimal solutions on infinite horizon.

1. Introduction

The study of optimal control problems defined on infinite intervals has recently
been a rapidly growing area of research. These problems arise in engineering [1, 19,
20], in models of economic growth [3, 5, 9, 10, 13-15], in infinite discrete models
of solid-state physics related to dislocations in one-dimensional crystals [2, 16] and
in the theory of thermodynamical equilibrium for materials [4, 8, 11, 12, 17, 18].
In this paper we study discrete time and continuous time optimal control problems
with periodic cost functions. Such problems arise, for example, in the analysis of
infinite discrete models for crystals [2, 16].

We consider the infinite horizon problem of minimizing the expression∑N−1
i=0 v(xi, xi+1) as N grows to infinity where {xi}∞i=0 is a sequence in the Eu-

clidean n-dimensional space Rn and v is a lower semicontinuous function defined on
Rn × Rn. This provides a convenient setting for the study of various optimization
problems, e.g., continuous time control systems which are represented by ordinary
differential equations whose cost integrand contains a discounting factor [6], the
infinite-horizon deterministic control problem of minimizing

∫ T
0 L(z(t), z′(t))dt as

T →∞ [7], the analysis of a long slender bar of a polymeric material under tension
[4, 8, 11], the analysis of an infinite discrete model for crystals which undergo phase
transitions [2, 16] and models of economic dynamics [9, 10, 13, 14]. Here we extend
the results of [6] obtained for a function v defined on a set K × K where K is a
compact subset of Rn. In our paper v is defined on Rn ×Rn and is periodic.

The paper is organized as follows. The extentions of the results of [6] are obtained
in Section 2. In Section 3 we consider variational problems with integrands which
are periodic with respect to a state variable. In Section 4 we study the infinite
horizon problem of minimizing the expression

∑N−1
i=0 vi(xi, xi+1) as N grows to

infinity where {xi}∞i=0 is a sequence in the Euclidean n-dimensional space Rn and
{vi}∞i=0 is a sequence of lower semicontinuous periodic functions defined on Rn×Rn.
In Section 5 we present our main application which is devoted to continuous time
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periodic control systems. We establish that under certain conditions such infinite
horizon systems have overtaking optimal solutions.

2. Autonomous discrete-time periodic control systems

Let Rn be the Euclidean n-dimensional space,

|x| = max{|xi| : i = 1, . . . , n} for all x = (x1, . . . , xn) ∈ Rn

and let Z be the set of all integers. Assume that v : Rn×Rn → R1 is a lower semi-
continous function (i.e. v(limk→∞(xk, yk)) ≤ lim infk→∞ v(xk, yk)) which satisfy the
following assumptions:
(2.1)
sup{v(x, y) : x, y ∈ Rn, 0 ≤ xi ≤ 1 and 0 ≤ yi − xi ≤ 1 for i = 1, . . . , n} = a < ∞,

(2.2) inf{v(x, y) : x, y ∈ Rn} = b > −∞,

(2.3) v(x + m, y + m) = v(x, y) for each x, y ∈ Rn and each m ∈ Zn,

there exists a number Γ > 0 such that

(2.4) inf{v(x, y) : x, y ∈ Rn and |x− y| ≥ Γ} ≥ a.

We will prove the following result which is an extention of Theorem 3.1 of [6]
established for a function v : K ×K → R1 where K is a compact subset of Rn.

Theorem 2.1. There exists a constant µ such that:
(1) For every sequence {zi}∞i=0 ⊂ Rn and every integer N ≥ 0 the inequality

N∑

i=0

[v(zi, zi+1)− µ] ≥ b− a

holds.
(2) For every sequence {zi}∞i=0 ⊂ Rn the sequence

{∑N
i=0[v(zi, zi+1)− µ]

}∞
N=0

is
either bounded or it diverges to infinity.

(3) For every initial value z0 there is a sequence {z∗i }∞i=0 with z∗0 = z0 which
satisfies ∣∣∣∣∣

N∑

i=0

[v(z∗i , x∗i+1)− µ]

∣∣∣∣∣ ≤ 4(a− b)

for all integers N ≥ 0.

We preface the proof of the theorem by auxiliary lemmas.
Define

(2.5) µ = inf

{
lim inf
N→∞

N−1
N−1∑

i=0

v(zi, zi+1) : {zi}∞i=0 ⊂ Rn

}
.

For any natural number N set

(2.6) λ(N) = inf

{
N−1

N−1∑

i=0

v(zi, zi+1) : {zi}N
i=0 ⊂ Rn and zN − z0 ∈ Zn

}
,
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(2.7) ρ(N) = inf

{
N−1

N−1∑

i=0

v(zi, zi+1) : {zi}N
i=0 ⊂ Rn

}
.

Remark 2.1. Let N be a natural number and let {zi}N
i=0 ⊂ Rn satisfy zN−z0 ∈ Zn.

We can associate with {zi}N
i=0 a sequence {yi}∞i=0 ⊂ Rn such that

yi = zi, i = 0, . . . , N,

yi+jN = yi + j(zN − z0) for all integers i, j ≥ 0.

Remark 2.1 and relations (2.2), (2.3), (2.5), (2.6) and (2.7) imply that

(2.8) ρ(N) ≤ µ ≤ λ(N), N = 1, 2, . . .

Set

A = {(x + m, y + m) : x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn satisfy

0 ≤ xi ≤ 1, 0 ≤ yi − xi ≤ 1 for i = 1, . . . , n and m ∈ Zn}.
Lemma 2.2. N(λ(N)− ρ(N)) ≤ a− b for all natural numbers N .

Proof. Let N be a natural number and {zi}N
i=0 ⊂ Rn. Evidently there is a sequence

{yi}N
i=0 ⊂ Rn such that

yi = zi, i = 0, . . . , N − 1, yN − y0 ∈ Zn and (yN−1, yN ) ∈ A.

By (2.1)-(2.3) and (2.6)

Nλ(N) ≤
N−1∑

i=0

v(yi, yi+1) ≤
N−1∑

i=0

v(zi, zi+1)− b + a.

Since this inequality holds for an arbitrary sequence {zi}N
i=0 ⊂ Rn, this completes

the proof of the lemma. ¤

Lemma 2.3. Let {zi}∞i=0 ⊂ Rn and let q be a natural number such that |zq−zq−1| ≥
Γ. Assume that a sequence {yi}∞i=0 ⊂ Rn satisfies

yi = zi, i = 0, . . . , q−1, (yq−1, yq) ∈ A, yi−zi = yq−zq ∈ Zn for all integers i ≥ q.

Then v(zi, zi+1) ≥ v(yi, yi+1) for all integers i ≥ 0.

The validity of Lemma 2.3 follows from relations (2.1), (2.3) and (2.4).

Proof of Theorem 2.1. Let {zi}∞i=0 ⊂ Rn and N be a natural number. There exists
a sequence {yi}N

i=0 ⊂ Rn such that

yi = zi, i = 0, . . . , N − 1, (yN−1, yN ) ∈ A and yN − y0 ∈ Zn.

It follows from (2.1), (2.2), (2.3), (2.6) and (2.8) that
N−1∑

i=0

v(zi, zi+1) ≥
N−1∑

i=0

v(yi, yi+1) + b− a ≥ Nλ(N) + b− a ≥ Nµ + b− a.

Assertion 1 of Theorem 2.1 is established.



74 ARIE LEIZAROWITZ AND ALEXANDER J. ZASLAVSKI

Assertion 2 follows from Assertion 1. Let us prove Assertion 3. It is sufficient to
establish the existence of a sequence {zi}∞i=0 ⊂ Rn such that

∣∣∣∣∣
N∑

i=0

[v(zi, zi+1)− µ]

∣∣∣∣∣ ≤ 2(a− b) for all integers N ≥ 0.

We can assume without loss of generality that Γ > 2. Let N be a natural number.
Lemma 2.3 implies that there is a sequence {zN

i }N
i=0 ⊂ Rn such that

|zN
i − zN

i+1| ≤ Γ, i = 0 . . . , N − 1, zN
0 − zN

N ∈ Zn, |zN
0 | ≤ 1

and
N−1∑

i=0

v(zN
i , zN

i+1) = Nλ(N).

By Lemma 2.2 and (2.8)

(2.9)
N−1∑

i=0

[v(zN
i , zN

i+1)− µ] ≤ a− b, N = 1, 2, . . . .

Clearly there exists a strictly increasing sequence of natural numbers {Nj}∞j=1 such
that for every integer i ≥ 0

z
Nj

i → yi ∈ Rn as j →∞.

Fix a natural number N . For all large natural numbers j it follows from Assertion
1 and (2.9) that

Nj−1∑

i=0

[v(zNj

i , z
Nj

i+1)− µ] ≤ a− b,

Nj−1∑

i=N

[v(zNj

i , z
Nj

i+1)− µ] ≥ −a + b,

N−1∑

i=0

[v(zNj

i , z
Nj

i+1)− µ] ≤ 2(a− b).

This relation implies that
N−1∑

i=0

[v(yi, yi+1)− µ] ≤ 2(a− b),

which completes the proof of the theorem. ¤
The next result is an extension of Proposition 5.1 of [6], which is concerned with

obtained for a function v : K ×K → R1 where K is a compact subset of Rn.

Theorem 2.2. Let v be a continuous function. We define

(2.10) π(x) = inf

{
lim inf
N→∞

N−1∑

i=0

[v(zi, zi+1)− µ] : {zi}∞i=0 ⊂ Rn, z0 = x

}
,

(2.11) θ(x, y) = v(x, y)− µ + π(y)− π(x)
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for each x, y ∈ Rn. Then π : Rn → R1 and θ : Rn × Rn → R1 are continuous
functions,

(2.12) π(x + m) = π(x), θ(x + m, y + m) = θ(x, y)
for each x, y ∈ Rn and each m ∈ Zn,

the function θ is nonnegative and

E(x) = {y ∈ Rn : θ(x, y) = 0}
is nonempty for any x ∈ Rn.

Proof. We can assume without loss of generality that Γ > 2. For x ∈ Rn we set

Λ(x) = {{zi}∞i=0 ⊂ Rn : z0 = x and |z1 − z0| ≤ Γ}.
It is easy to verify that relation (2.12) holds and

π(x) ≤ v(x, y)− µ + π(y) for all x, y ∈ Rn.

Thus θ is nonnegative. Lemma 2.3 implies that

π(x) = inf

{
lim inf
N→∞

N−1∑

i=0

[v(zi, zi+1)− µ] : {zi}∞i=0 ∈ Λ(x)

}
, x ∈ Rn.

This relation and the uniform continuity of v on bounded subsets of Rn×Rn imply
the continuity of the function π.

It only remains to prove that E(x) 6= ∅ for every x ∈ Rn. Suppose to the contrary
that for some x ∈ Rn we have E(x) = ∅. There is a sequence {xi}∞i=1 ⊂ Rn such
that θ(x, xi) → inf{θ(x, y) : y ∈ Rn} as i →∞.

Let i be a natural number. If |xi−x| > Γ we choose yi ∈ Rn such that (x, yi) ∈ A
and yi − xi ∈ Zn. If |xi − x| ≤ Γ we set yi = xi. Relations (2.1), (2.3) and (2.4)
imply that

θ(x, yi) ≤ θ(x, xi), i = 1, 2, . . . .

Now it is easy to verify that there exists x̄ ∈ Rn such that

θ(x, x̄) = inf{θ(x, y) : y ∈ Rn} = δ > 0.

There is a sequence {zi}∞i=1 ⊂ Rn such that z0 = x and

lim inf
N→∞

N−1∑

i=0

[v(zi, zi+1)− µ] ≤ π(x) + 2−1δ.

We have
π(x) + 2−1δ ≥ [θ(x, z1) + π(x)− π(z1)]

+ lim inf
N→∞

N∑

i=1

[v(zi, zi+1)− µ] ≥ [δ + π(x)− π(z1)] + π(z1).

We obtained a contradiction, hence E(x) 6= ∅ for all x ∈ Rn. The theorem is
proved. ¤
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3. Variational problems with periodic integrands

Let L : Rn × Rn → R1 be a bounded below Borel function which is bounded on
any compact subset of R2n. We assume that

(3.1) L(x + m, v) = L(x, v) for all x, v ∈ Rn and all m ∈ Zn

and that there exist positive numbers c1, c2 such that

(3.2) L(z, y) ≥ c1|y| for all z, y ∈ Rn such that |y| ≥ c2.

A trajectory is an absolutely continuous function z : ∆ → Rn where ∆ is either
[a, b] ⊂ R1 or [a,∞).

We will establish the following result which extends Theorem 4.1 of [7], estab-
lished for integrands L : K ×Rn → R1, where K is a compact subset of Rn, which
satisfy a Lipschitzian condition with respect to the state variable.

Theorem 3.1. There exist numbers M(L) > 0 and µ(L) such that:
(1) For any trajectory z : [0,∞) → Rn and any number T > 0

∫ T

0
[L(z(t), z′(t))− µ(L)]dt ≥ −M(L).

(2) For any trajectory z : [0,∞) → Rn the function

T →
∫ T

0
[L(z(t), z′(t))− µ(L)]dt, T ∈ (0,∞)

is either bounded or diverges to infinity as T →∞.
(3) For any z0 ∈ Rn there exists a trajectory z : [0,∞) → Rn such that z(0) = z0

and for any T > 0
∣∣∣∣
∫ T

0
[L(z(t), z′(t))− µ(L)]dt

∣∣∣∣ ≤ M(L).

We preface the proof of Theorem 3.1 by several preliminary propositions. Set

(3.3) dL = inf{L(x, y) : x, y ∈ Rn}.
For x, y ∈ K we set

u(x, y)

= inf
{∫ 1

0
L(z(t), z′(t))dt : z : [0, 1] → Rn is a trajectory, z(0) = x, z(1) = y

}
.

It is easy to verify that

(3.4) inf{u(x, y) : x, y ∈ Rn} ≥ dL,

the function u : Rn ×Rn → R1 is bounded on any compact subset of R2n and that

(3.5) u(x + m, y + m) = u(x, y) for all x, y ∈ Rn and all m ∈ Zn.

Lemma 3.1. For any positive number K there exists a number Γ ≥ 0 such that

u(x, y) ≥ K for all x, y ∈ Rn satisfying |x− y| ≥ Γ.



INFINITE HORIZON OPTIMAL CONTROL PROBLEMS 77

Proof. Let K be a positive number. Choose a positive number Γ such that

(3.6) Γ ≥ c2 + c−1
1 (K + sup{|L(x, y)| : x, y ∈ Rn, |y| ≤ c2}).

Let x, y ∈ Rn satisfy |x − y| ≥ Γ and let z : [0, 1] → Rn be a trajectory satisfying
z(0) = x, z(1) = y. Set

F1 = {t ∈ [0, 1] : |z′(t)| < c2}, F2 = [0, 1] \ F1.

By (3.2) and (3.6)
∫ 1

0
L(z(t), z′(t))dt ≥

∫

F2

L(z(t), z′(t))dt− sup{|L(ξ, η)| : ξ, η ∈ Rn, |η| ≤ c2},

Γ ≤ |x− y| ≤
∫ 1

0
|z′(t)|dt ≤ c2 +

∫

F2

|z′(t)|dt ≤ c2 +
∫

F2

c−1
1 L(z(t), z′(t))dt ≤

≤ c2 + c−1
1

[∫ 1

0
L(z(t), z′(t))dt + sup{|L(ξ, η)| : ξ, η ∈ Rn, |η| ≤ c2}

]
,

∫ 1

0
L(z(t), z′(t))dt ≥ K.

Hence u(x, y) ≥ K and the lemma is proved. ¤

For x, y ∈ Rn we define

v(x, y) = lim inf
(ξ,η)→(x,y)

u(ξ, η)

where ξ, η ∈ Rn. Evidently v : Rn × Rn → R1 is bounded from below, lower
semicontinuous function which is bounded on any compact subset of R2n. Relation
(3.5) implies that

v(x + m, y + m) = v(x, y) for all x, y ∈ Rn and all m ∈ Zn.

Set
b = inf{v(x, y) : x, y ∈ Rn},

a = sup{v(x, y) : x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn,

0 ≤ xi ≤ 1, 0 ≤ yi − xi ≤ 1 for i = 1, . . . , n},

µ = inf{lim inf
N→∞

N−1
N−1∑

i=0

v(xi, xi+1) : {xi}∞i=0 ⊂ Rn}.

By Lemma 3.1 there exists a positive number Γ such that

inf{v(x, y) : x, y ∈ Rn, |x− y| ≥ Γ} ≥ a + 1.

It is easy to see that Theorem 2.1 is valid with v, µ, a, b.

Lemma 3.2. Let x, y ∈ Rn and ε ∈ (0, 1/2). Then there exists γ ∈ (0, ε) and a
trajectory z : [0, 1 + γ] → Rn such that

z(0) = x, z(1 + γ) = y,

∫ 1+γ

0
L(z(t), z′(t))dt ≤ v(x, y) + ε.
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Proof. Set

(3.7) K = sup{|L(z, v)| : z, v ∈ Rn, |v| ≤ 16}.
Choose γ ∈ (0, ε) such that

(3.8) γK < ε/8.

It is easy to see that there are x1, y1 ∈ Rn such that

(3.9) |x− x1| ≤ 8−1γ, |y − y1| ≤ γ/8,

u(x1, y1) < v(x, y) + γ/8.

There exists a trajectory z0 : [0, 1] → Rn such that

(3.10) z(0) = x1, z(1) = y1,

∫ 1

0
L(z0(t), z′0(t))dt < v(x, y) + γ/8.

Define a trajectory z : [0, 1 + γ] → Rn such that

z(t) = x + 2γ−1t(x1 − x), t ∈ [0, γ/2],

z(t) = z0(t− γ/2), t ∈ [γ/2, 1 + γ/2],

z(t) = y1 + 2γ−1(t− 1− γ/2)(y − y1), t ∈ [1 + γ/2, 1 + γ].
Clearly the trajectory z is well defined and satisfies z(0) = x, z(1+γ) = y. By (3.7)
and (3.9)

|L(z(t), z′(t))| ≤ K, t ∈ (0, γ/2)
and

L(z(t), z′(t)) ≤ ∆, t ∈ (1 + γ/2, 1 + γ).
These relations together with (3.8) and (3.10) imply the validity of the lemma. ¤
Proof of Theorem 3.1. Set

µ(L) = µ, M(L) = 5(a− b) + |dL|+ |µ|+ 1.

Note that Theorem 2.1 is valid with v, µ, a, b. Let z : [0,∞) → Rn be a trajectory.
By Theorem 2.1
∫ N

0
[L(z(t), z′(t))−µ]dt ≥

N−1∑

i=0

[v(z(i), z(i+1))−µ] ≥ b−a for all natural numbers N.

Let T be a positive number. There is an integer N ≥ 0 such that N < T ≤ N + 1.
In view of (3.3)

(3.11)
∫ T

0
[L(z(t), z′(t))− µ]dt ≥

∫ T

N
[L(z(t), z′(t))− µ]dt + b− a

≥ b− a− |dL| − |µ|.
Thus Assertion 1 of Theorem 3.1 is proved.

Assertion 2 follows from Assertion 1. We will prove Assertion 3. Let z0 ∈ Rn.
By Theorem 2.1 there exists a sequence {xi}∞i=0 ⊂ Rn such that x0 = z0 and

(3.12)

∣∣∣∣∣
N∑

i=0

[v(xi, xi+1)− µ]

∣∣∣∣∣ ≤ 4(a− b) for all integers N ≥ 0.
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Set
εi = 2−i(1 + |µ|)−1, i = 1, 2, . . . .

By induction using Lemma 3.2 we construct a sequence of numbers γi ∈ (0, εi),
i = 1, 2 . . . and a trajectory z : [0,∞) → Rn such that for all integers N ≥ 0

z(βN ) = xN ,

∫ βN+1

βN

L(z(t), z′(t))dt ≤ v(xN , xN+1) + εN+1,

where β0 = 0, βN =
∑N

i=1 γi +N for all natural numbers N . By these relations and
by relation (3.12) for N = 1, 2, . . .

∫ βN

0
[L(z(t), z′(t))− µ]dt ≤ −µβN +

N−1∑

i=0

[v(xi, xi+1) + εi+1]

≤
N−1∑

i=0

[v(xi, xi+1)− µ]− µ(βN −N) +
N∑

i=1

εi

≤ 4(a− b) + (1 + |µ|)
N∑

i=1

εi ≤ 4(a− b) + 1.

Let T be a positive number. Choose a natural number N such that βN > T + 1.
Then by relation (3.11) which holds for any trajectory

∫ T

0
[L(z(t), z′(t))− µ]dt =

∫ βN

0
[L(z(t), z′(t))− µ]dt

−
∫ βN

T
[L(z(t), z′(t))− µ]dt ≤ 4(a− b) + 1 + (a− b + |dL|+ |µ|) ≤ M(L).

The proof of the theorem is complete. ¤

For x ∈ Rn we set

π(x) = inf
{

lim inf
T→∞

∫ T

0
[L(z(t), z′(t))− µ(L)]dt :

z : [0,∞) → Rn is a trajectory and z(0) = x

}
.

By Theorem 3.1 the function π : Rn → R1 is bounded,

|π(x)| ≤ M(L) for each x ∈ Rn,

π(x + m) = π(x) for each x ∈ Rn and each m ∈ Zn.

Let δ be a positive number. A trajectory s : [0,∞) → Rn is called δ-weakly
optimal [6] if there exists a strictly increasing sequence of positive numbers {Ti}∞i=1
such that Ti →∞ as i →∞ and that for any trajectory z : [0,∞) → Rn satisfying
z(0) = s(0) the relation

∫ Ti

0
[L(s(t), s′(t))− L(z(t), z′(t))]dt ≤ δ

holds for all large i.
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Proposition 3.1. For any x ∈ Rn and any δ > 0 there exists a δ-weakly optimal
trajectory s : [0,∞) → Rn satisfying s(0) = x.

Proof. There is a trajectory s : [0,∞) → Rn such that s(0) = x and

lim inf
T→∞

∫ T

0
[L(s(t), s′(t))− µ(L)]dt ≤ π(x) + δ/4.

To complete the proof we should only note that there exists a strictly increasing
sequence of positive numbers {Ti}∞i=1 such that Ti →∞ and

lim
i→∞

∫ Ti

0
[L(s(t), s′(t))− µ(L)]dt ≤ π(x) + δ/2. ¤

Proposition 3.2. π : Rn → R1 is a Lipschitzian function.

Proof. Set
K = sup{|L(z, v)| : z, v ∈ Rn and |v| ≤ 16}.

Let x, y ∈ Rn satisfy 0 < |x− y| ≤ 1 and let z(·) : [0,∞) → Rn be a trajectory such
that z(0) = y. We define a trajectory z1 : [0,∞) → Rn by

z1(t) = x + t|x− y|−1(y − x), t ∈ [0, |x− y|],
z1(t + |x− y|) = z(t), t ∈ [0,∞).

Evidently z1 is well defined and

π(x) ≤ lim inf
T→∞

∫ T

0
[L(z1(t), z′1(t))− µ(L)]dt

=
∫ |x−y|

0
[L(z1(t), z′1(t))− µ(L)]dt+

+ lim inf
T→∞

∫ T

0
[L(z(t), z′(t))− µ(L)]dt

≤ lim inf
T→∞

∫ T

0
[L(z(t), z′(t))− µ(L)]dt + |x− y|(|µ(L)|+ K).

This relation holds for any trajectory z : [0,∞) → Rn satisfying z(0) = y. Hence

π(x) ≤ π(y) + |x− y|(|µ(L)|+ δ).

This completes the proof of the proposition. ¤

4. Discrete time nonautonomous problems

Let vi : Rn×Rn → R1∪{∞}, i = 0, 1, 2, . . . be a sequence of functions such that
for each integer i ≥ 0 the following conditions hold:

(4.1) ai = sup{vi(x, y) : x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn,

0 ≤ xj ≤ 1, 0 ≤ yj − xj ≤ 1 for all j = 1, . . . , n} < ∞,

(4.2) bi = inf{vi(x, y) : x, y ∈ Rn} > −∞,

(4.3) vi(x + m, y + m) = vi(x, y) for each x, y ∈ Rn and each m ∈ Zn,
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there exists a number Γi > 0 such that

(4.4) inf{vi(x, y) : x, y ∈ Rn and |x− y| ≥ Γi} ≥ ai.

We assume that

(4.5) a = sup{ai : i = 0, 1, . . . } < ∞,

(4.6) b = inf{bi : i = 0, 1, . . . } > −∞.

We may assume without loss of generality that

(4.7) Γi ≥ 2 for all integers i ≥ 0.

For x ∈ Rn and a natural number N we set

S(x,N) = inf

{
N−1∑

i=0

vi(zi, zi+1) : {zi}N
i=0 ⊂ Rn, z0 = x

}
.

Also we set

(4.8) A = {(x, y) ∈ Rn ×Rn : x = (x1, . . . , xn), y = (y1, . . . , yn),

0 ≤ yi − xi ≤ 1 for i = 1, . . . , n}.
Relations (4.1), (4.3) and (4.4) imply the following lemma.

Lemma 4.1. Let {zi}∞i=0 ⊂ Rn and let q be a natural number for which |zq−zq−1| ≥
Γq−1. We define a sequence {yi}∞i=0 ⊂ Rn by

yi = zi, i = 0, . . . , q − 1, yq − zq ∈ Zn, (yq−1, yq) ∈ A,

yi = zi + yq − zq for all integers i ≥ q.

Then vi(zi, zi+1) ≥ vi(yi, yi+1), i = 0, 1, . . . .

Theorem 4.1. Let vi, i = 0, 1, . . . be a sequence of lower semicontinuous functions.
Then for any x ∈ Rn there exists a sequence {xi}∞i=0 ⊂ Rn such that

x0 = x, |xi − xi+1| ≤ Γi, i = 0, 1, . . . .

N−1∑

i=0

vi(xi, xi+1) ≤ S(x,N) + aN − bN , N = 1, 2, . . . .

Proof. Let x ∈ K. Lemma 4.1 implies that for any natural number N there is a
sequence {zN

i }N
i=0 ⊂ Rn such that

zN
0 = x, |zN

i+1 − zN
i | ≤ Γi, i = 0, . . . , N − 1,

N−1∑

i=0

vi(zN
i , zN

i+1) = S(x,N).

Let m,N be natural numbers such that m < N . Clearly there is a sequence
{zi}N

i=0 ⊂ Rn such that

zi = zm
i , i = 0, . . . , m, zm+1 − zN

m+1 ∈ Zn, (zm, zm+1) ∈ A,

zi = zN
i + zm+1 − zN

m+1, i = m + 1, . . . , N.
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In view of (4.1), (4.2), (4.8) and (4.3)

0 ≤
N−1∑

i=0

[vi(zi, zi+1)− vi(zN
i , zN

i+1)] = S(x,m)

−
m−1∑

i=0

vi(zN
i , zN

i+1) + vm(zm, zm+1)− vm(zN
m , zN

m+1),

(4.9)
m−1∑

i=0

vi(zN
i , zN

i+1) ≤ S(x,m) + am − bm

for each pair of natural numbers m,N satisfying m < N . There exists a strictly
increasing sequence of natural numbers {Nk}∞k=1 such that zNk

i → xi as k →∞ for
any integer i ≥ 0. Relation (4.9) implies that

m−1∑

i=0

vi(xi, xi+1) ≤ S(x,m) + am − bm, m = 1, 2, . . . .

The theorem is proved. ¤

Theorem 4.1 inplies the following result.

Theorem 4.2. Let vi, i = 0, 1, . . . be a sequence of lower semicontinuous functions
and ai−bi → 0 as i →∞. Then for any x ∈ Rn there exists a sequence {xi}∞i=1 ⊂ Rn

such that
x0 = x, |xi − xi+1| ≤ Γi, i = 0, 1, . . . ,

S(x,N)−
N−1∑

i=0

vi(xi, xi+1) → 0 as N →∞.

Theorem 4.3. Let ai − bi → 0 as i → ∞. Then for every x ∈ Rn for every ε > 0
there exists a sequence {yi}∞i=0 ⊂ Rn such that

y0 = x, |yi − yi+1| ≤ Γi, i = 0, 1, . . .

and that
N−1∑

i=0

vi(yi, yi+1) ≤ S(x,N) + ε

for all sufficient large N .

Proof. Let x ∈ Rn and ε > 0. Set εi = 2−i−3ε, i = 1, 2, . . . . Lemma 4.1 implies that
for any natural number N there exists a sequence {zN

i }N
i=0 ⊂ Rn such that zN

0 = x,

(4.10) |zN
i − zN

i+1| ≤ Γi, i = 0, . . . , N − 1,

and that

(4.11)
N−1∑

i=0

vi(zN
i , zN

i+1) ≤ S(x,N) + εN .
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Let m,N be natural numbers satisfying m < N . There exists a sequence
{zi(m,N)}N

i=0 such that

zi(m,N) = zm
i , i = 0, . . . , m, (zm(m,N), zm+1(m,N)) ∈ A,

zm+1(m,N)− zN
m+1 ∈ Zn, zi(m,N)− zN

i = zm+1(m,N)− zN
m+1,

i = m + 1, . . . , N.

(4.11), (4.8), (4.2), (4.3) and (4.1) imply that

εN ≥
N−1∑

i=0

[vi(zN
i , zN

i+1)− vi(zi(m,N), zi+1(m,N))]

≥
m−1∑

i=0

vi(zN
i , zN

i+1)− S(x,m)− εm + bm − vm(zm(m,N), zm+1(m,N))

≥
m−1∑

i=0

vi(zN
i , zN

i+1)− S(x,m)− εm − am + bm

(4.12) ≥ bm − am − εm,

(4.13)
m−1∑

i=0

vi(zN
i , zN

i+1) ≤ S(x,m) + εm + εN + am − bm

for each pair of natural numbers m,N satisfying m < N . Choose a strictly increas-
ing sequence of nonnegative integers {Ni}∞i=0 such that N0 = 0, Ni+1 −Ni ≥ 10 for
all integers i ≥ 0 and that

(4.14)
∞∑

i=1

(aNi − bNi) < ε/8.

It is easy to see that there exists a sequence {yi}∞i=0 ⊂ Rn such that

y0 = x, yi = zN1
i , i = 1, . . . , N1

and that for all natural numbers k

(yNk
, yNk+1) ∈ A, yNk+1

− zNk+1
Nk+1 ∈ Zn,

yi = zNk+1
i + yNk+1 − zNk+1

Nk+1 , i = Nk + 1, . . . , Nk+1.

We will show that {yi}∞i=0 is the required sequence.
By induction we will prove that for all integers k ≥ 2 the following relation holds:

(4.15)
Nk−1∑

i=0

[vi(yi, yi+1)− vi(z
Nk
i , zNk

i+1)] ≤
k−1∑

j=1

2(εNj + aNj − bNj ).

We verify that (4.15) holds for k = 2. It is easy to see that
N2−1∑

i=0

[vi(yi, yi+1)− vi(zi(N1, N2), zi+1(N1, N2))] ≤ vN1(yN1 , yN1+1)− bN1

≤ aN1 − bN1
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and this relation together with (4.12) implies (4.15) for k = 2. Assume now that
relation (4.15) holds for some integer k ≥ 2. By (4.12)

Nk+1−1∑

i=0

[vi(yi, yi+1)− vi(z
Nk+1
i , zNk+1

i+1 )]

=
Nk+1−1∑

i=0

[vi(yi, yi+1)− vi(zi(Nk, Nk+1), zi+1(Nk, Nk+1))]

+
Nk+1−1∑

i=0

[vi(zi(Nk, Nk+1), zi+1(Nk, Nk+1))− vi(z
Nk+1

i , z
Nk+1

i+1 )]

≤
Nk−1∑

i=0

[vi(yi, yi+1)− vi(z
Nk
i , zNk

i+1)] + vNk
(yNk

, yNk+1)− bNk
+ aNk

− bNk
+ εNk

≤
k−1∑

j=1

2(εNj + aNj − bNj ) + 2aNk
− 2bNk

+ εNk
≤

k∑

j=1

2(εNj + aNj − bNj ).

Thus relation (4.15) holds for every integer k ≥ 2. Let j > N2 be an integer. There
is an integer k ≥ 2 such that Nk < j ≤ Nk+1. Then in view of (4.13)-(4.15)

j−1∑

i=0

vi(z
Nk+1

i , z
Nk+1

i+1 ) ≤ S(x, j) + εj + εNk+1
+ aj − bj ,

j−1∑

i=0

[vi(yi, yi+1)− vi(z
Nk+1
i , z

Nk+1

i+1 )]

=
Nk+1−1∑

i=0

[vi(yi+1, yi+1)− vi(z
Nk+1

i , z
Nk+1

i+1 )] ≤
k∑

i=1

2(εNi + aNi − bNi),

j−1∑

i=0

vi(yi, yi+1) ≤
k∑

i=1

2(εNi + aNi − bNi) + S(x, j)

+εj + εNk+1
+ aj − bj ≤ S(x, j) + 3ε/4 + aj − bj .

This completes the proof of the theorem. ¤

5. Periodic optimal control problems

We consider a system

CT (u) =
∫ T

0
f0(z(t), u(t), t)dt,

(5.1) z′ = f(z, u)

where z(t) ∈ Rn, u(t) ∈ Ω for all t ∈ [0, T ], Ω ⊂ Rm is closed and f0 : Rn×Ω×[0,∞)
and f : Rn ×Ω → Rn are continuous functions. The admissible controls are all the
measurable functions u(t) for which the constraints u(t) ∈ Ω and z(t) ∈ Rn are
satisfied (where z and u are related as in (5.1)).
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We assume the following:
(1)

f(z + q, u) = f(z, u)
for all z ∈ Rn, u ∈ Ω and each q ∈ Zn and

f0(z + q, u, t) = f0(z, u, t)

for all z ∈ Rn, u ∈ Ω, q ∈ Zn and all t ∈ [0,∞).
(2) For any bounded set E ⊂ Ω the function f0 is bounded on the set Rn ×E ×

[0,∞) and the function f is bounded on the set Rn × E.
(3) For any bounded set E ⊂ Ω the function f0(z, u, t) → 0 as t →∞ uniformly

on Rn × E (for any ε > 0 there tε > 0 such that

|f0(z, u, t)| ≤ ε for each z ∈ Rn, u ∈ E and each t ∈ [tε,∞).

(4) There exist a number d0 > 0 and a bounded function

φ0 : [0,∞) → [0,∞)

such that φ0(t) → 0 as t →∞ and that

f0(z, u, t) ≥ −d0φ0(t) for each z ∈ Rn, u ∈ Ω and each t ∈ [0,∞).

(5) There exists a number d1 > 0 such that for each x = (x1, . . . , xn), y =
(y1, . . . , yn) ∈ Rn satisfying

0 ≤ xi ≤ 1, 0 ≤ yi − xi ≤ 1, i = 1, . . . , n

there is an admissible control u(t), 0 ≤ t ≤ 1 with a corresponding trajectory z(t),
t ∈ [0, 1] such that

z(0) = x, z(1) = y, |u(t)| ≤ d1, 0 ≤ t ≤ 1.

(6) For any number T > 0 there exist αT > 0, βT > 0 such that

αT |f(z, u)| ≤ f0(z, u, t) for all z ∈ Rn, t ∈ [0, T ]

and each u ∈ Ω satisfying |u| ≥ βT .

For x ∈ Rn, T > 0 we set

σ(x, T ) = inf
{∫ T

0
f0(z(t), u(t), t)dt :

z′ = f(z, u), z(t) ∈ Rn, u(t) ∈ Ω, t ∈ [0, T ], z(0) = x

}
.

By Assumptions 1, 2, 4 and 5 the number σ(x, T ) is well defined.
For x, y ∈ Rn, T ≥ 0 denote by H(x, y, T ) the set of all pairs of functions

(z(t), u(t)), t ∈ [T, T + 1] such that

z′ = f(z, u), z(t) ∈ Rn, u(t) ∈ Ω for all t ∈ [T, T + 1] and z(T ) = x, z(T + 1) = y,

and set

vT (x, y) = inf
{∫ T+1

T
f0(z(t), u(t), t)dt : (z, u) ∈ H(x, y, T )

}
if H(x, y, T ) 6= ∅,

otherwise vT (x, y) = ∞.
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For any integer i ≥ 0 set

ai = sup{vi(x, y) : x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn,

0 ≤ xi ≤ 1, 0 ≤ yi − xi ≤ 1 for each i = 1, . . . , n},
bi = inf{vi(x, y) : x, y ∈ Rn}.

By the assumptions we made

(5.2) bi > −∞, ai < ∞, i = 0, 1, . . .

(5.3)
vi(x + q, y + q) = vi(x, y) for each x, y ∈ Rn each q ∈ Zn and each i = 0, 1, . . . ,

(5.4) sup{ai : i = 0, 1, . . . } < ∞,

(5.5) inf{bi : i = 0, 1, . . . } > −∞,

(5.6) ai → 0, bi → 0 as i →∞.

Lemma 5.1. For any integer i ≥ 0 there exists a number Γi ≥ 0 such that for each
x, y ∈ Rn satisfying |x− y| ≥ Γi the relation vi(x, y) ≥ ai holds.

Proof. Let i ∈ {0, 1, . . . }. By Assumption 6

(5.7) αi+1|f(z, u)| ≤ f0(z, u, t)

for each z ∈ Rn, each t ∈ [0, i + 1] and each u ∈ Ω satisfying |u| ≥ βi+1

where αi+1 > 0, βi+1 > 0. In view of Assumption 2 there exists a number γ > 0
such that

(5.8) |f(z, u)| ≤ γ for each z ∈ Rn and each u ∈ Ω satisfying |u| ≤ βi+1.

Choose a number Γi > 0 for which

(5.9) Γi > γ + (αi+1)−1[|ai|+ sup{|φ0(t)| : t ∈ [i, i + 1]}](|d0|+ 1).

Let x, y ∈ Rn satisfy |x− y| ≥ Γi and let (z(t), u(t))(i ≤ t ≤ i + 1) ∈ H(x, y, i). We
have

Γi ≤ |x− y| ≤
∫ i+1

i
|z′(t)|dt =

∫ i+1

i
|f(z(t), u(t))|dt.

Set
E1 = {t ∈ [i, i + 1] : |u(t)| < βi+1}, E2 = [i, i + 1] \ E1.

Relation (5.8) implies that

(5.10) Γi ≤
∫

E1

|f(z(t), u(t))|dt +
∫

E2

|f(z(t), u(t))| ≤
∫

E2

|f(z(t), u(t))|+ γ.

On the other hand by (5.7), Assumption 4, (5.10) and (5.9)
∫ i+1

i
f0(z(t), u(t), t)dt =

∫

E1

f0(z(t), u(t), t)dt +
∫

E2

f0(z(t), u(t), t)dt

≥
∫

E2

αi+1|f(z(t), u(t))|dt− sup{|φ0(t)| : t ∈ [i, i + 1]}d0

≥ αi+1(Γi − γ)− sup{|φ0(t)| : t ∈ [i, i + 1]}|d0| ≥ ai.

This completes the proof of the lemma. ¤
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Lemma 5.2. For any x ∈ Rn

sup{|σ(x, T )− σ(x, i)| : T ∈ [i, i + 1]} → 0 as i →∞
(here i ≥ 0 is an integer).

Proof. Let x ∈ Rn, i ≥ 0 be an integer and let T ∈ (i, i + 1]. Let furthermore, u(t),
t ∈ [0, T ] be an admissible control with a corresponding trajectory z(t), t ∈ [0, T ]
such that z(0) = x. By Assumption 4

∫ T

0
f0(z(t), u(t), t)dt ≥

∫ i

0
f0(z(t), u(t), t)dt− sup{|φ0(t)| : t ∈ [i, i + 1]}|d0|

≥ σ(x, i)− sup{|φ0(t)| : t ∈ [i, i + 1]}|d0|.
This relation implies that

(5.11) σ(x, T )− σ(x, i) ≥ − sup{|φ0(t)| : t ∈ [i, i + 1]}|d0|.
Let now u(t), t ∈ [0, i] be an admissible control with a corresponding trajectory
z(t), t ∈ [0, i] such that z(0) = x. In view of Assumptions 1 and 5 there exists an
admissible control u1(t), t ∈ [0, T ] with a corresponding trajectory z1(t), t ∈ [0, T ]
such that u1(t) = u(t), z1(t) = z(t), t ∈ [0, i] and that |u1(t)| ≤ d1, for all t ∈ [i, T ].
We have ∫ i

0
f0(z(t), u(t), t)dt ≥

∫ T

0
f0(z1(t), u1(t), t)dt−

− sup{f0(y, h, τ) : y ∈ Rn, h ∈ Ω, |h| ≤ d1, τ ∈ [i,∞)}
≥ σ(x, T )− sup{|f0(y, h, τ)| : y ∈ Rn, h ∈ Ω, |h| ≤ d1, τ ∈ [i,∞)}.

This relation implies that
(5.12)

σ(x, i)− σ(x, T ) ≥ − sup{|f0(y, h, τ)| : y ∈ Rn, h ∈ Ω, |h| ≤ d1, τ ∈ [i,∞)}.
Now the validity of the lemma follows from relations (5.11), (5.12) which hold for
every i ∈ {0, 1, . . . , } and every T ∈ (i, i + 1], and from Assumptions 3 and 4. ¤

It is easy to verify that for x ∈ Rn, N ∈ {0, 1, . . . }

(5.13) σ(x,N) = inf

{
N−1∑

i=0

vi(xi, xi+1) : {xi}N
i=0 ⊂ Rn, x0 = x

}
.

Theorem 5.1. For any x ∈ Rn and any ε > 0 there exists an admissible control
u(t), t ∈ [0,∞) with a corresponding trajectory z(t), t ∈ [0,∞) such that z(0) = y
and that ∫ T

0
f0(z(t), u(t), t)dt ≤ σ(x, T ) + ε

for all sufficient large T .

Proof. By relations (5.2)-(5.6) and Lemma 5.1, Theorem 4.3 is valid for the functions
vi, i = 0, 1, . . . . Let x ∈ Rn and let ε be a positive number.
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By Theorem 4.3 and relation (5.13) there exists a sequence {yi}∞i=0 ⊂ Rn such
that y0 = x and that for large integers N the following relation holds:

N−1∑

i=0

vi(yi, yi+1) ≤ σ(x,N) + ε/4.

Evidently there exists an admissible control u(t), t ∈ [0,∞) with a corresponding
trajectory z(t), t ∈ [0,∞) such that for any integer i ≥ 0

z(i) = yi,

∫ i+1

i
f0(z(t), u(t), t)dt ≤ vi(yi, yi+1) + 2−i−4ε.

It is easy to see that for large integers N

(5.14)
∫ N

0
f0(z(t), u(t), t)dt ≤ σ(x,N) + ε/2.

Let N ≥ 0 be an integer and let T ∈ [N, N +1). It follows from (5.14), Assumption
4 and Lemma 5.2 that for large integers N

∫ T

0
f0(z(t), u(t), t)dt− σ(x, T )− ε/2 =

=
∫ N+1

0
f0(z(t), u(t), t)dt− σ(x,N + 1)− ε/2

+σ(x,N + 1)− σ(x, T )−
∫ N+1

T
f0(z(t), u(t), t)dt

≤ σ(x,N + 1)− σ(x, T )−
∫ N+1

T
f0(z(t), u(t), t)dt ≤ µ1 + µ2,

where
µ1 = 2 sup{|σ(x,N)− σ(x, τ)| : τ ∈ [N, N + 1]}

and
µ2 = sup{|φ0(τ)| : τ ∈ [N, N + 1]}|d0|.

But µ1, µ2 → 0 as N →∞, which completes the proof of the theorem. ¤
The following is our main result which extends Theorem 6.2 of [6] to the case

of periodic integrands. In particular, it asserts the existence of overtaking optimal
solutions which we define as follows.

We say that a pair (z∗, u∗), where u∗(·) is an admissible control on [0,∞) with
a corresponding trajectory z∗(·), is overtaking optimal if for any ε > 0 there exists
Tε > 0 such that

∫ T

0
f0(z∗(t), u∗(t), t)dt <

∫ T

0
f0(z(t), u(t), t)dt + ε

for each T > Tε and each admissible pair (z, u) on the interval [0, T ] satisfying
z(0) = z∗(0).

Note that in the definition above Tε depends only on ε. In the usual definition
of an overtaking optimal trajectory used in the literature (see [3]) the pair (z, u)
is defined on the interval [0,∞) and Tε depends on ε and (z, u). Here we can use
the strong version of the overtaking optimality criterion because of assumption 3).
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It should be mentioned that Theorem 6.2 of [6] asserts the existence of overtaking
optimal solutions in the usual sense for optimal control problems with state variables
belonging to a compact subset of Rn and with an integrand f0(z, u, t) = ψ(t)g(z, u).

Theorem 5.2. Assume that for every integer i ≥ 0 the function vi(x, y) is well
defined (namely the minimum is attained by a certain admissible control) and is
lower semicontinuous on Rn×Rn. Then for every x ∈ Rn there exists an admissible
control u(t) with a corresponding trajectoy z(t), t ∈ [0,∞) such that z(0) = x and

lim
t→∞

[∫ T

0
f0(z(t), u(t), t)dt− σ(x, T )

]
= 0.

In particular, this admissible pair (z, u) is overtaking optimal.

Proof. Let x ∈ Rn. By relations (5.2)-(5.6) and Lemma 5.1, Theorem 4.2 is valid
for the functions vi, i = 0, 1, . . . ,. In view of Theorem 4.2 and relation (5.13) there
exists a sequence {yi}∞i=0 ⊂ Rn such that y0 = x and that

N−1∑

i=0

vi(yi, yi+1)− σ(x,N) → 0 as N →∞.

Evidently there exists an admissible control u(t), t ∈ [0,∞) with a corresponding
trajectory z(t), t ∈ [0,∞) such that for each integer i ≥ 0 z(i) = yi and

∫ i+1

i
f0(z(t), u(t), t)dt = vi(yi, yi+1).

Then

(5.15)
∫ N

0
f0(z(t), u(t), t)dt− σ(x,N) → 0 as N →∞.

(here N is a natural number).
Let N ≥ 0 be an integer and T ∈ [N, N + 1). By Assumption 4, Lemma 5.2 and

relation (5.15)
∫ T

0
f0(z(t), u(t), t)− σ(x, T ) =

∫ N+1

0
f0(z(t), u(t), t)dt− σ(x,N + 1)

+σ(x,N + 1)− σ(x, T )−
∫ N+1

T
f0(z(t), u(t), t)dt

≤
∫ N+1

0
f0(z(t), u(t), t)dt− σ(x,N + 1) ≤ µ1 + µ2,

where

µ1 = 2 sup{|σ(x, τ)− σ(x,N)| : τ ∈ [N, N + 1]}
and
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µ2 = sup{|φ0(t)| : t ∈ [N, N + 1]}|d0| → 0 as N →∞
and we have µ1 + µ2 → 0 as N → 0. This completes the proof of the theorem. ¤
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