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REGULARIZATION AND RESOLUTION OF MONOTONE
VARIATIONAL INEQUALITIES WITH OPERATORS GIVEN BY

HYPOMONOTONE APPROXIMATIONS

YAKOV ALBER, DAN BUTNARIU, AND IRINA RYAZANTSEVA

Abstract. We study the stability in reflexive, smooth and strictly convex Ba-
nach spaces of the classical Tikhonov-Browder operator regularization method
for monotone variational inequalities with data perturbations. We prove that
this regularization method is stable even if the perturbed data contain operators
which fail to be monotone, but are strongly hypomonotone. We use this stability
result in order to prove convergence in smooth uniformly convex spaces of an
iterative algorithm for approximating solutions of monotone variational inequali-
ties. The algorithm we analyze involves in computations the perturbed data only
and it converges even if the perturbed operators are not necessarily monotone,
but strongly hypomonotone.

1. Introduction

Let X be a reflexive, smooth, strictly convex Banach space, let X∗ be the dual
space of X and let A : X → 2X∗

be a monotone operator which is demiclosed and
convex valued on the interior of its domain. Recall that the operator A is called
demiclosed if its graph,

GraphA := {(x, ξ) ∈ X ×X∗ : ξ ∈ Ax},

is sequentially closed in X ×X∗ when X is provided with the strong topology and
X∗ is provided with the weak∗ topology.

Let Ω be a nonempty, closed, convex subset of Int (DomA) and let ψ ∈ X∗. We
consider the variational inequality

(1) 〈Ax− ψ, y − x〉 ≥ 0, ∀y ∈ Ω.

By a solution of the variational inequality (1) we mean a vector x∗ ∈ Ω such that,
for some ξ∗ ∈ Ax∗, we have

(2) 〈ξ∗ − ψ, y − x∗〉 ≥ 0, ∀y ∈ Ω.

We denote by S(A,ψ,Ω) the set of solutions of (1). We assume that the problem
data A, ψ and Ω are given by sequences of approximations {Ak}k∈N ,

{
ψk
}

k∈N and
{Ωk}k∈N , respectively.

The problem of finding a solution of (1) may be ill-posed in the sense that either
S(A,ψ,Ω) is not a singleton and/or small perturbations of the problem data lead
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to relatively large perturbations of the solution set. In such situations, solving
variational inequalities

(3)
〈
Akx− ψk, y − x

〉
≥ 0, ∀y ∈ Ωk

instead of (1) makes little sense because the variational inequality (3) may have
no solutions or the problem of finding solutions of (3) can be as ill-posed as the
original problem and its solutions may be far from the set S(A,ψ,Ω). The aim of
this paper is two folds. First we study the stability of a regularization method for
situations in which the variational inequality (1) is ill-posed. Second, we use the
stability properties of that regularization method in order to establish convergence
of an iterative algorithm for finding solutions of the variational inequality (1) by
using in computations the approximative data only.

The regularization method we consider in this paper goes back to Tikhonov [53]
and Browder [20]. Its underlying idea is to associate to the variational inequality
(1) the perturbed regularized variational inequalities

(4)
〈
(Ak + αkJ)x− ψk, y − x

〉
≥ 0, ∀y ∈ Ωk,

where J is the normalized duality mapping and {αk}k∈N is a sequence of posi-
tive real numbers (regularization parameters) such that limk→∞ αk = 0. It is well
known that, under various conditions concerning the original and the approximative
data, each variational inequality (4) has a unique solution xk and that the sequence{
xk
}

k∈N converges weakly, and sometimes strongly, to a solution of (1) – see [2],
[4], [8], [9], [13], [16], [20], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [49],
[53], [54]. In all these works it is presumed that the approximating operators Ak

preserve the basic continuity and monotonicity features of the operator A involved
in the original variational inequality (1). In this paper we consider the situation in
which, by contrast to A, the operators Ak may fail to be monotone, although they
are required to satisfy a less demanding property which we call ”strong hypomono-
tonicity” in what follows. Precisely, we study the above described regularization
method under the following assumptions on the approximative data:

(A1) For each k ∈ N, we have that Ωk ⊆ Int (DomAk) , the operator Ak is
demiclosed on Ωk and, for any x ∈ Ωk, the set Akx is convex.

(A2) For each k ∈ N, there exists a number hk ≥ 0 such that Ak is strongly
hk-hypomonotone on Ωk, that is, for any x, y ∈ Ωk, the following inequality holds

(5) 〈Akx−Aky, x− y〉 ≥ −hk (‖x‖ − ‖y‖)2 ;

(A3) There exist a sequence of positive real numbers {αk}k∈N , and the sequences
of nonnegative real numbers {δk}k∈N , {ωk}k∈N and {τk}k∈N , and there exist three
bounded on bounded sets functions a, b : X → R+ and c : X∗ → R+ such that
limk→∞ αk = 0, hk < αk for all k ∈ N,

(6) lim
k→∞

δk + ωk + τk + hk

αk
= 0,

(7) lim sup
k→∞

b(x)
‖x‖2 <∞,
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and such that, for each k ∈ N, the following proximity requirements are satisfied:
(A3-1) ψk ∈ X∗ and

∥∥ψ − ψk
∥∥
∗ ≤ δk;

(A3-2) For any x ∈ Ω, there exists zk ∈ Ωk such that

(8)
∥∥∥x− zk

∥∥∥ ≤ a(x)ωk,

and such that, for all ζ ∈ Ax, we have

(9) dist∗(ζ, Akz
k) ≤ c(ζ)τk;

(A3-3) For any vk ∈ Ωk, there exists v ∈ Ω such that

(10)
∥∥∥vk − v

∥∥∥ ≤ b(vk)ωk.

Assumption (A1) is commonly used in the study of the stability of the regular-
ization method we discuss here. If the operators Ak are maximal monotone, as they
are often presumed to be, and if Ωk ⊆ Int (DomAk) , then the other requirements
of (A1) are automatically satisfied. The strong hypomonotonicity, defined by (5)
in assumption (A2), is a strenghtened form of the hypomonotonicity concept used
by Rockafellar [47] (see also [46, p. 548]). Its importance in our context stems from
the fact that if Ak are strongly hk-hypomonotone with hk < αk, then the operators
Ak + αkJ are strictly monotone and coercive – see Lemma 2.1 below. Assumption
(A3) is a weaker version of the often used requirement (see, for instance, [13], [10],
[11]) that DomAk = DomA for all k ∈ N and the operators Ak converge to A
uniformly on bounded subsets of DomA and with respect to the Hausdorff metric
topology on the family of closed convex nonempty subsets of X∗. Similar conditions
have been previously used in [4] and [8]. It implies a form of graphical convergence
to A+NΩ of the operators Ak +NΩk

as shown in [7, Section 2].
We prove (see Theorem 2.1 below) that the assumptions (A1)-(A3) are suffi-

cient to ensure well definedness, as well as convergence, of the sequence
{
xk
}

k∈N to
a solution of the original variational inequality (1). Using this fact, we establish in
Theorem 4.1 convergence of an iterative algorithm for finding solutions of the varia-
tional inequality (1). The algorithm we consider here (see Section 4) is the product
of analyzing and refining a series of procedures for solving equations and variational
inequalities due to Alber [1], Polyak [41], Bakushinskii and Polyak [17], Bruck [21],
[22], Bakushinskii [15], Reich [42], [43], Vainikko [55], Ryazantseva [48], [49], [50],
[51], Alber and Reich [14], Alber, Kartsatos and Litsyn [10], and Alber and Nashed
[11]. It has the important feature that it involves in computations the approxima-
tive data only. The information on the original data needed for the application of
the algorithm is exclusively qualitative (knowledge of the monotonicity and demi-
closedness of A and of the existence of solutions to (1)). Convergence of variants of
this algorithm was proved before for monotone operators Ak in uniformly convex
and uniformly smooth Banach spaces whose moduli of uniform convexity were sub-
jected to some restrictive requirement and under proximity assumptions somewhat
stronger than those we make in this paper (compare with [10, Theorem 1] and [11,
Theorem 3.3]). We prove that the algorithm we propose in Section 4 converges in
any smooth uniformly convex Banach space and, by contrast to previously studied
variants, our convergence result does not require monotonicity of Ak, but strong hy-
pomonotonicity – see Theorem 4.1. Assumptions (A1)-(A3) by themselves are not
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sufficient for ensuring convergence of our algorithm. In addition to these conditions
we had to impose conditions (A4) and (A5). Condition (A4) is a uniform bound-
edness on bounded sets requirement for the operators Ak. Condition (A5) requires
that the step size parameters εk involved in the algorithm be chosen in a manner
which is compatible with the geometric structure of the underlaying space X. To
see that conditions (A1)-(A5), taken together, are non-contradictory one can verify
that the operators defined in [8, Section 2.7] satisfy all these requirements.

The stability and convergence results (Theorems 2.1 and 4.1) proved in this pa-
per were made possible by several newly established properties of the strongly h-
hypomonotone operators (see Lemmas 2.1, 2.2 and 2.3) and by the improved ”prox-
imity theorem” (see Theorem 3.1) which may be of interest by themselves. In the
context, the concept of epi-quasi-inverse of a real function, introduced and studied
by Penot and Volle [40], proved to be very useful.

It was noted above that the main novelty in Theorems 2.1 and 4.1 is relax-
ing the assumption, made in all previous works we are aware of concerning the
Tikhonov-Browder regularization method and the algorithmic scheme (79), that
the approximative operators Ak should be monotone. Relaxing that assumption
as a precondition for the implementation of the regularization method and of the
algorithm discussed here is significant because, even if the data of a variational
inequality are given by precise closed formulae, in practical computations of solu-
tions random perturbations of data are inherent. The fact is that, in computations,
we work with approximations of the data which change from an iteration to the
other. Due to the random character of the data perturbations, there is no guaran-
tee that the perturbed operators Ak involved in the computational process preserve
the monotonicity of A. Theorem 4.1 is a certificate of robustness of the algorithm
(79) under data perturbations and, specially, under alteration of the monotonicity
of the operators. In informal terms, Theorem 4.1 essentially says that, in spite of
the data perturbations which may alter monotonicity, the algorithm still produces
strong approximations of solutions of the variational inequality, provided that the
perturbations are kept between some boundaries (see condition (A3)) and that the
variation of the ’noise’ Nk = A − Ak between close points is relatively small (see
(A2)), that is,

〈Nkx−Nky, x− y〉 ≤ hk (‖x‖ − ‖y‖)2 .
Classes of differential equations and optimization problems which can be equiva-
lently written in the form of the variational inequality (1) and, then, can be solved
by the algorithm we discuss here because their data, given by approximations, inher-
ently satisfy the requirements of our results, are presented in a forthcoming report
by Y. Alber and I. Ryazantseva.

2. Operator Regularization of Variational Inequalities

Let X be a reflexive, smooth, strictly convex Banach space and let A : X → 2X∗

be a monotone operator which is demiclosed and convex valued on the interior of
its domain. Suppose that Ω be a nonempty, closed, convex subset of Int (DomA)
and let ψ ∈ X∗. In this section we prove that, in these circumstances, the Tichonov-
Browder regularization method is stable, that is, the following result holds:
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Theorem 2.1. Consider the variational inequality (1) whose data A, ψ and Ω are
given by sequences of approximations {Ak}k∈N ,

{
ψk
}

k∈N and {Ωk}k∈N , respectively.
(i) If conditions (A1) and (A2) are satisfied, and if hk < αk for all k ∈ N, then,

for each k ∈ N, the variational inequality (4) has a unique solution xk.
(ii) If conditions (A1)-(A3) are satisfied, then the variational inequality (1) has

solutions if and only if the sequence
{
xk
}

k∈N is bounded. In this case, the sequence{
xk
}

k∈N converges weakly to the minimal norm solution of (1). If, in addition
to the previous requirements, the space X has the Kadeč-Klee property, then the
sequence

{
xk
}

k∈N converges strongly.

The proof of this result consists of a sequence of lemmas presented below. We
start our proof by establishing the following technical result:

Lemma 2.1. If the operator B : X → 2X∗
is strongly h-hypomonotone on the

nonempty subset Λ of DomB and if α ∈ (h,∞), then the operator B+αJ is strictly
monotone on Λ. In these circumstances, the operator B + αJ is also coercive on Λ
in the sense that, if z ∈ Λ, then

lim
k→∞

〈
ζk + αJyk, yk − z

〉
‖yk‖

= ∞,

for any sequence
{
(yk, ζk)

}
k∈N with yk ∈ Λ, ζk ∈ Byk for all k ∈ N and such that∥∥yk

∥∥→∞.

Proof. If x, y ∈ Λ, then

〈(B + αJ)x− (B + αJ) y, x− y〉(11)

= 〈Bx−By, x− y〉+ α 〈Jx− Jy, x− y〉

≥ −h (‖x‖ − ‖y‖)2 + α 〈Jx− Jy, x− y〉

≥ −h (‖x‖ − ‖y‖)2 + α (‖x‖ − ‖y‖)2 .

Suppose that x 6= y. If ‖x‖ = ‖y‖ , then the first inequality in (11) implies that

〈(B + αJ)x− (B + αJ) y, x− y〉 ≥ α 〈Jx− Jy, x− y〉 > 0,

where the strict inequality results from the strict monotonicity of J. If ‖x‖ 6= ‖y‖ ,
then the last inequality in (11) implies that

(12) 〈(B + αJ)x− (B + αJ) y, x− y〉 ≥ (α− h) (‖x‖ − ‖y‖)2 > 0

because α > h. Hence, B + αJ is strictly monotone.
In order to prove that B + αJ is coercive, fix z ∈ Λ and ξ ∈ Bz. Suppose that

y ∈ Λ and ζ ∈ By. Then we have that

〈ζ + αJy, y − z〉 = 〈ζ + αJy − ξ − αJz, y − z〉
+ 〈ξ + αJz, y − z〉

≥ (h− α) (‖y‖ − ‖z‖)2

− ‖ξ + αJz‖∗ ‖y − z‖ ,
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where the inequality is results from (12). This implies that, whenever yk 6= 0 and
ζk ∈ Byk, we have〈

ζk + αJyk, yk − z
〉

‖yk‖
≥ (h− α)

∥∥∥yk
∥∥∥(1− ‖z‖

‖yk‖

)2

− ‖ξ + αJz‖∗
(

1 +
‖z‖
‖yk‖

)
.

Letting k →∞ in this inequality, the coercivity condition results. �

The following lemma shows that maximal monotone extensions of a demiclosed,
convex valued, monotone operator B may differ at points of the boundary of DomB
only. This does not mean that such an operator B is necessarily maximal monotone.
For instance, the operator B : R →2R given by B(x) = −1 if −1 ≤ x < 0, B(0) =
[−1, 1], B(x) = 1 if 0 < x ≤ 1, and B(x) = ∅ if |x| > 1 is monotone, demiclosed
and convex valued on its domain DomB = [−1, 1]. However, B is not maximal
monotone since the operator B̄ : R →2R defined by B̄(x) = B(x) if |x| 6= 1 and
B̄(−1) = (−∞,−1], B̄(1) = [1,+∞) is a maximal monotone extension of B.

Lemma 2.2. Let B : X → 2X∗
be a monotone demiclosed operator. If x ∈

Int (DomB) and if Bx is convex, then for any maximal monotone extension B̄
of B we have B̄x = Bx.

Proof. The operator B is monotone and, therefore, it is locally bounded at x. Con-
sequently, if

{
xk
}

k∈N is a sequence in X such that limk→∞ xk = x, and if
{
ζk
}

k∈N
is a sequence such that ζk ∈ Bxk for all k ∈ N, then

{
ζk
}

k∈N is bounded. Since
X∗ is reflexive, it results that

{
ζk
}

k∈N has weak accumulation points. From the
demiclosedness of B it follows that any such weak accumulation point belongs to
Bx. Denote by Rx the closed convex hull of the set of weak accumulation points
of all sequences

{
ζk
}

k∈N as described above. The set Bx is convex. Due to the
demiclosedness of B, the set Bx is weakly closed and, therefore, closed. Hence,
we have that Rx ⊆ Bx. Let B̄ be a maximal monotone extension of B. Obviously,
Rx ⊆ Bx ⊆ B̄x. We claim that the inclusion Rx ⊇ B̄x holds too. Suppose by
contradiction that this is not the case. Then, there exists η ∈ B̄x such that η /∈ Rx.
According to the strong separation theorem (see, for instance, [27, p. 64]), there
exists a vector u ∈ X such that

(13) 〈ζ − η, u〉 < 0, ∀ζ ∈ Rx.
Let {tk}k∈N be a sequence of positive real numbers converging to zero such that,
for any k ∈ N, we have that zk := x + tku ∈ DomB. For each k ∈ N let ηk be an
arbitrary element of Bzk. The sequence

{
ηk
}

k∈N is bounded because limk→∞ zk = x

and B is locally bounded at x. Thus, there exists a subsequence
{
ηik
}

k∈N of
{
ηk
}

k∈N
which converges weakly to some η̄ in X∗. Clearly, η̄ ∈ Rx. By the monotonicity of
B̄ we have 〈

ηik − η, zik − x
〉
≥ 0, ∀k ∈ N.

Hence, 〈
ηik − η, u

〉
≥ 0, ∀k ∈ N.

Letting here k →∞ we obtain that 〈η̄ − η, u〉 ≥ 0 and this contradicts (13). �
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Observe that, under the assumptions of Theorem 2.1(i), the operators Ak are
demiclosed, strongly hk-hypomonotone and convex valued on the closed, convex,
nonempty subset Ωk of Int (DomAk) . Therefore, application of the following lemma
completes the proof of Theorem 2.1(i).

Lemma 2.3. Suppose that the operator B : X → 2X∗
is demiclosed, convex valued

and strongly h-hypomonotone on the nonempty, closed, convex set Λ contained in
Int (DomB) and that α ∈ (h,∞). Then the variational inequality

(14) 〈(B + αJ)x− ψ, y − x〉 ≥ 0, ∀y ∈ Λ,

has a unique solution.

Proof. According to Lemma 2.1, the operator B + αJ is strictly monotone on Λ.
The following standard argument shows that, since B+αJ is strictly monotone on
Λ, the variational inequality (14) can not have more than one solution. Suppose by
contradiction that x, x′ ∈ Λ are different solutions of (14). Then, for some υ ∈ Bx′,
we have 〈

υ + αJx′ − ψ, y − x′
〉
≥ 0, ∀y ∈ Λ.

In particular, we have 〈
υ + αJx′ − ψ, x− x′

〉
≥ 0.

Similarly, for some ξ ∈ Bx we have〈
ξ + αJx− ψ, x′ − x

〉
≥ 0.

Summing up the two inequalities we deduce that〈
(ξ + αJx)−

(
υ + αJx′

)
, x′ − x

〉
≥ 0.

Since the operator B + αJ is monotone, this implies〈
(ξ + αJx)−

(
υ + αJx′

)
, x− x′

〉
= 0.

The operator B+αJ is strictly monotone and, consequently, the last equality cannot
hold unless x = x′, hence, a contradiction.

We are going to prove now that the variational inequality (14) has at least one
solution. To this end, observe that the solution set of (14) and the solution set of
the inclusion

(15) ψ ∈ (B + αJ +NΛ)x,

where NΛ stands for the normal cone operator of the set Λ, coincide. The operator
B + αJ is demiclosed on Λ ⊆ Int (DomB) = Int (DomB + αJ) . Clearly, B + αJ is
also convex valued on Λ because B is so. Let B̄ be a maximal monotone extension of
B. Then B̄+αJ is a maximal monotone extension of B+αJ. According to Lemma
2.2, we have that (B + αJ)x =

(
B̄ + αJ

)
x for all x ∈ Λ. Hence, the inclusion (15)

is equivalent to the inclusion

(16) ψ ∈
(
B̄ + αJ +NΛ

)
x

where the operator B̄ + αJ + NΛ is maximal monotone. As shown above, the
operator B + αJ is coercive on Λ. This implies that B̄ + αJ +NΛ is coercive too.
Hence, Corollary 32.27 in [56] applies to the inclusion (16) and it shows that this
inclusion has solution. Clearly, that implies that the equivalent inclusion (15) has
solution and, consequently, the variational inequality (14) has solution too. �
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From now and until the end of this section, we assume that the variational in-
equality (1) has solutions and that conditions (A1)-(A3) are satisfied. By the
already proved Theorem 2.1(i), under these conditions, the variational inequality
(4) has a unique solution xk. The following lemma is a first step in the proof of
Theorem 2.1(ii).

Lemma 2.4. If the variational inequality (1) has at least one solution, then the
sequence

{
xk
}

k∈N is bounded.

Proof. Since xk is a solution of (4), there exists a vector ξk ∈ Akx
k such that

(17)
〈
ξk + αkJx

k − ψk, x− xk
〉
≥ 0, ∀x ∈ Ωk.

Let x∗ be a solution of (1) and let ξ∗ ∈ Ax∗ be such that (2) is satisfied. According
to condition (A3) there exists vk ∈ Ωk and ζk ∈ Akv

k such that

(18)
∥∥∥x∗ − vk

∥∥∥ ≤ a(x∗)ωk,

and

(19)
∥∥∥ξ∗ − ζk

∥∥∥
∗
≤ τkc(ξ∗).

Also, for some wk ∈ Ω, we have that

(20)
∥∥∥xk − wk

∥∥∥ ≤ b(xk)ωk.

Taking x = vk in (17) and y = wk in (2) and adding the resulting inequalities we
obtain 〈

ξ∗ − ψ,wk − x∗
〉

+
〈
ξk + αkJx

k − ψk, vk − xk
〉
≥ 0.

This implies that

0 ≤ αk

〈
Jxk, vk − xk

〉
−
〈
ξk − ζk, xk − vk

〉
+
〈
ζk − ξ∗, vk − xk

〉
+
〈
ξ∗ − ψ, vk − xk + wk − x∗

〉
+
〈
ψ − ψk, vk − xk

〉
.

Note that 〈
Jxk, xk − vk

〉
=
〈
Jxk, xk − x∗

〉
+
〈
Jxk, x∗ − vk

〉
≥
∥∥∥xk

∥∥∥2
−
∥∥∥xk

∥∥∥ ‖x∗‖ − ∥∥∥xk
∥∥∥∥∥∥x∗ − vk

∥∥∥
≥
∥∥∥xk

∥∥∥2
−
∥∥∥xk

∥∥∥ (‖x∗‖+ a(x∗)ωk) ,

where the last inequality follows from (18). From the strong hk-hypomonotonicity
of Ak combined with the fact that ξk ∈ Akx

k and ζk ∈ Akv
k we deduce that

−
〈
ξk − ζk, xk − vk

〉
≤ hk

∥∥∥xk − vk
∥∥∥2
.

The last three relations combined give

αk

[∥∥∥xk
∥∥∥2
−
∥∥∥xk

∥∥∥ (‖x∗‖+ a(x∗)ωk)
]
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≤ hk

∥∥∥xk − vk
∥∥∥2

+
〈
ζk − ξ∗, vk − xk

〉
+
〈
ξ∗ − ψ, vk − xk + wk − x∗

〉
+
〈
ψ − ψk, vk − xk

〉
By (19) and (20) we deduce that

(21) αk

[∥∥∥xk
∥∥∥2
−
∥∥∥xk

∥∥∥ (‖x∗‖+ a(x∗)ωk)
]

≤ hk

∥∥∥xk − vk
∥∥∥2

+ τkc(ξ∗)
(∥∥∥vk − x∗

∥∥∥+
∥∥∥x∗ − xk

∥∥∥)
+
〈
ξ∗ − ψ, vk − xk + wk − x∗

〉
+
〈
ψ − ψk, vk − xk

〉
≤ hk

∥∥∥xk − vk
∥∥∥2

+ τkc(ξ∗)
(
a(x∗)ωk + ‖x∗‖+

∥∥∥xk
∥∥∥)

+ ‖ξ∗ − ψ‖∗
(∥∥∥vk − x∗

∥∥∥+
∥∥∥wk − xk

∥∥∥)+
∥∥∥ψ − ψk

∥∥∥
∗

∥∥∥vk − xk
∥∥∥

≤ hk

∥∥∥xk − vk
∥∥∥2

+ τkc(ξ∗)
(
a(x∗)ωk + ‖x∗‖+

∥∥∥xk
∥∥∥)

+ ‖ξ∗ − ψ‖∗
(
a(x∗) + b(xk)

)
ωk + δk

(
a(x∗)ωk + ‖x∗‖+

∥∥∥xk
∥∥∥) .

Suppose, by contradiction, that the sequence
{
xk
}

k∈N is unbounded. Then, for
some unbounded subsequence of

{
xk
}

k∈N , still denoted
{
xk
}

k∈N , and for k ∈ N
sufficiently large, we deduce from (21) that

1− ‖x∗‖+ a(x∗)ωk

‖xk‖
≤ hk

αk

(
1 +

∥∥vk
∥∥2

‖xk‖2 + 2

∥∥vk
∥∥

‖xk‖

)
(22)

+
τk
αk

c(ξ∗)

‖xk‖2

(
a(x∗)ωk + ‖x∗‖+

∥∥∥xk
∥∥∥)

+ ‖ξ∗ − ψ‖∗

(
a(x∗)

‖xk‖2 +
b(xk)

‖xk‖2

)
ωk

αk

+
δk
αk

(
a(x∗)

‖xk‖2ωk +
‖x∗‖
‖xk‖2 +

∥∥∥xk
∥∥∥−1

)
.

Taking lim sup on both sides of (22), observing that the sequence
{
vk
}

k∈N is
bounded and using (7), we obtain a contradiction. �

Lemma 2.4 shows that, if the variational inequality (1) has a solution, then
the sequence

{
xk
}

k∈N is bounded. Since the space X is reflexive, if the sequence{
xk
}

k∈N is bounded, then it has weakly convergent subsequences. Therefore, the
following lemma shows that the variational inequality (1) has solutions if and only
if the sequence

{
xk
}

k∈N is bounded.

Lemma 2.5. If the sequence
{
xk
}

k∈N is bounded, then any weak accumulation point
of the sequence

{
xk
}

k∈N is a solution of (1).
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Proof. Let
{
xik
}

k∈N be a weakly convergent subsequence of the sequence
{
xk
}

k∈N
and let x̄ be the weak limit of this subsequence. According to (20), for each k ∈ N,
there exists wik ∈ Ω such that

∥∥xik − wik
∥∥ ≤ b(xik)ωik , where b is bounded on

bounded sets and the sequence {ωik}k∈N converges to zero (cf. (6)). Hence, the
sequences

{
xik
}

k∈N and
{
wik
}

k∈N have the same weak limit x̄. Since
{
wik
}

k∈N is
a sequence in Ω and Ω is weakly closed as being closed and convex, it follows that
x̄ ∈ Ω. Taking into account that Ωk ⊆ Int (DomAk) one can apply the version of
Minty’s lemma presented in [9, Lemma 2.3] and deduce that for any k ∈ N, for any
y ∈ Ωk and for any ϕk ∈ Aky we have

(23)
〈
ϕk + αkJy − ψk, y − xk

〉
≥ 0.

Let z be an arbitrary vector in Ω and let ζ ∈ Az. By assumption (A3-2), there exists
a sequence

{
zk
}

k∈N in X and a sequence
{
ζk
}

k∈N in X∗ such that limk→∞ zk = z,

limk→∞ ζk = ζ, zk ∈ Ωk and ζk ∈ Akz
k for all k ∈ N. According to (23), we have〈

ζk + αkJz
k − ψk, zk − xk

〉
≥ 0,

for all k ∈ N. Replacing k by ik in this inequality and letting k →∞ we obtain

〈ζ − ψ, z − x̄〉 ≥ 0.

Since the last inequality holds for any z ∈ Ω and ζ ∈ Az, application of the Minty
type lemma from [9, Lemma 2.3] implies that x̄ is a solution of (1). �

Suppose from now on that the variational inequality (1) has at least one solution
and, hence, that the sequence

{
xk
}

k∈N is bounded. Note that the Minty type lemma
quoted above also implies that the solutions set S(A,ψ,Ω) is convex and closed.
Since S(A,ψ,Ω) is nonempty, it follows that S(A,ψ,Ω) has a unique minimal norm
element.

Lemma 2.6. The sequence
{
xk
}

k∈N converges weakly to the minimal norm element
of S(A,ψ,Ω). If the space has the Kadeč-Klee property, then

{
xk
}

k∈N converges
strongly.

Proof. By Lemma 2.3, since S(A,ψ,Ω) is nonempty, the sequence
{
xk
}

k∈N is
bounded. We show that the unique weak accumulation point of

{
xk
}

k∈N is ex-
actly the minimal norm element of the set S(A,ψ,Ω). Let

{
xik
}

k∈N be a weakly
convergent subsequence of the sequence

{
xk
}

k∈N and let x̄ be its weak limit. By
Lemma 2.5, x̄ ∈ S(A,ψ,Ω). Clearly, if x̄ = 0, then x̄ is the minimal norm solu-
tion of (1). Suppose that x̄ 6= 0. Then, by taking a subsequence if necessary, we
may assume without loss of generality that xik 6= 0 for all k ∈ N. Now, replace
k by ik in (21), divide by

∥∥xik
∥∥αik the resulting inequality and take lim sup on

both sides. In this way one obtains that, for any x∗ ∈ S(A,ψ,Ω), we have that
lim supk→∞

∥∥xik
∥∥ ≤ ‖x∗‖ and, consequently,

(24) ‖x̄‖ ≤ lim inf
k→∞

∥∥xik
∥∥ ≤ lim sup

k→∞

∥∥xik
∥∥ ≤ ‖x∗‖ .

Hence, x̄ is the minimal norm element of S(A,ψ,Ω) in this case too.
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Suppose now that the space X has the Kadeč-Klee property. In this situation,
for proving that the sequence

{
xk
}

k∈N converges strongly, it is sufficient to show
that the sequence

{∥∥xk
∥∥}

k∈N converges to ‖x̄‖ . We distinguish again two situations.
Suppose that x̄ = 0, but lim supk→∞

∥∥xk
∥∥ = q > 0. Then there exists a subsequence{

xik
}

k∈N of the sequence
{
xk
}

k∈N consisting of non-null vectors and such that
limk→∞

∥∥xik
∥∥ = q. For this subsequence formula (24) still holds and it also holds

true when x∗ = x̄ because the vector x∗ involved there is an arbitrary element of
S(A,ψ,Ω). Hence, we get

0 < q = lim
k→∞

∥∥xik
∥∥ ≤ ‖x̄‖ = 0,

that is, a contradiction. Consequently, lim supk→∞
∥∥xk

∥∥ = 0 and this implies
limk→∞

∥∥xk
∥∥ = 0 = ‖x̄‖ . If x̄ 6= 0, then all but possibly finitely many terms of

the sequence
{
xk
}

k∈N are not zero. Hence, there exists a positive integer k0 such
that, for any k ≥ k0, one can divide (21) by

∥∥xk
∥∥αk. Taking lim sup as k →∞ on

both sides of the resulting inequality one deduces

‖x̄‖ ≤ lim inf
k→∞

∥∥∥xk
∥∥∥ ≤ lim sup

k→∞

∥∥∥xk
∥∥∥ ≤ ‖x∗‖ ,

for any x∗ ∈ S(A,ψ,Ω). Writing the previous inequality for x∗ = x̄ we deduce that
limk→∞

∥∥xk
∥∥ = ‖x̄‖ in this case too. �

3. A Proximity Theorem

In this section we prove a preliminary result which is needed in the build up
of the algorithm for solving variational inequalities we are going to present in the
next section. This result is a development of a series of previous similar theorems
known as “proximity lemmas”. Our proximity theorem is a generalization and
improvement of the proximity lemmas due to Alber, Kartsatos and Litsyn [10] and
to Alber and Nashed [11]. It improves upon these results in the sense that our
proximity theorem applies to operators which are not necessarily monotone. Also,
by contrast with the proximity lemmas mentioned above, which are proved under
restrictive conditions on the moduli of convexity and smoothness of the underlying
space X, our proximity theorem only requires that the space X is uniformly convex,
that is, the modulus of convexity of X, δX : R → [0,+∞] given by1

δX(t) := inf
{
1− 1

2 ‖x+ y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ t
}
,

is positive for any t > 0. In that follows we assume that the space X is uniformly
convex.

Let ḡX : R → [0,+∞] be the function defined by

(25) ḡX(t) :=
{

δX(t)
t if t 6= 0,
0 if t = 0.

This function is nondecreasing (cf. [26, Proposition 3]), vanishes when t ≤ 0 and is
positive whenever t > 0 because X is uniformly convex. From now on, we assume

1We make here the ususal assumtion that inf ∅ = +∞ and sup∅ = −∞.
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that gX : R → [0,+∞] is a nondecreasing function which vanishes on (−∞, 0] and
such that

(26) 0 < gX(t) ≤ ḡX(t), ∀t > 0.

Clearly, one can choose gX = ḡX . The relevance of choosing a function gX other than
ḡX is related with the possibility of using lower evaluations of δX instead of δX itself
which may be hard to precisely compute. This aspect will became clear in the next
section. To the function gX we associate its epi-quasi-inverse g]

X : R → [−∞,+∞]
given by (cf. [40, p. 126])

(27) g]
X(s) = sup {t ∈ R : gX(t) < s} .

Clearly, the function g]
X is nondecreasing too. If the restriction of gX to [0, 2] is

invertible, then g]
X(s) = g−1

X (s) for any s ∈ gX([0, 2]) (cf. [40]).
In order to state our proximity theorem, let Ti : X → 2X∗

be an operator, let
ϕi ∈ X∗ and let Λi be a nonempty subset of DomTi, where i ∈ {1, 2}. Suppose
that, for some positive real numbers α and β, the variational inequalities

(28)
〈
(T1 + αJ)x− ϕ1, y − x

〉
≥ 0, ∀y ∈ Λ1

and

(29)
〈
(T2 + βJ)x− ϕ2, y − x

〉
≥ 0, ∀y ∈ Λ2,

have solutions xα and xβ, respectively. Then there exist ξα ∈ T1x
α and ξβ ∈ T2x

β

such that

(30)
〈
ξα + αJxα − ϕ1, y − xα

〉
≥ 0, ∀y ∈ Λ1

and

(31)
〈
ξβ + βJxβ − ϕ2, y − xβ

〉
≥ 0, ∀y ∈ Λ2.

With these notations we state the following result which gives an evaluation of
the distance between xα and xβ. In the statement we use a constant L which occurs
in Figiel’s paper [26, Proposition 10]. It is a lower bound for the speed of variation
of the function ρX(t)/t2, where ρX(t) is the modulus of smoothness of the space X.
It follows from [52] and [5] that L ∈ (1, 1.7).

Theorem 3.1 (The Proximity Theorem). Suppose that the space X is uniformly
convex and the operator T2 is strongly h-hypomonotone. Let ā, b̄, c̄, δ, τ and ω be
nonnegative real numbers such that

(32)
∥∥ϕ1 − ϕ2

∥∥
∗ ≤ δ

and the following conditions hold:
(i) There exists x̄α ∈ Λ2 such that

(33) ‖xα − x̄α‖ ≤ āω and dist∗(ξα, T2x̄
α) ≤ c̄τ ;

(ii) There exists x̄β ∈ Λ1 is such that

(34)
∥∥∥xβ − x̄β

∥∥∥ ≤ b̄ω.
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If

(35) M ≥ max
{
‖xα‖ ,

∥∥∥xβ
∥∥∥} and M1 ≥ max

{
‖ξα‖∗ ,

∥∥∥ξβ
∥∥∥
∗

}
,

then

(36)
∥∥∥xα − xβ

∥∥∥ ≤ K0g
]
X

(
K1

|α− β|
α

+K2
τ + δ

α
+K3

√
ω + h

α

)
,

where

(37) K0 = 2max {1,M} , K1 = 2LMK0, K2 = 2LK0 max{c̄, 1},
and

(38) K3 = max {1, 4L(K4 +K5)} ,
with

K4 = (M1 +
∥∥ϕ1

∥∥
∗ + αM)b̄+ (3M1 +

∥∥ϕ2
∥∥
∗ + τ c̄+ βM)ā,(39)

K5 = (ωā+ 2M)2 ,(40)

and L is the Figiel constant.

Proof. The inequality (36) clearly holds when xα = xβ. In that follows we assume
that xα 6= xβ. Condition (i) implies that there exists ξ̄α ∈ T2x̄

α such that

(41)
∥∥ξα − ξ̄α

∥∥
∗ ≤ τ c̄.

Denote
D =

〈
ξα + αJxα − ϕ1 − ξβ − βJxβ + ϕ2, xα − xβ

〉
.

Then

D = α
〈
Jxα − Jxβ, xα − xβ

〉
+ (α− β)

〈
Jxβ, xα − xβ

〉
(42)

+
〈
ξα − ξ̄α, xα − xβ

〉
+
〈
ξ̄α − ξβ, xα − x̄α

〉
+
〈
ξ̄α − ξβ, x̄α − xβ

〉
−
〈
ϕ1 − ϕ2, xα − xβ

〉
.

The strong h-hypomonotonicity of T2 implies that

(43)
〈
ξ̄α − ξβ, x̄α − xβ

〉
≥ −h

(
‖x̄α‖ −

∥∥∥xβ
∥∥∥)2

.

According to [13, Lemma 2.1] we have that

(44)
〈
Jxα − Jxβ, xα − xβ

〉
≥ (2L)−1δX

(∥∥xα − xβ
∥∥

C

)
,

where L > 0 is the Figiel constant and

C := 2 max
{

1, ‖xα‖ ,
∥∥∥xβ

∥∥∥} .
Combining (41), (42), (43) and (44) and taking into account (32) and (33), we
obtain that

D ≥ α(2L)−1δX

(∥∥xα − xβ
∥∥

C

)
(45)
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− |α− β|
∥∥∥xβ

∥∥∥∥∥∥xα − xβ
∥∥∥− τ c̄

∥∥∥xα − xβ
∥∥∥

− δ
∥∥∥xα − xβ

∥∥∥− ωā
∥∥∥ξ̄α − ξβ

∥∥∥
∗
− h

(
‖x̄α‖ −

∥∥∥xβ
∥∥∥)2

≥ α(2L)−1δX

(∥∥xα − xβ
∥∥

C

)
− |α− β|

∥∥∥xβ
∥∥∥∥∥∥xα − xβ

∥∥∥− τ c̄
∥∥∥xα − xβ

∥∥∥
− δ

∥∥∥xα − xβ
∥∥∥− ωā

∥∥∥ξ̄α − ξβ
∥∥∥
∗
− h

∥∥∥x̄α − xβ
∥∥∥2
.

Note that, by (41) and (35), we have∥∥∥ξ̄α − ξβ
∥∥∥
∗
≤
∥∥ξ̄α − ξα

∥∥
∗ +

∥∥∥ξα − ξβ
∥∥∥
∗

≤
∥∥ξ̄α − ξα

∥∥
∗ + ‖ξα‖∗ +

∥∥∥ξβ
∥∥∥
∗
≤ τ c̄+ 2M1.

Similarly, by (33) and (35), we obtain that

‖x̄α‖∗ ≤ ‖x̄α − xα‖+ ‖xα‖ ≤ ωā+M.

Therefore, inequality (45) leads to

D ≥ α(2L)−1δX

(∥∥xα − xβ
∥∥

C

)
− ωā(2M1 + τ c̄)(46)

− (M |α− β|+ τ c̄+ δ)
∥∥∥xα − xβ

∥∥∥− hK5,

where K5 is given by (40). Observe that, according to (30), we have that〈
ξα + αJxα − ϕ1, xα − xβ

〉
=
〈
ξα + αJxα − ϕ1, xα − x̄β

〉
(47)

+
〈
ξα + αJxα − ϕ1, x̄β − xβ

〉
≤
〈
ξα + αJxα − ϕ1, x̄β − xβ

〉
.

Thus, by taking into account (47), (35) and (34), we obtain〈
ξα + αJxα − ϕ1, xα − xβ

〉
≤
(∥∥ξα − ϕ1

∥∥
∗ + α ‖xα‖

) ∥∥∥x̄β − xβ
∥∥∥(48)

≤
(
M1 +

∥∥ϕ1
∥∥
∗ + αM

)
ωb̄.

Analogously, using (31), we deduce that

(49)
〈
ξβ + βJxβ − ϕ2, xβ − xα

〉
≤
(
M1 +

∥∥ϕ2
∥∥
∗ + βM

)
ωā.

From (42), (48) and (49) taken together, we obtain that

(50) D ≤ ω
[(
M1 +

∥∥ϕ1
∥∥
∗ + αM

)
b̄+

(
M1 +

∥∥ϕ2
∥∥
∗ + βM

)
ā
]
.

Denote by K6 be the quantity occurring in (50) between square brackets. By (39)
we have

K4 = K6 + (2M1 + τ c̄) ā.
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Then, according to (46) and (50), we obtain that

ωK4 +K5h+ (M |α− β|+ τ c̄+ δ)
∥∥∥xα − xβ

∥∥∥(51)

≥ α(2L)−1δX

(∥∥xα − xβ
∥∥

K0

)
,

where K0 is given by (37). Dividing this inequality by
∥∥xα − xβ

∥∥ > 0 we deduce
that

ωK4 +K5h

‖xα − xβ‖
+M |α− β|+ τ c̄+ δ(52)

≥ α(2LK0)−1δX

(∥∥xα − xβ
∥∥

K0

)
K0

‖xα − xβ‖

= α(2LK0)−1ḡX

(∥∥xα − xβ
∥∥

K0

)

> α(4LK0)−1ḡX

(∥∥xα − xβ
∥∥

K0

)

≥ α(4LK0)−1gX

(∥∥xα − xβ
∥∥

K0

)
,

where ḡX is the function defined by (25) and gX is the nondecreasing function
satisfying (26). Note that, according to (27), if u, v ∈ R, then

(53) u > gX(v) ⇒ g]
X(u) ≥ v.

Thus, using (52), we obtain that

(54)
∥∥∥xα − xβ

∥∥∥ ≤ K0g
]
X

(
4LK0

α

ωK4 +K5h

‖xα − xβ‖
+K1

|α− β|
α

+K2
τ + δ

α

)
,

where K1 and K2 are given by (37). Now we distinguish the following complemen-
tary situations.

Case 1: Suppose that∥∥xα − xβ
∥∥

K0
≤ g]

X

(√
ω + h

α
+K1

|α− β|
α

+K2
τ + δ

α

)
.

In this case, we have that

g]
X

(√
ω + h

α
+K1

|α− β|
α

+K2
τ + δ

α

)

≤ g]
X

(
K3

√
ω + h

α
+K1

|α− β|
α

+K2
τ + δ

α

)
because g]

X is nondecreasing and K3 ≥ 1 (see (38)). Thus, combining the last two
inequalities, we deduce (36).
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Case 2: Suppose that

(55)

∥∥xα − xβ
∥∥

K0
> g]

X

(√
ω + h

α
+K1

|α− β|
α

+K2
τ + δ

α

)
.

Recall (see, for instance, [28, Theorem 2.7.8]) that, since X is a uniformly convex
Banach space, for any Hilbert space H we have that

δX(t) ≤ δH(t) ≤ t2

4
, ∀t ∈ [0, 2].

Consequently,

1
4

(∥∥xα − xβ
∥∥

K0

)2

≥ δX

(∥∥xα − xβ
∥∥

K0

)
,

because K0 ≥ 2M ≥
∥∥xα − xβ

∥∥ as follows from (35) and (37). This implies that

(56)
1
4

∥∥xα − xβ
∥∥

K0
≥ ḡX

(∥∥xα − xβ
∥∥

K0

)
≥ gX

(∥∥xα − xβ
∥∥

K0

)
.

Observe that, by (27), if u, v ∈ R, then

(57) u > g]
X(v) ⇒ gX(u) ≥ v.

From (55) and (57) we deduce that

gX

(∥∥xα − xβ
∥∥

K0

)
≥
√
ω + h

α
+K1

|α− β|
α

+K2
τ + δ

α
>

√
ω + h

α
.

This and (56) combined imply

(58)

∥∥xα − xβ
∥∥

K0
> 4

√
ω + h

α
.

Taking into account (38), (58), the fact that g]
X is nondecreasing and the inequality

(54), we deduce that

K0g
]
X

K3
ω + h

α

(
4

√
ω + h

α

)−1

+K1
|α− β|
α

+K2
τ + δ

α


≥ K0g

]
X

[
4L (K4 +K5)

ω + h

α

K0

‖xα − xβ‖
+K1

|α− β|
α

+K2
τ + δ

α

]
≥ K0g

]
X

[
4L
K4ω +K5h

α

K0

‖xα − xβ‖
+K1

|α− β|
α

+K2
τ + δ

α

]
≥
∥∥∥xα − xβ

∥∥∥
and this implies (36). �
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4. An Iterative Algorithm for Solving Variational Inequalities

In this section we present an iterative algorithm for approximating solutions of
the variational inequality (1), presuming that such a solution exists. All over this
section we assume that the space X is smooth and uniformly convex and that the
assumptions (A1)-(A3), as well as the following assumption, are satisfied:

(A4) There exists a continuous nondecreasing function Φ : [0,∞) → R such that,
for any k ∈ N, we have that

(59) x ∈ Ωk and ζ ∈ Akx⇒ ‖ζ‖∗ ≤ Φ(‖x‖).

In order to describe our algorithm in a consistent manner, we need some notations
and preparations. Note that, since the space X is uniformly convex, it is also
strictly convex and has the Kadeč-Klee property. This guarantees applicability of
Theorem 2.1(ii) in this space. Since the variational inequality (1) is presumed to
have solutions, Theorem 2.1 guarantees that the sequence

{
xk
}

k∈N of solutions of
the variational inequalities (4) exists and converges strongly to the minimal norm
solution of (1). Second, recall that each operator Ak is strongly hk-hypomonotone
(by condition (A2)). Consider the variational inequalities

(60) 〈(A+ αkJ)x− ψ, y − x〉 ≥ 0, ∀y ∈ Ω.

According to Lemma 2.3 (which is applicable to (60) because A is monotone and,
therefore, strongly 0-hypomonotone), the variational inequality (60) has a unique
solution which we denote by uk in what follows. Applying Theorem 2.1(ii) to the
particular situation when Ak = A, Ωk = Ω and ψk = ψ for all k ∈ N, we deduce
that the sequence

{
uk
}

k∈N converges to the same solution as
{
xk
}

k∈N , that is, to
the minimal norm solution x̄ of (1). Since both sequences

{
xk
}

k∈N and
{
uk
}

k∈N
are bounded (as being convergent), there exists a positive real number M such that

(61) M ≥ max
{∥∥∥uk

∥∥∥ ,∥∥∥xk
∥∥∥} , ∀k ∈ N.

For each k ∈ N, let ξk ∈ Akx
k be such that (17) holds. According to (A4), we

have that
∥∥ξk
∥∥
∗ ≤ Φ(

∥∥xk
∥∥), for all k ∈ N. Since Φ is bounded on bounded sets, it

results that the sequence
{
ξk
}

k∈N is bounded. Let ζk ∈ Auk be such that

(62)
〈
ζk + αkJu

k − ψ, y − uk
〉
≥ 0, ∀y ∈ Ω.

Since
{
uk
}

k∈N is a sequence in Int (DomA) which converges to x̄ ∈ Ω ⊆ Int (DomA)
and A is locally bounded at x̄ (as being monotone), it results that

{
ζk
}

k∈N is
bounded too. Consequently, there exists a positive real number M1 such that

(63) M1 ≥ max
{∥∥∥ζk

∥∥∥
∗
,
∥∥∥ξk
∥∥∥
∗

}
, ∀k ∈ N.

Finally, observe that, according to (A3-1), the sequence
{
ψk
}

k∈N is convergent.
Therefore, there exists a positive number M2 such that

(64) M2 ≥
∥∥∥ψk

∥∥∥
∗
, ∀k ∈ N.
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The functions a, b and c being those involved in condition (A3), we denote

ā := sup {a(x) : ‖x‖ ≤M} ,(65)

b̄ := sup {b(x) : ‖x‖ ≤M} ,(66)

c̄ := sup {c(ζ) : ‖ζ‖∗ ≤M1} ,(67)

where M and M1 are numbers satisfying (61) and (63), respectively. Clearly, ā, b̄
and c̄ are finite because of the boundedness on bounded sets of a, b and c. In what
follows, we denote by K0, K1, K2 and K3 the numbers defined by (37) and (38)
where, instead of K4 and K5 given by (39) and, respectively, (40), we take

K4 := (M1 +M2 + δ̄ + ᾱM)b̄+ (3M1 +M2 + τ̄ c̄+ ᾱM)ā,(68)

K5 := (M + ω̄ā)2 +M2,(69)

with ᾱ, δ̄, τ̄ , ω̄ being positive upper bounds of the sequences {αk}k∈N , {δk}k∈N ,
{τk}k∈N, {ωk}k∈N , respectively (such upper bounds exists because, by (A3), these
sequences are convergent).

Let gX be the nonnegative, nondecreasing function which satisfies (26) and van-
ishes on (−∞, 0) and let g]

X be its epi-quasi-inverse defined by (27). For each k ∈ N,
we denote

Gk := K0g
]
X

(
K2

τk + δk
αk

+K3

√
ωk + hk

αk

)
,(70)

Ḡk := K0g
]
X

(
K1

|αk − αk+1|
αk

)
,(71)

where the numbers K0, ...,K3 are those defined above (with K4 and K5 given by
(68) and (69)). Let ρX∗ : [0,∞) → [0,∞) be the modulus of smoothness of the dual
space X∗, i.e., the function which, according to a theorem of J. Lindenstrauss (see
[28, Theorem 2.7.5]), is given by

(72) ρX∗(t) = sup
{
ts

2
− δX(s) : s ∈ [0, 2]

}
.

Since the space X is uniformly convex, its dual X∗ is uniformly smooth, that is,
limt→0+ t−1ρX∗(t) = 0. We assume that the problem data and the geometry of the
space X in which our variational inequality (1) is set are interconnected in the sense
of the following condition:

(A5) The sequence of regularization parameters {αk}k∈N has the property that
there exists a bounded sequence of positive real numbers {εk}k∈N such that αkεk < 1
for all k ∈ N,

(73)
∞∑

k=0

αkεk = ∞ and lim
k→∞

(αkεk)−1
[
ρX∗(εk) +Gk +Gk+1 + Ḡk

]
= 0.

Condition (A5) represents the rule of choosing the step size parameters in the
algorithm described below when the sequences involved in (A3) are a priori given.
Implementation of this rule requires evaluations of ρX∗ as well as of g]

X . In some
spaces such evaluations are readily available. That is the case of the spaces which
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are p-convex for some p > 1 as, for instance, the Lebesgue spaces, the Sobolev
spaces, the Orlicz spaces (cf. [12, p. 613]). Recall that the space X is called p-
convex if there exists a positive real number c̃ such that δX(t) ≥ c̃tp for all t > 0. If
X is p-convex for some p > 1, then, according to (72), we obtain that

ρX∗(t) ≤ sup
{
ts

2
− c̃sp : s ∈ [0, 2]

}
= ctq,

where c is a positive constant and q = p/(p − 1). In this case, one can define
gX(t) = ctp−1 if t ≥ 0, and gX(t) = 0, otherwise. This implies that g]

X(t) =
(
c−1t

)q/p

for any t ≥ 0.
To any closed convex nonempty subset Λ of X we associate the operator ΓΛ :

X∗ → Λ given by
ΓΛξ := arg min {W (ξ, u) : u ∈ Λ} ,

where, for any ξ ∈ X∗ and for any u ∈ X, the function W : X∗ ×X → R is defined
by

W (ξ, u) = ‖u‖2 − 2 〈ξ, u〉+ ‖ξ‖2
∗ .

As shown in [5, p. 31], where this operator was introduced and studied, ΓΛ is well
defined. The algorithm for finding solutions of variational inequalities we present
below requires computing values of ΓΛ (see (79)) for various nonempty convex closed
sets Λ. In this respect, recall (see [5]) that

(74) ΓΛ = (ΓΛ ◦ J) ◦ J∗ = PΛ ◦ J∗,

where J∗ is the normalized duality mapping of X∗ and PΛ denotes the Bregman
projection onto the set Λ with respect to the function θ(x) := ‖x‖2 . It results
from (74) that, if the values of J∗ are computable (as happens in many usual
Banach spaces as, for instance, in Lebesgue spaces Lp, in Sobolev spaces Wm,p),
then computing values of ΓΛ amounts to determining values of PΛ. If Λ is a closed
hyperplane or a closed half-space, then values of PΛ can be determined by formulae
established in [6] and [23]. If Λ is an arbitrary nonempty closed convex subset of
X, then values of PΛ can be calculated using the algorithms presented in [18].

With these facts in mind, we proceed to the description of the iterative procedure
we propose for solving the monotone variational inequality (1).

THE ALGORITHM
Step 0 (Initialization).
(a) Fix three numbers M, M1 and M2 such that conditions (61), (63) and (64),

respectively, are satisfied, let R0 be a positive real number such that
√
R0 > 2M

and put

(75) K := M +
√
R0.

(b) Define the functions µ, κ, r : [0,∞) → R and Υ : [0,∞)× N → R by

µ(t) = max {Φ(t) + ᾱt+M2, 1} ,(76)

κ(t) = ε̄(Φ(t) +M2) + (ᾱ+ 1)t,

r(t) =
√
µ2(t) + κ2(t),
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Υ(t, k) := 2
[
2Lr2(t)ρX∗

(
4r(t)−1µ(t)εk

)
+ εkhk

(
t2 +M2

)
+(εkµ(t) + t+M)

(
Gk +Gk+1 + Ḡk

)]
,

where ᾱ and ε̄ are upper bounds of the sequences {αk}k∈N and {εk}k∈N , respectively.
(c) Let n0 ∈ N be a nonnegative integer such that for any k ≥ n0 we have

(77) Υ(K, k) ≤ R0αkεk,

put p(0) = n0 and choose z0 ∈ Ωp(0) such that

(78)
√
R0 −M ≥

∥∥z0
∥∥ .

Step 1 (Iteration).
Given k ∈ N and zk ∈ Ωp(k), put p(k + 1) = n0 + k + 1, choose χk ∈ Ap(k)z

k and
compute

(79) zk+1 = ΓΩp(k+1)

[
Jzk − εp(k)

(
χk + αp(k)Jz

k − ψp(k)
)]
.

Step 2 (Loop).
Let k → k + 1 and go to Step 1.

The following result describes the convergence behavior of our algorithm.

Theorem 4.1. If the variational inequality (1) has at least one solution and if the
assumptions (A1)-(A5) are satisfied, then the sequence

{
zk
}

k∈N generated by the
algorithm described above is well defined and is strongly convergent to the minimal
norm solution of (1).

The proof of this theorem is presented below as a succession of lemmas. The basic
idea of the proof is to show that the sequence

{
zk
}

k∈N generated by the algorithm
and the sequence

{
xk
}

k∈N , whose existence and convergence is ensured by Theorem
2.1(ii), have the same limit. One should observe that the algorithm does not require
computing the sequence

{
xk
}

k∈N , but only to have an evaluation of an upper bound
of the sequence

{∥∥xk
∥∥}

k∈N . Once such an evaluation is established, one can use
Lemma 4.2 below in order to estimate the number M required by the algorithm
because, as follows from Lemma 4.1, the sequence {Gk}k∈N occurring in (83) is
convergent and, hence, bounded. In order to estimate the number M1 required by
the algorithm one should note that, by virtue of (A4), the number Φ(M) is an
upper bound of the sequence

{∥∥ξk
∥∥
∗
}

k∈N , where ξk is defined by (17). This fact
and (A3-2) allow for determining M1. These remarks show that implementation of
the algorithm does not require computations with the original problem data, but
involves computations with the approximative data only.

Now, we start our proof of Theorem 4.1 by establishing well definedness of the
algorithm. Note first that, if the number p(0) = n0 is well defined, then the vector
z0 ∈ Ωp(0), which is required at (78), exists since at least xp(0) satisfies that condition
because

√
R0 −M > M ≥

∥∥xp(0)
∥∥. The following result implies that the number

n0 required in Step 0 of the algorithm (see (77)) exists and, hence, the algorithm is
well defined.
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Lemma 4.1. The sequence {γk}k∈N defined by

(80) γk = (αkεk)−1Υ(K, k),

where K is the real number given by (75), converges to zero.

Proof. According to (76) we have
1
2γk = 2(αkεk)−1Lr̄2ρX∗

(
4r̄−1µ̄εk

)
+ εkhk

(
K2 +M2

)
+ (αkεk)−1 (εkµ̄+K +M)

(
Gk +Gk+1 + Ḡk

)
,

where

(81) r̄ = r(K) and µ̄ = µ(K).

By (73), the last term of this sum converges to zero as k → ∞. According to
(A5), the sequence {αkεk}k∈N is bounded from above by 1. Therefore, we have that
εkhk ≤ α−1

k hk. Since, by (6), the sequence
{
α−1

k hk

}
k∈N converges to zero, we deduce

that the second term of the sum converges to zero as k → ∞. It remains to show
that

(82) lim
k→∞

(αkεk)−1ρX∗
(
4r̄−1µ̄εk

)
= 0.

To this end, observe that, according to (76), we have that r̄−1µ̄ ≤ 1. Since the
function ρX∗ is nondecreasing (cf. [28, Lemma 2.7.4]) we deduce that

ρX∗
(
4r̄−1µ̄εk

)
αkεk

≤ ρX∗ (4εk)
αkεk

.

Applying twice Lemma 8 in [26] we deduce

ρX∗ (4εk)
αkεk

≤ 4(1 + εk)
ρX∗ (2εk)
αkεk

≤ 16(1 + εk)(1 + 1
2εk)

ρX∗ (εk)
αkεk

.

The last two inequalities and (73) imply (82). �

We are going to use Theorem 3.1 in order to obtain an evaluation of the distance
between the vectors xk and uk.

Lemma 4.2. For any k ∈ N, we have that

(83)
∥∥∥xk − uk

∥∥∥ ≤ Gk.

Proof. We apply Theorem 3.1 to the variational inequalities (60) and (4) by taking
T1 = A, T2 = Ak, ϕ

1 = ψ, ϕ2 = ψk, ω = ωk, τ = τk, and δ = δk. Condition (A3-3)
ensures that hypothesis (ii) of Theorem 3.1 is valid in this case. By conditions
(A3-1) and (A3-2) we deduce that hypothesis (i) of Theorem 3.1 is also satisfied.
Thus, we deduce the following particular version of (36) with α = β = αk:

(84)
∥∥∥xk − uk

∥∥∥ ≤ K0g
]
X

(
K2

τk + δk
αk

+K3

√
ωk + hk

αk

)
,

where the numbers K1, ...,K5 are defined by (37)-(40) with α, ω, τ and δ as above.
By direct comparison one can see that the numbers K4 and K5, defined by (68) and
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(69), are at least equal to their homonymous numbers defined by (39) and (40) in
our current circumstances. This implies that the corresponding values of K0, K1,
K2 and K3 obtained when K4 and K5 are given by (68) and (69) are at least equal
to those of their homonymous counterparts obtained when K4 and K5 are given by
(39) and (40). Since the function g]

X in nondecreasing, it follows that by replacing
on the right hand side of (84) the numbers Ki by their larger counterparts, the
inequality still stands and this is exactly (83). �

The following lemma is a consequence of Theorem 3.1 and of Lemma 4.2. It is
the key result for our proof of convergence of the sequences

{
zk
}

k∈N generated by
the algorithm described above.

Lemma 4.3. For each k ∈ N, we have that

(85) W (Jzk+1, xp(k+1)) ≤ (1− εp(k)αp(k))W (Jzk, xp(k)) + Υ(
∥∥∥zk
∥∥∥ , p(k)).

Proof. Denote

wk := Jzk − εp(k)

(
χk + αp(k)Jz

k − ψp(k)
)
,(86)

κk := κ
(∥∥∥zk

∥∥∥) , rk := r
(∥∥∥zk

∥∥∥) , µk := µ
(∥∥∥zk

∥∥∥) ,
and note that, according to (79), we have

(87) zk+1 = ΓΩp(k+1)
wk.

Observe that, whenever u ∈ X, the function W (·, u) is convex and (Gâteaux) differ-
entiable at any point of X∗ because the space X∗ is smooth (since X is uniformly
convex). Moreover, for any ζ ∈ X∗ and for any u ∈ X, we have that

[W (·, u)]′ (ζ) = 2(J∗ζ − u),

where J∗ = J−1 is the normalized duality mapping of the space X∗ (cf. [5, Lemma
6.1]). Therefore, we obtain that

W (Jzk, xp(k+1))−W (wk, xp(k+1))(88)

≥
〈
Jzk − wk,

[
W (·, xp(k+1))

]′
(wk)

〉
= 2

〈
Jzk − wk, J∗wk − xp(k+1)

〉
.

Applying [5, Property 6h] and taking into account (87) and the fact that xp(k+1) ∈
Ωp(k+1) we obtain that

(89) W (wk, zk+1) ≤W (wk, xp(k+1)).

Combining this and (88) we deduce that

W (Jzk, xp(k+1))−W (Jzk+1, xp(k+1))(90)

≥ 2
〈
Jzk − wk, J∗wk − xp(k+1)

〉
.
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For any ζ ∈ X∗, the function W (ζ, ·) is also convex and differentiable and we have
(cf. [5, Lemma 6.1]) that

(91) [W (ζ, ·)]′ (u) = 2(Ju− ζ).

Thus, we deduce that

W (Jzk, xp(k))−W (Jzk, xp(k+1))

≥
〈[
W (Jzk, ·)

]′
(xp(k+1)), xp(k) − xp(k+1)

〉
= 2

〈
Jxp(k+1) − Jzk, xp(k) − xp(k+1)

〉
.

Adding this and inequality (90) one gets

W (Jzk, xp(k))−W (Jzk+1, xp(k+1))

≥ 2
〈
Jzk − wk, J∗wk − xp(k+1)

〉
+ 2

〈
Jxp(k+1) − Jzk, xp(k) − xp(k+1)

〉
.

Thus, we have

W (Jzk+1, xp(k+1)) ≤W (Jzk, xp(k))

+ 2
〈
Jxp(k+1) − Jzk, xp(k+1) − xp(k)

〉
+ 2

〈
wk − Jzk, J∗wk − xp(k+1)

〉
.

By consequence, we obtain

W (Jzk+1, xp(k+1)) ≤W (Jzk, xp(k))(92)

+ 2
〈
Jxp(k+1) − Jzk, xp(k+1) − xp(k)

〉
+ 2 (Uk + Vk + Zk) .

where

Uk :=
〈
wk − Jzk, J∗wk − zk

〉
,(93)

Vk :=
〈
wk − Jzk, zk − xp(k)

〉
,

Zk :=
〈
wk − Jzk, xp(k) − xp(k+1)

〉
.

Recall (see [5, Theorem 7.5]) that, if ξ′, ξ′′ ∈ X∗ and R ≥
√

1
2

(
‖ξ′‖2

∗ + ‖ξ′′‖2
∗

)
, then

we have that

(94)
〈
ξ′ − ξ′′, J∗ξ′ − J∗ξ′′

〉
≤ 2LR2ρX∗

(
4R−1

∥∥ξ′ − ξ′′
∥∥
∗
)
,

where ρX∗ is the modulus of smoothness of X∗. Let ϑk = Jzk and observe that
zk = J∗(Jzk) = J∗ϑk. Note that, according to (76) and (A4), we have that∥∥∥wk

∥∥∥
∗
≤
∥∥∥zk
∥∥∥+ εp(k)

(∥∥∥χk
∥∥∥
∗
+ αp(k)

∥∥∥zk
∥∥∥+M2

)
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≤ (1 + ᾱ)
∥∥∥zk
∥∥∥+ εp(k)

(
Φ(
∥∥∥zk
∥∥∥) +M2

)
≤ κk.

Thus, we deduce that

rk ≥
√

κ2
k + ‖zk‖2 ≥

√
‖wk‖2

∗ + ‖zk‖2

≥
√

1
2

(∥∥wk
∥∥2

∗ +
∥∥zk
∥∥2
)

=
√

1
2

(∥∥wk
∥∥2

∗ +
∥∥ϑk

∥∥2

∗

)
,

because of (76). Then, by (94), we obtain that

Uk =
〈
wk − ϑk, J∗wk − J∗ϑk

〉
(95)

≤ 2Lr2kρX∗

(
4r−1

k

∥∥∥wk − Jzk
∥∥∥
∗

)
.

Note that, by (86), we have

(96)
∥∥∥wk − Jzk

∥∥∥
∗

= εp(k)

∥∥∥χk + αp(k)Jz
k − ψp(k)

∥∥∥
∗
,

where, according to (59),
∥∥χk

∥∥
∗ ≤ Φ(

∥∥zk
∥∥). Thus, we deduce that∥∥∥wk − Jzk

∥∥∥
∗
≤ εp(k)

(∥∥∥χk
∥∥∥
∗
+ αp(k)

∥∥∥zk
∥∥∥+

∥∥∥ψp(k)
∥∥∥
∗

)
(97)

≤ εp(k)

(
Φ(
∥∥∥zk
∥∥∥) + αp(k)

∥∥∥zk
∥∥∥+M2

)
≤ εp(k)µk,

where µk is given by (86). This and (95) imply

(98) Uk ≤ 2Lr2kρX∗
(
4r−1

k µkεp(k)

)
.

Now we are going to estimate Vk. Observe that, since xp(k) is a solution of (4)
with p(k) instead of k, there exists φp(k) ∈ Ap(k)x

p(k) such that

(99)
〈
φp(k) + αp(k)Jx

p(k) − ψp(k), y − xp(k)
〉
≥ 0, ∀y ∈ Ωp(k).

According to (86) and (99), we have

Vk = −εp(k)

〈
χk + αp(k)Jz

k − ψp(k), zk − xp(k)
〉

(100)

= −εp(k)

[〈
χk − φp(k), zk − xp(k)

〉
+ αp(k)

〈
Jzk − Jxp(k), zk − xp(k)

〉
+
〈
φp(k) + αp(k)Jx

p(k) − ψp(k), zk − xp(k)
〉]

≤ −εp(k)

[〈
χk − φp(k), zk − xp(k)

〉
+αp(k)

〈
Jzk − Jxp(k), zk − xp(k)

〉]
.

The operator Ap(k) is strongly hp(k)-hypomonotone on Ωp(k), and this implies〈
χk − φp(k), zk − xp(k)

〉
≥ −hp(k)

(∥∥∥zk
∥∥∥− ∥∥∥xp(k)

∥∥∥)2
.
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Using (91) and the convexity of W (Jzk, ·), we deduce that

W (Jzk, xp(k))−W (Jzk, zk) ≤ 2
〈
Jzk − Jxp(k), zk − xp(k)

〉
,

where W (Jzk, zk) = 0. Thus, by (100), we get

(101) Vk ≤ εp(k)hp(k)

(∥∥∥zk
∥∥∥− ∥∥∥xp(k)

∥∥∥)2
−
εp(k)αp(k)

2
W (Jzk, xp(k)).

For evaluating Zk we take into account that

Zk ≤
∥∥∥wk − Jzk

∥∥∥
∗

∥∥∥xp(k) − xp(k+1)
∥∥∥

≤ εp(k)µk

∥∥∥xp(k) − xp(k+1)
∥∥∥ ,

where the last inequality follows from (97). Consequently,

Zk ≤ εp(k)µk

(∥∥∥xp(k) − up(k)
∥∥∥+

∥∥∥up(k+1) − xp(k+1)
∥∥∥(102)

+
∥∥∥up(k) − up(k+1)

∥∥∥) .
Applying Lemma 4.2 successively, first for p(k) instead of k and next for p(k + 1)
instead of k, we obtain

(103)
∥∥∥xp(k) − up(k)

∥∥∥+
∥∥∥up(k+1) − xp(k+1)

∥∥∥ ≤ Gp(k) +Gp(k+1).

Consider the variational inequalities〈
(A+ αp(k)J)x− ψ, y − x

〉
≥ 0, ∀y ∈ Ω,

and 〈
(A+ αp(k+1)J)x− ψ, y − x

〉
≥ 0, ∀y ∈ Ω,

which have the solutions up(k) and up(k+1), respectively. These variational inequali-
ties satisfy the requirements of Theorem 3.1 when ā, b̄, c̄, h, δ, τ and ω are all zero.
Therefore, application of Theorem 3.1 in this particular case, leads to the inequality

(104)
∥∥∥up(k) − up(k+1)

∥∥∥ ≤ K0g
]
X

(
K1

∣∣αp(k) − αp(k+1)

∣∣
αp(k)

)
,

which, in conjunction with (103), implies

(105)
∥∥∥xp(k) − xp(k+1)

∥∥∥ ≤ Gp(k) +Gp(k+1) + Ḡp(k).

So, from (102) and (105), we get

(106) Zk ≤ εp(k)µk

(
Gp(k) +Gp(k+1) + Ḡp(k)

)
,

where Ḡp(k) is defined by (71). Combining (92), (93), (98), (101) and (106) we
deduce that

W (Jzk+1, xp(k+1)) ≤W (Jzk, xp(k))− εp(k)αp(k)W (Jzk, xp(k))(107)

+ 2
〈
Jxp(k+1) − Jzk, xp(k+1) − xp(k)

〉
+ 2

[
2Lr2kρX∗

(
4r−1

k εp(k)µk

)



48 YAKOV ALBER, DAN BUTNARIU, AND IRINA RYAZANTSEVA

+ εp(k)hp(k)

(∥∥∥zk
∥∥∥− ∥∥∥xp(k)

∥∥∥)2

+εp(k)µk

(
Gp(k) +Gp(k+1) + Ḡp(k)

)]
.

Note that 〈
Jxp(k+1) − Jzk, xp(k+1) − xp(k)

〉
≤
∥∥∥Jxp(k+1) − Jzk

∥∥∥
∗

∥∥∥xp(k+1) − xp(k)
∥∥∥

≤
(∥∥∥Jxp(k+1)

∥∥∥
∗
+
∥∥∥Jzk

∥∥∥
∗

)∥∥∥xp(k+1) − xp(k)
∥∥∥

=
(∥∥∥xp(k+1)

∥∥∥+
∥∥∥zk
∥∥∥)∥∥∥xp(k+1) − xp(k)

∥∥∥
≤
(
M +

∥∥∥zk
∥∥∥)∥∥∥xp(k+1) − xp(k)

∥∥∥
≤
(
M +

∥∥∥zk
∥∥∥) (Gp(k) +Gp(k+1) + Ḡp(k)),

where the last two inequalities result from (61) and (105), respectively. This and
(107) imply

W (Jzk+1, xp(k+1))(108)

≤W (Jzk, xp(k))− εp(k)αp(k)W (Jzk, xp(k))

+ 2
[
2Lr2kρX∗

(
4r−1

k µkεp(k)

)
+ εp(k)hp(k)

(∥∥∥zk
∥∥∥− ∥∥∥xp(k)

∥∥∥)2

+
(
εp(k)µk +M +

∥∥∥zk
∥∥∥) (Gp(k) +Gp(k+1) + Ḡp(k)

)]
.

According to (61) we have that(∥∥∥zk
∥∥∥− ∥∥∥xp(k)

∥∥∥)2
≤
∥∥∥zk
∥∥∥2

+M2.

Consequently, we deduce that

2Lr2kρX∗
(
4r−1

k µkεp(k)

)
+ εp(k)hp(k)

(∥∥∥zk
∥∥∥− ∥∥∥xp(k)

∥∥∥)2

+
(
εp(k)µk +M +

∥∥∥zk
∥∥∥) (Gp(k) +Gp(k+1) + Ḡp(k)

)
≤ 2Lr2kρX∗

(
4r−1

k µkεp(k)

)
+ εp(k)hp(k)

(∥∥∥zk
∥∥∥2

+M2

)
+
(
εp(k)µk +M +

∥∥∥zk
∥∥∥) (Gp(k) +Gp(k+1) + Ḡp(k)

)
= 1

2Υ(
∥∥zk
∥∥ , p(k)).

This and (108) implies (85). �

The following result ensures boundedness of the sequence
{
zk
}

k∈N generated by
the algorithm.
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Lemma 4.4. For any k ∈ N we have that∥∥∥zk
∥∥∥ ≤ K and W (Jzk, xp(k)) ≤ R0,

where R0 and K are defined in Step 0 of the algorithm (see (75)).

Proof. It is sufficient to show that

(109) W (Jzk, xp(k)) ≤ R0, ∀k ∈ N.

Indeed, if (109) is true, then we have(∥∥∥zk
∥∥∥− ∥∥∥xp(k)

∥∥∥)2
≤W (Jzk, xp(k)) ≤ R0,

where the first inequality follows from the definition of W. This implies∥∥∥zk
∥∥∥ ≤√R0 +

∥∥∥xp(k)
∥∥∥ ≤√R0 +M = K.

We prove (109) by induction upon k. If k = 0, then (109) holds because, according
to (78), we have that

W (Jz0, xp(0)) ≤
(∥∥z0

∥∥+
∥∥∥xp(0)

∥∥∥)2
≤
(√

R0 −M +M
)2

= R0.

Now, assume that (109) holds for some nonnegative integer k. Suppose by contra-
diction that

(110) W (Jzk+1, xp(k+1)) > R0.

Then, according to (77), we deduce that

W (Jzk+1, xp(k+1)) > R0 ≥ Υ(K, p(k))
(
αp(k)εp(k)

)−1

because p(k) = k+n0 ≥ n0. As noted above, the assumption that (109) holds for k
implies that

∥∥zk
∥∥ ≤ K. The function Υ (·, p(k)) , defined at (76), is nondecreasing.

Thus, we have

W (Jzk+1, xp(k+1)) ≥ Υ(K, p(k))
(
αp(k)εp(k)

)−1

≥ Υ
(∥∥∥zk

∥∥∥ , p(k)) (αp(k)εp(k)

)−1
.

This and Lemma 4.3 imply that

(1− αp(k)εp(k))W (Jzk+1, xp(k+1))

≤W (Jzk+1, xp(k+1))−Υ
(∥∥∥zk

∥∥∥ , p(k))
≤ (1− εp(k)αp(k))W (Jzk, xp(k)).

According to (A5), we have that 0 < εp(k)αp(k) < 1. Hence, we obtain that

W (Jzk+1, xp(k+1)) ≤W (Jzk, xp(k)) ≤ R0,

and this contradicts (110). �

The following result completes the proof of Theorem 4.1. Recall that, as already
shown in Section 2, in the current circumstances, the solution set S(A,ψ,Ω) is
convex and has a minimal norm element.
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Lemma 4.5. The sequence
{
zk
}

k∈N generated by the algorithm converges strongly
to the minimal norm solution of the variational inequality (1).

Proof. Lemma 4.4 ensures that the sequence of nonnegative real numbers{
W (Jzk, xp(k))

}
k∈N is bounded. Lemma 4.3 and Lemma 4.4 show that the numbers

λk = W (Jzk, xp(k)) satisfy the inequality

λk+1 ≤ λk − αp(k)εp(k)λk + Υ(K, p(k)) ,

where, according to (A5) and Lemma 4.1, we have

lim
k→∞

αp(k)εp(k) = 0 = lim
k→∞

Υ(K, p(k))
(
αp(k)εp(k)

)−1
.

These allow us to apply Lemma 1 in [3] in order to deduce that

(111) lim
k→∞

W (Jzk, xp(k)) = 0.

The space X being uniformly convex and smooth, the function θ(x) = ‖x‖2 is
uniformly convex on bounded sets and differentiable. According to [24, Proposition
4.2], in these circumstances, the modulus of total convexity of the function θ(x) on
the set E consisting of all the terms of the bounded sequence

{
zk
}

k∈N , denoted
νθ (E, ·) , has νθ (E, t) > 0 when t > 0, and also satisfies

νθ

(
E,
∥∥∥zk − xp(k)

∥∥∥) ≤W (Jzk, xp(k)), ∀k ∈ N.

This and (111) imply that

lim
k→∞

νθ

(
E,
∥∥∥zk − xp(k)

∥∥∥) = 0.

This cannot hold unless limk→∞
∥∥zk − xp(k)

∥∥ = 0 because the function νθ(E, ·) is
(strictly) increasing on [0,∞) – cf. [25, Lemma 2.4]. By Theorem 2.1(ii), the
sequence

{
xp(k)

}
k∈N converges strongly to the minimal norm solution of the varia-

tional inequality (1). Consequently, the sequence
{
zk
}

k∈N has the same limit and
the proof is complete. �
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