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TRIANGULAR PLUS-OPERATORS IN BANACH SPACES:
APPLICATIONS TO THE KŒNIGS EMBEDDING PROBLEM

MARK ELIN AND VICTOR KHATSKEVICH

1. Introduction

The present paper is a continuation of [6, 7, 10]. In [6, 7] the conditions of the
so-called Kœnigs Embedding Property (KE-property for brevity) were studied for
Linear Fractional Transformations (LFT for brevity) with upper triangular matrix

A =
(

A11 A12

0 A22

)
, namely,

(I) FA(K) = A22K(A11 + A12K)−1, Aij ∈ L(Hj ,Hi), i, j = 1, 2,

where H1 and H2 are Hilbert spaces, FA is a self-mapping of the open unit ball K
of the space L(H1,H2) of all linear bounded operators acting between H1 and H2.
Note that if FA is well-defined, then A is a plus-operator (see Preliminaries below),
A11 is invertible, and

∥∥A11
−1A12

∥∥ ≤ 1; if in addition FA is not a constant, then∥∥A11
−1A12

∥∥ < 1, see, for example, [1, 5]. Recall that the problem of embedding
of a holomorphic self-mapping F of K into a continuous one-parameter semigroup{
F t

}
t≥0

of holomorphic self-mappings such that F 1 = F , is called the Kœnigs
Embedding Problem (see [6, 7]). If for a mapping F the Kœnigs Embedding Problem
is solvable, i.e., F is embeddable, then we say that F has the KE-property.

The results in [6, 7] were obtained by using biholomorphic linear fractional solu-
tions FT to Schröder’s equation

(1.1) FT ◦ FA = F eA ◦ FT ,

where Ã = diag A =
(

A11 0
0 A22

)
(see also [9]).

In [10] more general Abel–Schröder equations were considered for the general case
of LFT FA, when the operators Aij act between Banach spaces Xj and Xi, i, j =
1, 2, and K is the open unit ball of the space L(X1, X2).

The main result of [6, 7] ([6, Theorem 4.7] and [7, Theorem 6.5]) establishes the
KE-property for FA of the form (I) in the case when A11 = I in H1 and A22 is
uniformly positive operator in H2, that is,

(Iu) FA(K) = A22K(I + A12K)−1.

In the present paper for the general case of complex Banach spaces Xi, i = 1, 2,
we study both LFT’s of the form (I) and the dual affine mappings of the form:

(II) FB(K) = (B22K + B21)B−1
11
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with lower triangular matrices B =
(

B11 0
B21 B22

)
. We consider LFT of the form

(Iu) as well as their dual LFT with respect to the main diagonal of the form

(I`) FA(K) = K(A11 + A12K)−1,

where A22 = I|X2 and ‖A11x1‖ ≥ ‖x1‖ for all x1 ∈ X1.
On the other hand, in the class of LFT’s FB of the form (II) one can specify two

subclasses of mappings which are dual one to another with respect to the second
diagonal:

(IIu) FB(K) = B21 + B22K

and

(II`) FB(K) = (B21 + K)B−1
11

with the matrices B =
(

I 0
B21 B22

)
and B =

(
B11 0
B21 I

)
, respectively.

Note that LFT’s defined by (I) and (II) are usually called LFT of type (I) and
(II), respectively (see, for example, [7]). It seems to be natural to denote LFT’s
defined in formulae (Iu), (I`), (IIu) and (II`), by Iu, Il, IIu and IIl respectively.
Here indexes ’u’ and ’`’ mean the upper and lower location respectively of the
identity operator I in the main diagonal of the operator block matrix.

We proceed the line of the work [10] and study here the diagonality conditions
for upper and lower triangular plus-operators A and B, and on this base we obtain
new results on the KE-property, which complete and develop the mentioned above

results of [6, 7]. Note that the cases A =
(

A11 A12

0 A22

)
and B =

(
B11 0
B21 B22

)
,

where operators A11 and B11 are different from the identity, were not considered
previously even in the case of Hilbert spaces.

Along with this, we study conditions to the non-diagonal element B12 of the
matrix B which provide the LFT’s of type IIu and IIl have KE-property. Using
the Duality Theorem (see Theorem 6.2 below) we pass these results to the case of
LFT’s of type Iu and Il. The main results of the paper are Theorems 4.3, 4.4 and
Theorems 6.1–6.3.

2. Preliminaries

In this section we give some auxiliary notions and results which are needed in the
sequel.

Definition 2.1 (see [2]). A normed space X is called uniformly convex, if for each
ε, 0 < ε ≤ 2, there exists δ = δ(ε) > 0 such that for all x, y ∈ X with ‖x‖ = ‖y‖ = 1
and ‖x− y‖ > ε, the following inequality

‖x + y‖ ≤ 2(1− δ)

holds.
A normed space X is called uniformly smooth, if for each η > 0 there exists

ε = ε(η) > 0 such that ‖x− y‖ ≤ ε implies that (1 + η)‖x + y‖ ≥ ‖x‖+ ‖y‖.
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Theorem 2.1 (see [2]). Uniformly convex space is reflexive. Uniformly smooth
space is reflexive.

Theorem 2.2 (see [2]). A space X is uniformly convex if and only if X∗ is uniformly
smooth.

Let T be a bounded linear operator in a Banach space X. Suppose that the
spectrum σ(T ) does not separate zero and infinity (consequently, this operator is
invertible). Then there are a neighborhood of σ(T ) and a branch of the function
log z analytic in this neighborhood. It is well known that in this case one can define
the operator

S := log T

using the Riesz–Dunford integral (see [3]). Furthermore, the operator

T t := etS

is well defined for all t ∈ R+ = [0,∞).
The following fact follows by [4, Lemma 2.1.1].

Proposition 2.1. Let X = H be a Hilbert space, T ∈ L(H) be a bounded linear
operator such that σ(T ) does not separate zero and infinity, and ‖T‖ ≤ 1. Then
<S ≤ 0 and consequently ‖T t‖ ≤ 1 for all t ∈ R+.

In the general case of a Banach space X this fact is no longer true.

Example. Let X = C2 be endowed with `p-norm, 1 ≤ p ≤ ∞. Define A ∈ L(X)
by

A =
(

0 1
−1 0

)
.

Then in the case p = 2 the operator At is unitary for all t ∈ R, however in the case
p 6= 2, i.e., X is not a Hilbert space, ‖At‖ > 1 for all non-integer t.

Let now X be an indefinite Banach space [9, 10], that is

(2.2) X = X1+̇X2

is a topological decomposition (with bounded projections P1 and P2 on X1 and X2,
respectively) of the space X, and the following two sets are defined:

P = {x ∈ X : ‖x1‖ ≥ ‖x2‖} ,

where x = x1 + x2, x1 ∈ X1, x2 ∈ X2, xi = Pix, i = 1, 2, and

N = {y ∈ X : ‖y1‖ ≤ ‖y2‖} ,

where once again y = y1 + y2, yi ∈ Xi, i = 1, 2.
The indefinite structure in the conjugate space X∗ is defined by the decomposition

X∗ = X∗
1 +̇X∗

2 .

Let now X(1) and X(2) be two indefinite spaces, and let T : X(1) 7→ X(2) be a
linear operator. The operator T is called a plus-operator if

TP(1) ⊂ P(2),
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and a minus-operator if
TN(1) ⊂ N(2).

The next assertion follows immediately by definitions.

Proposition 2.2. If T is one-to-one plus-operator, then T−1 is a minus-operator.

Let L be a subspace of X, L ⊂ P(1). We say that L ∈ M if P1L = X1.

Proposition 2.3 ([1]). L ∈ M if and only if

L = {y : y = x1 + Kx1, x1 ∈ X1}
for some K = K(L) ∈ L(X1, X2) with ‖K‖ ≤ 1.

We say that L ∈ M0 if L ∈ M and the corresponding operator K(L) is a uniform
contraction, i.e., ‖K‖ < 1.

Proposition 2.4 ([8]). Let T be a bounded plus-operator such that TL ∈ M for all
L ∈ M0. Then T ∗ : X(2)∗ 7→ X(1)∗ is a plus-operator.

3. Diagonality conditions for triangular plus-operators

In the sequel we consider bounded plus-operators only.
First let us study the case when the upper element of the main diagonal is an

isometry.

Theorem 3.1. Let B =
(

B11 0
B21 B22

)
be a lower triangular plus-operator between

indefinite spaces X(1) and X(2) such that B11 : X
(1)
1 7→ X

(2)
1 is an isometry and

‖B22‖ = 1. If X
(2)
2 is uniformly convex, then B = diag B, i.e., B21 = 0.

Proof. Suppose the contrary: there exists x1 ∈ X(1), ‖x1‖ = 1, such that ‖B21x1‖ =
ε > 0. Let x2 ∈ X(2), ‖x2‖ = 1. Since B is a plus-operator and B11 is an isometry,
we have for λ = ±1

‖λB21x1 + B22x2‖ ≤ ‖B11x1‖ = 1.

Because

‖(B21x1 + B22x2)− (B22x2 −B21x1)‖ = 2‖B21x1‖ > ε,

the uniform convexity of X
(2)
2 implies that

2‖B22x2‖ = ‖(B21x1 + B22x2) + (B22x2 −B21x1)‖ ≤ 2 (1− δ(ε)) ,

where δ(ε) > 0.
So we have the inequality

‖B22‖ = sup
‖x2‖=1

‖B22x2‖ ≤ 1− δ(ε) < 1,

which contradicts the assumption of the theorem. ¤

The following statement is a reformulation of the previous result in terms of
minus-operators.
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Theorem 3.1′. Let C =
(

C11 C12

0 C22

)
be an upper triangular minus-operator

between indefinite spaces X(1) and X(2) such that C22 : X
(1)
2 7→ X

(2)
2 is an isometry

and ‖C11‖ = 1. If X
(2)
1 is uniformly convex, then C = diag C, i.e., C12 = 0.

Now we establish an assertion which is dual in a certain sense to Theorem 3.1.

Theorem 3.2. Let A =
(

A11 A12

0 A22

)
be an upper triangular plus-operator be-

tween indefinite spaces X(1) and X(2) such that A11 is an isometric bijection of
X

(1)
1 onto X

(2)
1 , ‖A22‖ = 1 and ‖A12‖ ≤ 1. If X

(1)
2 is uniformly smooth, then

A = diag A, i.e., A12 = 0.

Proof. Let B = A∗ be the conjugate operator to A. Evidently, the operator B is
lower triangular. Arguing like in the proof of Theorem 2.1 in [8] we get that B

is a plus-operator between
(
X(2)

)∗
and

(
X(1)

)∗
, and by Theorem 2.2 the subspace(

X
(1)
2

)∗
of the space

(
X(1)

)∗
is uniformly convex. Then the conclusion follows from

Theorem 3.1, since B satisfies all its conditions. ¤
Now we study the case when an isometric operator is in the lower right corner of

the block-matrix of a plus-operator. In a certain sense this consideration is dual to
the case considered in Theorems 3.1 and 3.2.

Theorem 3.3. Let D be a plus-operator between indefinite spaces X(1) and X(2)

such that D11 : X
(1)
1 7→ X

(2)
1 is a bijection with

∥∥∥(D11)
−1

∥∥∥ = 1, and D22 is an

isometric bijection of X
(1)
2 onto X

(2)
2 . Then D = diag D in each of the following

two cases:
(i) D is upper triangular and X

(1)
1 is uniformly convex;

(ii) D is lower triangular and X
(2)
1 is uniformly smooth.

Proof. First suppose that D is upper triangular. Under the conditions of the theo-
rem the operator D is invertible. By Proposition 2.1 its inverse

C := D−1 =
(

(D11)
−1 − (D11)

−1 D12 (D22)
−1

0 (D22)
−1

)

is a minus-operator between the indefinite spaces X(2) and X(1). Moreover, C22 =
D−1

22 is an isometry which acts from X
(2)
2 to X

(1)
2 , and

‖C11‖ =
∥∥D−1

11

∥∥ = 1.

Therefore, in the first case the conclusion follows by Theorem 3.1′. Indeed, C12 = 0
implies that D12 = −D11C12D22 = 0.

Let now D be lower triangular. Like in the proof of Theorem 3.2 we see that
the conjugate operator D∗ :

(
X(2)

)∗ 7→ (
X(1)

)∗
is a plus-operator. Since X

(2)
1 is

uniformly smooth, by Theorem 2.2 the space
(
X1

)∗ is uniformly convex. Thus the
conclusion for the second case follows by the first part of the proof. ¤
Remark. Example 4 in [10] shows that the conditions of uniform convexity and
uniform smoothness in above Theorems can not be omitted.
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4. Diagonality conditions for triangular plus-operator acting in an
indefinite space

In this section we consider the case of a plus-operator acting in an indefinite space
X, that is X = X(1) = X(2).

Theorem 4.1. Let D be a triangular plus-operator in X such that D11 is an isom-
etry and ‖D22‖ = 1. Then D = diag D in each of the following two cases:

(i) D is lower triangular and X2 is uniformly convex;
(ii) D is upper triangular, =D12 ⊂ =D11, and X2 is uniformly smooth.

Proof. In the first case the conclusion follows by Theorem 3.1.
Now suppose that D is an upper triangular plus-operator. Since ‖D22‖ = 1, it

follows by [10, Proposition 3] that ‖D12‖ ≤ 1.
Set X(1) = X and X(2) = =D11+̇X2. Then D : X(1) 7→ X(2), and the result

follows by Theorem 3.2. ¤
Remark. Note that the second part of Theorem 4.1 generalizes the part b) of The-
orem 10 in [10].

The dual result is presented by

Theorem 4.2. Let D be a triangular plus-operator in X such that D22 is an isom-
etry, D11 is a bijection of X1 onto X1 and

∥∥∥(D11)
−1

∥∥∥ = 1. Then D = diag D in
each of the following two cases:

(i) D is upper triangular and X1 is uniformly convex;
(ii) D is lower triangular, =D21 ⊂ =D22, and X1 is uniformly smooth.

Proof. In the first case the conclusion follows by Theorem 3.3.
Let D be a lower triangular plus-operator. Setting X(1) = X and X(2) =

X1+̇=D22, we see that D : X(1) 7→ X(2). Then the result follows by Theorem
3.3. ¤

The following examples show that the conditions =D12 ⊂ =D11 and =D21 ⊂
=D22 in Theorems 4.1 and 4.2 can not be omitted.

Example 4.1. Let H = H1⊕H2 be a separable Krein space, where H1=Span {en
1}∞n=1

with an orthonormal system {en
1}∞n=1, and H2 is one-dimensional, H2 = Span {e2},

‖e2‖ = 1. Define A ∈ L(H) by

A11e
n
1 = en+1

1 , n ∈ N, A12e2 = e1
1, A21 = 0, A22 = I.

Then A is a plus-operator (since ‖P1Ax‖ = ‖x‖ ≥ ‖x2‖ = ‖P2Ax‖) and ‖A11x1‖ =
‖x1‖ for all x1 ∈ H1. At the same time, =A12 6⊂ =A11, that is, Theorem 4.1 is not
applicable.

Example 4.2. Let H = H1⊕H2 be once again a separable Krein space, where H1 is
two-dimensional, H1 = Span

{
e1
1, e2

1

}
, (ei

1, e
j
1) = δij , and H2 = Span {en

2}∞n=1 with
an orthonormal system {en

2}∞n=1. Define B ∈ L(H) as follows

B11 =
(

µ 0
0 1

)
, |µ| ≥

√
2, B12 = 0,
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B21e
1
1 = e1

2, B21e
2
1 = 0, B22e

n
2 = en+1

2 , n ∈ N.

Then B is a plus-operator since for each x = (x1
1, x

2
1, x2) with

‖x1‖
(

=
√
|x1

1|2 + |x2
1|2

)
≥ ‖x2‖

we have

‖P2Bx‖2 = |x1
1|2 + ‖x2‖2 ≤ (|µ|2 − 1)|x1

1|2 + ‖x1‖2 = ‖P1Bx‖2.

So, B is a lower triangular non-diagonal plus-operator. The reason for this is the
following: =B21 6⊂ =B22.

Further, Theorems 4.1 and 4.2 enable us to establish new conditions for the KE-
property for LFT.

In both Theorems 4.3 and 4.4 below we assume that the spectra σ(D11) and
σ(D22) of diagonal entries D11 and D22, respectively, do not separate zero and
infinity. Then D11 and D22 are bijections of X1 and X2, respectively, and, as
we noted above, the fractional powers (D11)

t and (D22)
t are well-defined for all

t ∈ R+. In light of Example in Section 2 we also assume that
∥∥(D11)

−t
∥∥ ≤ 1 and∥∥(D22)

t
∥∥ ≤ 1 for all t ∈ R+.

Theorem 4.3. Let D be a triangular plus-operator in X such that D11 is an isom-
etry on X1 and ‖D22‖ = 1. Then FD has the KE-property in each of the following
two cases:

(i) D is lower triangular and X2 is uniformly convex;
(ii) D is upper triangular and X2 is uniformly smooth.

Proof. By Theorem 4.1 the operator D is diagonal, that is, the LFT FD is linear,
FD(K) = D22K (D11)

−1. According to our assumption and the conditions of the
theorem

∥∥(D22)
t
∥∥ ≤ 1 and

∥∥(D11)
−t

∥∥ ≤ 1 for all t ∈ R+. Therefore, FDt(K) ∈ K
for all K ∈ K and t ∈ R+. ¤

The following dual statement can be proved analogously.

Theorem 4.4. Let D be a triangular plus-operator in X such that
∥∥∥(D11)

−1
∥∥∥ = 1

and D22 is an isometry on X2. Then FD has the KE-property in each of the following
two cases:

(i) D is upper triangular and X1 is uniformly convex;
(ii) D is lower triangular and X1 is uniformly smooth.

Remark. In the particular case when both X1 and X2 are Hilbert spaces, one can
omit the inequalities

∥∥(D11)
−t

∥∥ ≤ 1 and
∥∥(D22)

t
∥∥ ≤ 1 (see Proposition 2.1). On

the other hand, in this case the conditions of the uniform convexity and uniform
smoothness are fulfilled automatically.

5. Fixed points of affine mappings and of their dual LFT’s

In this Section we establish the KE-property for LFT’s of types (II), i.e., affine
mappings, and for their dual LFT’s of type (I) based on the existence of sufficiently
small (with respect to the norm) fixed points to above affine mappings. Thereby
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we need the reflexivity of the subspace X2 (there are well known examples of affine
mappings of the closed unit ball of a non reflexive Banach space which do not
have fixed points). In the previous Sections we imposed on X2 the conditions of
uniform convexity or uniform smoothness. By Theorem 2.1 both these conditions
imply the reflexivity of X2. Moreover, if X2 is uniformly convex, then it follows by
Theorems 4.1 and 4.2 that a LFT FB of type IIu or of type IIlwith non diagonal
block-matrix B satisfies ‖B22‖ < 1 or

∥∥B11
−1

∥∥ < 1, respectively. Hence FB is a
uniform contraction, that is ‖FB(K1)− FB(K2)‖ ≤ q‖K1 −K2‖ with q = ‖B22‖ or
q =

∥∥B−1
11

∥∥, respectively. Consequently, FB has a unique fixed point S0 ∈ K.
Now let us return to the general case of LFT’s of type (II). Let X2 be reflexive.

Then K is compact in the weak operator topology [3]. The mapping (II) is evidently
continuous in this topology, hence it has a (not necessarily unique) fixed point
S0 ∈ K. Using this fixed point we can rewrite (II) in the following manner:

(5.3) FB(K) = B22(K − S0) (B11)
−1 + S0.

So, the following assertion holds.

Proposition 5.1. If X2 is reflexive, then a LFT FB of type (II) can be rewritten
in the form (5.3), where S0 ∈ K is a fixed point of FB satisfying

S0B11 −B22S0 = B21.

.
Now consider the dual mapping FA defined by the matrix

A := B∗ =
(

(B11)
∗ (B11)

∗ S∗0 − S∗0 (B22)
∗

0 (B22)
∗

)
.

Theorem 5.1. Let S0 be an invertible operator such that ‖S0‖ =
∥∥S0

−1
∥∥ = 1.

Then S0 is a fixed point to an LFT FB of type (II) if and only if − (S∗0)−1 is a fixed
point to an LFT FB∗ of type (I).

Proof. Let S0 be a fixed point of an LFT FB of type (II). By Proposition 5.1

B21 = S0B11 −B22S0.

By the assumption of the theorem S0 is a bijection, i.e., the bounded linear operator
(S0)

−1 exists. Then we have

(−S∗0)−1
[
B∗

11 + (B∗
11S

∗
0 − S∗0B∗

22) (−S∗0)−1
]

= B∗
22 (−S∗0)−1 ,

i.e., (−S∗0)−1 is a fixed point of FA with A = B∗.
The second part of the proof can be performed analogously. ¤

Remark. In the formulation of this theorem we require that ‖S0‖ =
∥∥S0

−1
∥∥ = 1

only to provide the invertibility of the operator B∗
11 +B21 (−S∗0)−1. One can extend

the assertion in some directions. For example, considering LFT defining not only
on the unit ball K, but on their natural domains.

Theorem 5.2. An invertible operator S0 is a fixed point to a LFT of type (II) with
invertible A22, or of type Il, or of type IIu with invertible B22, or of type IIl if and
only if S0

−1 is a fixed point to GA−1 (GB−1, respectively).
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Proof. First we deal with a mapping of type IIu with an invertible entry B22 and

‖B21‖ ≤ 1. Thus the matrix B =
(

I 0
B21 B22

)
is invertible too, and C := B−1 =

(
I 0

−B22
−1B21 B22

−1

)
is a minus-operator in X by Proposition 2.2.

Recall that in the general case of a minus-operator with invertible C22 and
‖C22

−1C21‖ ≤ 1, the mapping GC of the open unit ball of the space L(X(2), X(1))
is defined as follows:

GC(Z) = (C12 + C11Z) (C22 + C21Z)−1 ,

where Z ∈ L
(
X(2), X(1)

)
with ‖Z‖ < 1. In particular, for the matrix C = B−1

defined above we have
∥∥C22

−1C21

∥∥ = ‖ −B21‖ ≤ 1 and

GC(Z) = Z
(
B22

−1 −B22
−1B21Z

)−1
.

Let S0 be a fixed point to FB, i.e., B21 + B22S0 = S0. Then

−B22
−1B21S0

−1 + B22
−1 = B22

−1
[− (I −B22) S0S0

−1 + I
]

= B22
−1B22 = I.

Consequently, S0
−1

(
B22

−1 −B22
−1B21S0

−1
)

= S0
−1, i.e., S0

−1 is a fixed point to
the mapping GC(Z) = Z

(−B22
−1B21Z + B22

−1
)−1.

It is easy to show that the inverse statement is also true: if S0 is a fixed point to
LFT of type Iu such that both A22 and S0 are invertible operators, then S0

−1 is a
fixed point to GA−1 .

In the case of LFT FB of type IIl the matrix B =
(

B11 0
B21 I

)
is evidently

invertible, and one can perform a consideration analogous to the above one. ¤
Now we turn to the KE-property for affine mappings. First for given FT of type

(II) we find a general affine solution FT to the following Schröder equation

(5.4) FT ◦ FB = F eB ◦ FT , where B̃ = diag B.

Theorem 5.3. Let X2 be reflexive. Let FB be an LFT of type (II) with an invertible
entry B22, and let S0 ∈ K be its fixed point. Then for any invertible operators T11

and T22 commuting with B11 and B22, respectively, the affine mapping

(5.5) FT (K) := T22(K − S0)T11
−1

is a solution to the Schroeder’s equation (5.4). Conversely, any affine mapping
satisfying (5.4) has the form (5.5), where the invertible operators T11 and T22 scalar
commute with B11 and B22, respectively, i.e., there is λ 6= 0 such that TiiBii =
λBiiTii.

Proof. Sufficiency. Consider the operator T =
(

T11 0
−T22S0 T22

)
, where T11, T22

and S0 satisfy the conditions of the theorem. Consider the corresponding affine
mapping FT , that is, LFT of type (II). According to the “chain rule”, to prove the
equality (5.4), it is sufficient to show that

(5.6) TB = B̃T.

The latter equality can be checked directly by using Proposition 5.1.
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Necessity. By [11, Theorem 3.1] it follows by (5.4) that there exists λ ∈ C such
that

(5.7) TB = λB̃T.

The latter means that the operators T11 and T22 scalar commute with B11 and B22,
respectively. The proof is complete. ¤

6. The Duality Theorem and the KE-property

In this Section as in Theorems 4.3 and 4.4 we assume that the spectrum σ(B̃)
of the operator B̃ = diag B does not separate zero and infinity. It follows by
Theorem 5.3 that the family {F t}t≥0, where

F t = F−1
T ◦ F eBt ◦ FT ,

is a semigroup of affine mappings acting on the whole space L(X1, X2) which is a
solution to the KE-problem in this space. At the same time, these affine mappings
can be not self-mappings of the unit ball K.

Example. Let F (z) = i
4

(
z − 1√

2

)
+ 1√

2
be an affine mapping of the complex plane

C1 related to the operator B =
(

1 0
4−i
4
√

2
i
4

)
. There are infinitely many semigroups

{F t
k}t≥0, k ∈ Z, acting on C1 such that F is embedded into any one of them.

Namely,

F t
k(z) =

eit(π
2
+2πk)

4t

(
z − 1√

2

)
+

1√
2

.

At the same time, it is easy to check that the given function F is a self-mapping of
the open unit disk ∆, but no semigroup {F t

k}t≥0 is a semigroup of self-mappings of
∆. For instance, one can check that for t = 0.5 no function

F 0.5
k (z) =

ei(π
4
+πk)

2

(
z − 1√

2

)
+

1√
2
, k ∈ Z,

maps ∆ into ∆, that is F 0.5
k is not a self-mapping of ∆.

Below in Theorems 6.1 and 6.3 we impose some additional restrictions on the
block-matrices A and B providing LFT’s FA of type (I) and FB of type (II) to
have the KE-property.

In the sequel we use the following notation:

(6.8) γ := inf
t≥0

1− ‖Bt
22‖

‖I −Bt
22‖

and

(6.9) δ := inf
t≥0

1− ∥∥B11
−t

∥∥
∥∥I −B11

−t
∥∥ .
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Theorem 6.1. Let B11 ∈ L(X1) and B22 ∈ L(X2). Assume that both their spectra
σ(B11) and σ(B22) do not separate zero and infinity, and ‖Bt

22‖ ≤ 1 (or
∥∥B11

−t
∥∥ ≤

1) for all t ∈ R+. Then
a) the block-matrix

B =
(

I 0
(I −B22)S0 B22

)

of type IIu (or

B =
(

B11 0
S0(B11 − I) I

)

of type IIl) is a plus-operator for all S0 with ‖S0‖ ≤ γ (or ‖S0‖ ≤ δ, respectively);
b) the corresponding LFT FB of type (II) has the KE-property.
Moreover, in this case the point S0 is a common fixed point for the semigroup

{F t}t∈R+ of self-mappings of the ball K corresponding to the semigroup of linear
operators Bt.

Proof. We will prove this theorem for the case of LFT’s of type IIu. To prove
the first assertion we have to show that for any positive vector x = (x1, x2) ∈
X1 ⊕X2, xi ∈ Xi, the vector Bx is also positive, i.e., the inequality ‖x1‖ ≥ ‖x2‖
implies ‖x1‖ ≥ ‖(I −B22)S0x1 + B22x2‖. Indeed, by (6.8) we have ‖S0‖ ≤ 1−‖B22‖

‖I−B22‖
and consequently

‖(I −B22)S0x1 + B22x2‖ ≤ ‖(I −B22)S0x1‖+ ‖B22x2‖
≤ (1− ‖B22‖)‖x1‖+ ‖B22‖‖x2‖ ≤ ‖x1‖.

Further, to prove the second assertion we note that in our assumption one can
calculate

Bu
t =

(
I 0

(I −B22)S0 B22

)t

=
(

I 0
(I −Bt

22)S0 Bt
22

)
.

Thus the LFM FBu
t generated by Bu

t is actually affine and has the form

FBu
t(K) = (I −Bt

22)S0 + Bt
22K.

It is clear: FBu
t(S0) = S0. Moreover, FBu

t ◦ FBu
s = FBu

t+s . To complete the proof
we just estimate FBt(K) for any K ∈ K:

‖FBu
t(K)‖ ≤ ‖(I −Bt

22)S0‖+ ‖Bt
22K‖ ≤ (1− ‖Bt

22‖) + ‖Bt
22‖ · ‖K‖ < 1.

So, FBu is embeddable into {FBu
t}.

The case of LFT’s of type IIl can be considered analogously. ¤

The following assertion follows immediately from Theorem 6.1 and, in fact, gives
examples for explicit estimation of γ and δ.

Corollary 6.1. Let X = H be a Hilbert space, and let B22 ∈ L(H2) be such that

(6.10) cI ≤ B22 ≤ dI

(or let B11 ∈ L(H1) be invertible with cI ≤ B−1
11 ≤ dI), where 0 < c ≤ d < 1.

Suppose that S0 ∈ L(H1,H2) satisfies ‖S0‖ ≤ ln d

ln c
. Then σ(B22) (or σ(B11)) does
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not separate zero and infinity and the LFT FB of type (II) with

B =
(

I 0
(I −B22)S0 B22

) (
or B =

(
B11 0

S0(I −B−1
11 ) I

))

has the KE-property.

Proof. We just calculate:

γ = inf
t≥0

1− ‖Bt
22‖

‖I −Bt
22‖

≥ inf
t≥0

1− dt

1− ct
=

ln d

ln c
.

By the same way one can estimate δ. ¤
To throw over these results to LFT’s of type (I) we need the following duality

theorem.

Theorem 6.2. Let FD be a LFT with a triangular block-matrix D such that D22

is a bijection of X2. Then the following two assertions are equivalent:
(i) FD has the KE-property;
(ii) FD∗ has the KE-property.

Proof. Let D = A be upper triangular, that is A21 = 0. In terms of the block-matrix
A the KE-property for FA means that At is a plus-operator for all t ∈ R+. By the
definition of At (see Section 2) it follows that (A∗)t =

(
At

)∗. So, it is enough to
prove that

(
At

)∗ is a plus-operator on X∗ for all t ∈ R+. Since A22 is a bijection
of X2, then A22

t =
(
At

)
22

is also a bijection of X2 (see Section 2). Hence by
Proposition 3 [10] it follows that

∥∥(
At

)
12

∥∥ ≤ 1, and by Theorem 2.1 [8] we obtain
that

(
At

)∗ is a plus-operator.
Now suppose that D = B is a lower triangular plus-operator, that is, B12 = 0.

Arguing as above we conclude that
(
Bt

)∗ is a plus-operator on X∗. This completes
the proof. ¤

As a result of application of Theorem 6.2 (the duality theorem), we obtain the
following

Theorem 6.3. Let A11 ∈ L(X1) and A22 ∈ L(X2). Suppose that both their spectra
σ(A11) and σ(A22) do not separate zero and infinity, and ‖At

22‖ ≤ 1 (or
∥∥A11

−t
∥∥ ≤

1) for all t ∈ R+. Denote

γ̃ := inf
t≥0

1− ‖At
22‖

‖I −At
22‖

and

δ̃ := inf
t≥0

1−
∥∥A11

−t
∥∥

∥∥I −A11
−t

∥∥ .

Then
a) the block-matrix

A =
(

I S0
∗(I −A22)

0 A22

)

of type Iu (or

A =
(

A11 (I −A−1
11 )S0

∗

0 I

)



TRIANGULAR PLUS-OPERATORS IN BANACH SPACES 185

of type Il) is a plus-operator for all S0 with ‖S0‖ ≤ γ̃ (or ‖S0‖ ≤ δ̃, respectively);
b) the corresponding LFT FA of type (I) has the KE-property.

Remark. In the case when X = H is a Hilbert space using Theorem 6.2 we get the
following assertion which is dual to Corollary 6.1:

Let A22 ∈ L(H2) be such that cI ≤ A22 ≤ dI (or let A11 ∈ L(H1) be invertible
with cI ≤ A−1

11 ≤ dI), where 0 < c ≤ d < 1. Suppose that S0 ∈ L(H1,H2) satisfies

‖S0‖ ≤ ln d

ln c
. Then σ(A22) (or σ(A11)) does not separate zero and infinity and the

LFT FA of type (I) with

A =
(

I S∗0(I −A22)
0 A22

) (
or A =

(
A11 (I −A−1

11 )S∗0
0 I

))

has the KE-property.
Note that in the case when A is of type Iu this assertion is slightly weaker then

Theorem 4.7 [6] or Theorem 6.5 [7].
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