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RESISTIVE NETWORKS WITH MONOTONE N-PORTS

BRUCE D. CALVERT

Abstract. This paper presents an existence result on nonlinear networks con-
structed from N -ports with i − v characteristics which are monotone, but not
necessarily surjective. Our result extends the work of Desoer and Wu, who gave
conditions for the existence of solutions for networks of two terminal elements.
We also extend the two terminal theory by including ideal diodes, in fact all
monotone i− v characteristics.

1. Introduction

As early as 1947 R.Duffin [10] produced existence theorems for nonlinear resistive
networks, yet there are open questions in this field, see e.g. [17] on transistor
networks. Given a resistive network, consisting of nonlinear resistors with a specified
relation between the current and voltage in each resistor, and current and voltage
sources, the basic question is whether there is a unique set of resistor currents and
voltages which satisfy these relations, and Kirchhoff’s laws.

One strand of the literature deals with monotone networks, in which each of
these branch relations is assumed to be given by a maximal monotone relation in
the real line R, usually required to be the graph of a function from R to R, and
in this paper we focus on monotone networks only. Minty [12] gave key results
on solutions to a given monotone network. Others studied the class of networks
formed by adding arbitrary sources to a given monotone network. The first results
naturally assumed the branch relations were homeomorphisms of R, but the work
of Desoer and Katzenelson [8] shows it is enough to assume the resistors which are
only current controlled form a loop free set and resistors which are only voltage
controlled form a cut free set. Desoer and Wu [9], stimulated by Sandberg and
Willson’s paper [15], took this further and gave necessary and sufficient conditions
for existence and uniqueness, by introducing type H resistors. There has been no
extension of their theorem until now.

This article generalises Desoer and Wu’s sufficiency result [9] to a network in
which each resistor is an N -port, having N pairs of terminals, rather than a 1-
port, having two terminals. We carefully discuss N -ports in the next section. This
paper also extends [9] in the two terminal case, to include all maximal monotone
relations. Ohtsuki et al. [13] and [14] gave sufficient conditions for a network of
N -port resistors to have a solution; their argument works if we assume each to be
coercive, continuous and strictly monotone. Further work under these assumptions
appears in [5]. In this paper we introduce N -port resistors of type H, which do not
assume the current voltage relation is surjective, to parallel the hypotheses of [9].
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We mention the work of Anderson et al. [1], who studied the interconnection of
two nonlinear N -ports, and assumed the current voltage relation to be given by the
subdifferential of a convex function.

We gain motivation to work on monotone N -ports from the paper [11] by
Katzenelson and Unikovski, which shows that the charge on a MOS transistor is a
monotone function of the voltage, and thus the transistor is a 4-terminal monotone
capacitor. Resistive network theory relates to capacitive networks, and so one is
motivated to see how these ideas can apply there.

2. Preliminaries

Our purpose is to study resistive electrical networks with elements which are not
necessarily two terminal (one port).

The basic notions and results used in this work can be found in works on circuits
and on monotone operators and convexity. For general background on circuits,
including N -ports and other mutiterminal resistive devices, see for example [6] and
[7]. We suggest [16], [4], [2] and [3] for convexity and related concepts. One must
look at the paper [9] by Desoer and Wu, some of whose results we extend. We now
define a resistive network, and give some background description of N -ports.

Definition 1. Following Ohtsuki et al. [13], [14], a resistive network is a finite di-
rected graph, whose branches are partitioned into independent sources and resistive
N -ports, where a resistive N -port is regarded as a set of N branches in a network,
labelled 1 to N , together with a set of allowable current-voltage pairs (i, v), where
v ∈ RN and i ∈ RN , called the i − v characteristic. (N is not the same for all
equivalence classes, so multi-port might be a better word.) An independent source
is a current source or a voltage source. For a current source, the current is fixed
and the voltage is arbitrary. For a voltage source, the current is arbitrary and the
voltage is fixed.

It is often assumed, e.g. in [13], [14] that the allowable current - voltage pairs
are given by a “hybrid representation” in which the currents in branches 1 to S and
the voltages in branches S + 1 to N are a function of the voltages in branches 1 to
S and the currents in branches S + 1 to N , for some S. We see from Theorem 2 of
[14] that one may pass from one hybrid description to another. We will use S = N
or zero, to give current a multivalued function of voltage, or the other way round,
because of the following result.

Proposition 1. Suppose B is a maximal monotone operator in RN , the direct sum
RS + RN−S, and we consider a hybrid representation; (ia, ib) ∈ RS + RN−S and
(va, vb) ∈ RS + RN−S form an allowable pair iff (ia, vb) ∈ B(va, ib). Define A from
RN to subsets of RN by (va, vb) ∈ A(ia, ib) iff (ia, vb) ∈ B(va, ib). Then A is maximal
monotone.

Proof. Directly from the definition. ¤

Instead of considering an N -port as some branches of a graph, together with the
i − v characteristic, we may alternatively consider a resistive N -port as a device
with N pairs of terminals, such that the current into one terminal of any pair must
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equal the current out of the other, together with a set of allowable current-voltage
pairs (i, v), where v ∈ RN and i ∈ RN , called the i − v characteristic. The hybrid
representation describes the case when we apply voltage sources across the terminals
pairs 1 to S and apply current sources between the terminal pairs S + 1 to N , and
these determine the currents through the voltage sources and the voltages across
the current sources. A resistive circuit is obtained by joining together various sets
of terminals of N -ports, including current and voltage sources.

The resistive network of Definition 1 is mathematically the same as a network of
two terminal resistors, or 1-ports, except that the branch equations do not merely
give, for each branch b, a relation between the current ib and voltage vb only. In-
stead, the branches are coupled; for branches b1, . . . bN , giving an N -port, the set
of allowable currents ib1 to ibN

depends on the voltages vb1 . . . vbN
.

The following point is important, not for the results of this paper but to reconcile
it with other writings. Let D be a resistive device in which there are N+1 terminals,
with a relationship between the N -vector of voltages between node N + 1 and each
other node and the N -vector of currents into each node except N + 1 (the current
out of node N +1 being their sum). Then D can be modelled by an N -port together
with a short between N port terminals, one from each pair.

In some texts we see a putative 2-port made from a three terminal transistor,
by shorting one terminal, say the base, to two port terminals, and using the other
two transistor terminals as the other port terminals. However, the current into one
terminal of a port need not then be the current out of the other. Nevertheless, this
transistor is perfectly well modelled by a 2-port with one terminal from each port
joined to give the base terminal, as in [14] Figure 2(b) for example.

Suppose B denotes the branch set of a resistive network. We say that x ∈ RB

satisfies Kirchhoff’s current law, written KCL, to mean the sum of the xb into any
node is zero. We say that x ∈ RB satisfies Kirchhoff’s voltage law, written KVL,
to mean the sum of the xb around any loop is zero.

3. Networks of 1-port resistors

We are first going to consider a network of 1-port resistors.

Definition 2. We define a one-port (two terminal) monotone resistor b to have
i− v characteristic a maximal monotone set, Mb. Equivalently there is a maximal
monotone operator v̂b from R to subsets of R such that v ∈ v̂b(i) iff (i, v) is an
allowable current-voltage pair. We write îb for the inverse of v̂b, i.e. i ∈ îb(v) ⇔
v ∈ v̂b(i). Write D(v̂b) for {i ∈ R : v̂b(i) 6= ∅}, and D(îb) for {v ∈ R : îb(v) 6= ∅}.
We say, following [9], that b is of type U (for unbounded) if i and v are unbounded
above and below on Mb, i.e. D(v̂b) = R and D(îb) = R. We say, it is of type H
(for half) if one variable is unbounded above and below on Mb, and the other is
bounded below but not above, after reorienting the branch if necessary. We say it
is of type B (for bounded) if one variable is unbounded above and below on M , and
the other is bounded. We say it is of type Q (for quarter) if i is bounded below on
Mb, and v is bounded above on Mb, after reorienting the branch if necessary. We
say, following [9] as much as possible, but with multivalued functions making the
terminology suspect, that b is current controlled (c.c.) to mean i is not bounded
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above or below on Mb, i.e. D(v̂b) = R. We say that b is voltage controlled (v.c.) to
mean v is not bounded above or below on Mb, i.e. D(îb) = R.

Let η be a resistive network of monotone 1-ports, with branch set B. A solution
consists of i ∈ RB satisfying KCL, and v ∈ RB satisfying KVL, such that (ib, vb) ∈
Mb for all b ∈ B.

Theorem 1. Let η be a resistive network of monotone 1-ports. For all independent
voltage sources with pliers entries, (i.e. in series with branches) and all independent
current sources with soldering iron entries (i.e.between nodes in the same compo-
nent) the network formed from η and the sources has a solution iff:

(1) every loop of branches of c.c. resistors and type Q resistors contains a type
U branch, or two type H branches oppositely directed with respect to the
loop, or two type Q branches oppositely directed, or a Q and an H similarly
directed, and

(2) every cutset of branches of v.c. resistors and type Q resistors contains a
type U branch, or two type H branches oppositely directed with respect to
the cutset, or two type Q branches oppositely directed, or a Q and an H
oppositely directed.

Proof. ⇐ For each loop L the sum,
∑

b∈L D(v̂b) = R. For each cutset C the sum,∑
b∈C D(̂ib) = R. By [12], Theorem 4.1, there exist i1 : B → R satisfying KCL, and

v1 : B → R satisfying KVL, such that for all b ∈ B, i1b ∈ D(̂ib), and v1
b ∈ D(v̂b). By

[12], Theorem 8.1, the network has a solution.
⇒ As in [9], we suppose the second condition fails, so there is a cutset C such that

the sum of the currents across C is bounded above, after reorienting C if required.
Then apply a current source between nodes in the two components given by C
so that the current flow across C cannot be zero, contradicting the existence of a
solution. If the first condition fails we obtain a contradiction too. ¤

Note that our two terminal monotone resistors are partitioned into the types
U, H, B and Q, but in [9] all resistors were assumed to be U, H or B, and Mb

was assumed to be the graph of a function from R to R. We leave untreated the
question of uniqueness and continuity of solutions, which was answered in [9] for
their network.

4. N-port resistors: Preliminaries

Now we extend the idea of types U and H to N -port resistors. Definition 3 is
consistent with Definition 2. Given ψ : RN → R ∪ {∞}, we say ψ is proper if there
exists x ∈ RN such that ψ(x) < ∞, we say ψ is lower semicontinuous to mean that
for all k ∈ R, {x ∈ RN : ψ(x) ≤ k} is closed, and we say ψ is convex to mean that
for all x ∈ RN , all y ∈ RN , and all λ ∈ [0, 1], ψ(λx+(1−λ)y) ≤ λψ(x)+(1−λ)ψ(y).
Suppose ψ : RN → R ∪ {∞} is a lower semicontinuous proper convex function. For
x ∈ RN , we let ∂ψ(x) = {w ∈ RN : for all y ∈ RN , ψ(y) ≥ ψ(x) + 〈w, y−x〉}. This
gives ∂ψ as a multivalued operator from RN to RN , called the subdifferential of ψ.

The book [2] by Bazaraa et al. gives a background on convex analysis and
includes, in Chapter 1.2, an application to electrical networks. Also [4], Section
2.1 gives an exercise on resistive networks.
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Definition 3. We define a monotone resistive N -port, or resistor, where we have
labelled the branches 1 . . . N , to have as i − v characteristic the graph of v̂, the
subdifferential of a lower semicontinuous proper convex function ψ : RN → R∪{∞}.

Thus v̂ is a multivalued maximal monotone operator from RN to RN , and the
current i and voltage v satisfy v ∈ v̂(i). The inverse of v̂ is written î, i ∈ î(v).
We write D(v̂) for {i ∈ RN : v̂(i) 6= ∅}, the “domain” of v̂, and R(v̂) for {v ∈
RN : there exists i ∈ RN , v ∈ v̂(i)}, the “range” of v̂. This usage of “domain” and
“range” extends to all multivalued operators, including î. Thus R(v̂) = D(̂i). We
say that an N -port is c.c. to mean D(v̂) = RN , and v.c. to mean D(̂i) = RN . In
the next section we will consider the set D of resistors in a network, and for all
d ∈ D, we have v̂d, îd, and ψd.

For x ∈ RN and y ∈ RN we write 〈x, y〉 for the dot product Σixiyi. We use the
Euclidean norm. In the next definition and in the sequel we write 〈̂i(v), v〉/‖v‖ → ∞
to mean 〈i, v〉/‖v‖ → ∞ for all i ∈ î(v).

Definition 4. We say that a branch b ∈ {1 . . . N}, in a v.c. monotone resistive
N -port is of type U to mean 〈̂i(v), v〉/‖v‖ → ∞ as vb → ±∞, vb being the voltage
for branch b. We say that a branch b in a v.c. resistor is of type H to mean
〈̂i(v), v〉/‖v‖ → ∞ as vb →∞, after choosing an orientation for b, but it is not true
that 〈̂i(v), v〉/‖v‖ → ∞ as vb → −∞. Analogously we define a branch b in a c.c.
resistor d to be of type U or type H.

In the next lemma, we consider an arbitrary branch in an N -port to be the first
one, so x1 refers to the first component of x ∈ RN . The result is like part of
Proposition 2.14 of [3]. We use r.i.(K) to denote the relative interior of a convex
set K.

Lemma 1. Suppose ψ : RN → R ∪ {∞} is a lower semicontinuous proper convex
function. The following are equivalent:

(i) For all u ∈ D(ψ), 〈y, x− u〉/‖x‖ → ∞ as x1 →∞, y ∈ ∂ψ(x).
(ii) ψ(x)/‖x‖ → ∞ as x1 →∞.
(iii) There exists u ∈ r.i.(D(ψ)), 〈y, x− u〉/‖x‖ → ∞ as x1 →∞, y ∈ ∂ψ(x).

Proof. (i) ⇒ (iii) Nothing to prove, since the relative interior is nonempty in finite
dimensions. (iii) ⇒ (ii). Let u ∈ r.i.(D(ψ)) and let w ∈ ∂ψ(u). Replace ψ(x)
by φ(x) = ψ(x + u) − 〈w, x〉 − ψ(u), giving φ(0) = 0, and ∂φ(0) 3 0, so φ is
minimised at 0. Then for y ∈ ∂ψ(x), there is z ∈ ∂ψ(x + u) such that 〈y, x〉/‖x‖ =
〈z−w, (x + u)− u〉/‖x‖ ≥ 〈z, (x + u)− u〉/‖x‖− ‖w‖. By (iii), 〈y, x〉/‖x‖ → ∞ for
x1 →∞, and y ∈ ∂ψ(x).

Now there is an increasing function c(t) ≥ 0 defined for all t ≥ 0 such that
c(t) → ∞ as t → ∞, and for all x ∈ D(∂φ) with x1 ≥ 0, and all y ∈ ∂φ(x),
〈y, x〉 ≥ c(x1)‖x‖. Take x ∈ D(φ) with x1 > 0 and parametrise the line from 0 to x
using the first variable. Let ξ = x−1

1 x and then r(t) = tξ for t ∈ [0, x1]. Now φ(r(t))
is absolutely continuous on [0, x1], giving φ(r(x1)) = φ(r(0))+

∫ x1

0
d
dtφ(r(t))dt giving

φ(x) = φ(0) +
∫ x1

0 〈yt, ξ〉dt, where yt ∈ ∂φ(tξ) for all t, by Exercise 3.1.29 of [4].
Hence,

φ(x)
‖x‖ ≥ 1

‖x‖
∫ x1

0
c(t)‖ξ‖dt
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=
1
x1

∫ x1

0
c(t)dt

→∞ as x1 →∞.

Now for y ∈ RN , ψ(y) = φ(y−u)+ 〈w, y−u〉+ψ(u), so ψ(y)/‖y‖ → ∞ as y1 →∞.
(ii) ⇒ (i) . Given x ∈ D(∂(ψ)), and y ∈ ∂ψ(x), ψ(u) + 〈y, x− u〉 ≥ ψ(x). Hence

(ii) ⇒ (i) ¤
In the next lemma, e1 refers to (1, 0, . . . , 0), the first element of the usual basis

of RN .

Lemma 2. Suppose ψ : RN → R is a lower semicontinuous convex function, i.e.
D(ψ) = RN . Suppose ψ(x)/‖x‖ → ∞ as x1 → ∞. Then for all a ∈ RN there is
ta > 0 such that for all t > ta, a + te1 ∈ int(R(∂ψ)), the interior of the range of
∂ψ.

Proof. Let b ∈ RN be given.
We claim there is a sequence xn with ∂ψ(xn) = b+tn(b)e1 with tn →∞. Consider

the function ψb(x) = ψ(x) − 〈b, x〉. Take a sequence kn ↗ ∞ with ψb(x) ≥ ‖x‖
if x1 ≥ k1. For each n, take an ∈ RN with first component an

1 > kn. Define
Kn = {x ∈ RN : x1 ≥ kn, ψb(x) ≤ ψb(an)}. For x ∈ Kn, ‖x‖ ≤ ψb(x) ≤ ψb(an).
Hence Kn is nonempty, closed and bounded. Let the function x 7→ x1 be maximised
on Kn at zn. Let tn(b) be the Lagrange multiplier, defined by ∂ψb(zn) 3 tn(b)e1,
(Prop 2.1.1 of [4]). Note zn

1 > kn, so tn(b) = ‖∂ψb(zn)‖ → ∞ as n → ∞, proving
the claim.

Let a ∈ RN be given. For i = 2 . . . n, let bi = a − ei and Bi = a + ei and write
B for the the set of all the bi and Bi. For each b ∈ B, there is a sequence xn with
∂ψb(xn) = tn(b)e1 with tn → ∞. Let ta = max{t1(b) : b ∈ B}. Then the convex
hull of the range of ∂ψ contains b + [ta,∞)e1 for all b ∈ B. Therefore int(R(∂ψ))
is nonempty, and by Proposition 2.9 of [3], the interior of the convex closure of the
range of ∂ψ is the interior of the range of ∂ψ. Hence a + (ta,∞)e1 is contained in
the interior of the range of ∂ψ. ¤

The next example shows that Lemma 2 need not hold when the domain of ψ is
a general convex set.

Example 1. Suppose ψ(x1, x2) = sec(x1)+x2 for x1 ∈ (−π/2, π/2). Then b+te1 =
∇ψ(z) only if b2 = 1. Here ∇ψ(z) denotes the gradient of ψ at z.

Lemma 3. Suppose ψ : RN → R is a lower semicontinuous convex function. Sup-
pose ψ(x)/‖x‖ → ∞ as x1 → ±∞. Then ∂ψ is coercive, ( there exists x0 such that
〈∂ψ◦(x), x − x0〉/‖x‖ → ∞ as ‖x‖ → ∞ [3] Cor 2.4). Here ∂ψ◦(x) denotes the
element of least norm in ∂ψ(x).

Proof. Add to the previous proof, to see that for a ∈ RN , b− te1 ∈ R(∂ψ) for arbi-
trarily large t and all b ∈ B. Hence, cl(R(∂ψ)) contains B+Re1. Since int(R(∂ψ)) =
int(cl(R(∂ψ))), a+Re1 ⊂ R(∂ψ). Thus ∂ψ is onto RN , and by [3], Proposition 2.14,
∂ψ is coercive. ¤
Corollary 1. A v.c. monotone resistive N -port containing a type U branch is c.c.,
and vice versa.
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5. Existence of Solutions

The main result, Theorem 2, extends the sufficient conditions of Theorem 1 of
Desoer and Wu [8], by allowing N -ports.

Note that in a type Q 1-port resistor, there are intervals [a,∞) ⊂ D(v̂) ⊂ [A,∞),
and we now use this to give a definition of weak type Q.

Definition 5. We say a monotone resistive N -port is of weak type Q to mean its
i− v characteristic is the graph of the operator v̂, defined on D(v̂), such that after
orienting branches, there are a ∈ RN and A ∈ RN such that for all i ∈ D(v̂), i ≥ A,
and for all i ≥ a, i ∈ D(v̂). We refer to its branches as weak type Q branches. Here
we used the usual partial ordering on RN , i ≥ a means that for all j, ij ≥ aj .

Example 2. Suppose b is a one-port resistor, v.c. and of type H, then b is weak
Q, but not Q since v is not bounded above.

Condition 1. We suppose that the resistive network each monotone resistive N -
port d is v.c. or c.c. or is of weak type Q. We suppose also that int(D(v̂d)) is
nonempty.

Definition 6. A solution to a resistive network is a set of branch currents, satisfying
Kirchhoff’s current law, and branch voltages, satisfying Kirchhoff’s voltage law, such
that for each resistive N -port, the current-voltage pair is in the i− v characteristic,
and also for each source.

Theorem 2. Let η be a resistive network of monotone resistors, satisfying Condi-
tion 1. Suppose:

(1) Every loop of branches of c.c. resistors and weak type Q resistors contains
a type U branch, or at least two type H branches oppositely directed with
respect to the loop, or two weak type Q branches oppositely directed, or a
weak Q and a H similarly directed, and

(2) Every cutset of branches of v.c. resistors and weak type Q resistors contains
a type U branch, or two type H branches oppositely directed with respect to
the cutset, or two weak type Q branches oppositely directed, or a weak Q and
a H oppositely directed.

For all independent voltage sources with pliers entries, (i.e. in series with
branches) and all independent current sources with soldering iron entries (i.e. be-
tween nodes in the same component), the network formed from η and the sources
has a solution.

Proof. Note that we may replace each current source by a finite sequence of current
sources, each one across a port. Hence we may suppose each independent source is
zero, by incorporating it into the characteristic by translation. Let D denote the
set of resistors. For d ∈ D, the translates of îd and v̂d satisfy Condition 1, and
they also satisfy the conditions on type U, weak Q, and H elements in loops and
cutsets. Let B be the branch set of η, N the node set, and write B(d) for the
branch set of a resistor d. Let K = {i ∈ RB : i satisfies KCL } be the vector space
of the branch-currents, K⊥ = {v ∈ RB : v satisfies KVL }, the vector space of the
branch-voltages. The plan is to define the function ψ in (1), and then minimize it
on K.
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For all resistors d ∈ D, v̂d is the subdifferential of ψd, which is proper, lower
semicontinuous, and convex. Note we have B = ∪d∈DB(d), so that any vector
x = {xb}b∈B ∈ RB gives, and is given by, a collection of vectors xd ∈ RB(d), for all
d ∈ D. We define ψ : RB → (−∞,∞], by

(1) ψ(x) =
∑

d∈D

ψd(xd).

We claim

(2) ψ(x)/‖x‖ → ∞ as ‖x‖ → ∞, x ∈ K.

Let 〈xn〉 be a sequence in K, and suppose ‖xn‖ → ∞ as n →∞. We claim there
is a loop L and δ > 0 such that

(3) xn
b ≥ δ‖xn‖

for all b ∈ L, after replacing {xn} by a subsequence, and positive current flows
the same way in each branch of L for each n. Since B is finite, there is a branch
b1 and a subsequence, written 〈xn〉 again, such that |xn

b1
| = max{|xn

e | : e ∈ B},
and the direction of positive current flow is the same for all n. If b1 is incident
to only one node we are done. Otherwise, for each node n1 that b1 is incident to,
KCL shows that there is a second branch b2 incident to this node, for which |xn

b2
| ≥

xn
b1

/(degree(n1) − 1), after replacing {xn} by a subsequence, and the direction of
positive current flow is into n1 on one branch and out of n1 on the other. Continuing,
since there are only a finite number of branches, we obtain a loop L as claimed.

Note that there are k1 > 0 and k2 > 0 such that for all resistors e and all
xe ∈ RB(e),

(4) ψe(xe) ≥ −k1‖xe‖ − k2.

Suppose there is a branch b ∈ L with b in a v.c. resistor d. Since v̂d is onto, and in
a finite dimensional space,

(5) ψd(xd)/‖xd‖ → ∞
as ‖xd‖ → ∞, by Rem 2.3 of Brezis [3]. By (1),(3) (4) and (5), ψ(xn)/‖xn‖ → ∞
as n →∞, and hence (2) holds.

Suppose all branches in L are c.c. or weak type Q.
Suppose the branch b of L is of type U, and in the resistor d . Then d is v.c. by

Cor 1, giving (2) again.
Suppose there are two type H branches in L, say b1 and b2, in resistors d1 and

d2, oriented opposite ways. One of them say b1, is oriented the same as the positive
current. Then ψd1((x

n)d1)/‖(xn)d1‖ → ∞ as n →∞. Hence (2) holds again.
Suppose there are two branches in L, say b1 and b2, in weak type Q resistors d1

and d2, oriented opposite ways. This bounds the currents in b1 and b2, contradicting
our supposition that the current diverged to infinity.

Suppose there are two branches in L, say b1 and b2, of type H and weak type Q
respectively, in resistors d1 and d2, oriented the same way. Since the current xn

b2
is bounded below, xn

b2
→ ∞, and b2 is oriented as the positive current. Then

the type H branch, b1, is oriented the same as the positive current, and then
ψd1((x

n)d1)/‖(xn)d1‖ → ∞ as n →∞. Hence (2) holds as claimed.
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We claim ψ is proper on K, i.e. there is i ∈ K with ψ(i) < ∞; even more, there
is i ∈ K with id ∈ int(D(∂ψd)) for all d. We recall from Theorem 4.1 of Minty [12]
the following. Consider a finite directed graph. Let us assign to each branch b an
interval Ib. There is an element i ∈ K such that ib ∈ Ib for all b ∈ B iff for every
oriented cutset C, there is ib ∈ Ib for each b ∈ C such that the flow of i across C is
zero, i.e.

∑
b∈C εbib = 0, where εb = 1 if the orientation agrees with that of C, and

-1 otherwise.
We assign Ib to each b as follows. If b ∈ d and d is c.c., then set Ib = R. Suppose d

is v.c. and not c.c. If no branches b ∈ d are of type H, then take a ∈ int(D(v̂d)) and
set Ib = {ab} for each b ∈ d. Supposing some branches b ∈ d are of type H, then set
dH the set of type H branches in d, and take, by repeated applications of Lemma 2,
a ∈ int(D(v̂d)) such that a+

∑
b∈dH

[0,∞)eb ⊂ int(D(v̂d)) and set Ib = {ab} for each
b 6∈ dH , otherwise Ib = ab + [0,∞). Supposing d is of weak type Q, we take a such
that if i ≥ a, then i ∈ int(D(v̂d)), and for each branch b of d, take Ib = ab + [0,∞).

Let C be a cutset. Suppose it has a branch b0 in a current controlled resistor, or
a type U branch b0 in a voltage controlled resistor. Then Ib0 = R, and hence after
choosing any ib ∈ Ib for the other branches b ∈ C, we may choose ib0 so that the
flow across C is zero. Supposing C contains branches in v.c. resistors, including two
type H branches b1 and b2, not similarly oriented with respect to C. After choosing
any ib ∈ Ib for the other branches b ∈ C, we may choose ib1 and ib2 so that the flow
across C is zero. Likewise, if we have in C two opposite directed weak Q branches,
or if there is a weak Q and a voltage controlled H oppositely directed.

Hence there is an element z of the current space K with zb ∈ Ib for all branches
b. Hence for all d ∈ D, zd ∈ int(D(v̂d)) , and so ψ is proper.

Now ψ : RB → (−∞,∞] is proper, convex and lower semicontinuous, and
ψ|K(x) → ∞ as ‖x‖ → ∞. Hence there is i ∈ K at which ψ|K is minimized.
Write φd(x) = ψd(xd) for x ∈ RB and d ∈ D. Now ∂ψ =

∑
d ∂φd is maximal mono-

tone; for this we could use [3] Proposition 2.17, noting that for d and e distinct
resistors, φd((I + λ∂φe)−1x) ≤ φd(x) for all x ∈ RB and λ > 0. And ∂ψ + ∂IK is
maximal monotone by [3] Cor 2.7, since the point z from the previous paragraph
is in int(D(ψ)). Hence

∑
d∈D ∂φd(i) + K⊥ 3 0, where K⊥ is defined in the first

paragraph of this proof. Then take v ∈ K⊥ , such that for all d, vd ∈ v̂d(id), so that
(i, v) is a solution. ¤

Remark. There are topics that this paper does not address. Can one give a version
of Theorem 2 without assuming v̂ is a subdifferential, but merely assuming it to
be monotone? Can one obtain solutions for a network constructed of multiterminal
devices, as in [5], but without coercivity? Can one find conditions which give
uniqueness and continuity of the solution as a funtion of the sources? Can one give
necessary conditions for existence of solutions, as is possible for 1-port networks?
Further questions arise about the topics addressed in this paper. Can one extend
the results of Section 4? Can one give other sufficient conditions for existence of
solutions?

The next example shows that our conditions are not necessary.
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Example 3. Consider η to be two coupled resistors in parallel, between nodes 1
and 2. Suppose i1 and i2 are the currents from node 1 to node 2. Let

v1 = i1 − i2 + tanh(i1 + i2),

v2 = i2 − i1 + tanh(i1 + i2).
Then v̂ is a strictly monotone continuous gradient map, the gradient of 0.5(i1 −
i2)2 + log(cosh(i1 + i2)). Given any current source is between the nodes, and any
voltage sources e1 and e2 in series with the resistors, (current i1 through source e1),
there is a unique solution; choosing one orientation of the sources gives

i1 + i2 = is,

2(i1 − i2) = e2 − e1.

But we do not have 〈v̂(i), i〉/‖i‖ → ∞ as i1 → ∞ or −∞, nor as i2 → ∞ or −∞.
For then the boundedness of tanh would give (i1−i2)2/‖i‖ → ∞, as i1 or i2 diverges
to ∞ or −∞, which is false.

The next example shows that we cannot weaken the requirements on v̂, even if
linear, to being a monotone isomorphism.

Example 4. Consider η to be two coupled resistors in parallel, between nodes 1
and 2. Suppose i1 and i2 are the currents from node 1 to node 2. Let

v1 = i2,

v2 = −i1.

The map v̂ is a monotone linear isomorphism. Given a voltage source e in series
with one of the resistors, there is no solution unless e = 0, and in this case there
are infinitely many solutions.
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Elektronik und Übertragungstechnik 46 (1992), 228-241.

Manuscript received July 23, 2004

revised December 6, 2004

Bruce D. Calvert
Department of Mathematics, University of Auckland, Private Bag 92019, Auckland, New Zealand.

E-mail address: calvert@math.auckland.ac.nz


