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BEST APPROXIMATION TO COMMON FIXED POINTS OF A
SEMIGROUP OF NONEXPANSIVE OPERATORS

ARKADY ALEYNER AND YAIR CENSOR

Abstract. We study a sequential algorithm for finding the projection of a given
point onto the common fixed points set of a semigroup of nonexpansive operators
in Hilbert space. The convergence of such an algorithm was previously established
only for finitely many nonexpansive operators. Algorithms of this kind have been
applied to the best approximation and convex feasibility problems in various fields
of applications.

1. Introduction

Numerous problems in various branches of mathematical and physical sciences
can be reduced to finding a common fixed point of a given family of operators.
Such problems are usually called common fixed point problems. For example, for
projection operators onto given closed convex sets Ci (i ∈ I) in a real Hilbert space,
the common fixed points problem becomes the well-known convex feasibility problem
of finding a point in the intersection ∩i∈ICi, see, e.g., Bauschke and Borwein [3].
Due to the practical and theoretical importance of these problems, algorithms for
finding fixed points of operators continue to be a flourishing area of research in fixed
point theory.

In this paper we study the convergence properties of infinite families of nonex-
pansive operators in Hilbert space. Let us denote by <+ the set of nonnegative
real numbers and by G a given unbounded subset of <+. The set of all fixed
points of an operator T : H → H is denoted by Fix(T ). Let Γ = {Tt | t ∈ G}
be a family of nonexpansive operators on a nonempty closed convex subset C
of a Hilbert space H. Denote by F the set of common fixed points of Γ, i.e.,
F = ∩t∈G Fix(Tt) = {x ∈ C | Ttx = x, for all t ∈ G} and assume that F is
nonempty. Our purpose in this paper is to find the projection of a given point
u ∈ C onto F, denoted by PF u. In contrast with the common fixed point problem,
this problem is the best approximation problem with respect to F . To solve this
problem, we investigate the following general iterative algorithmic scheme.

Algorithm 1.
Initialization: x0 ∈ C is arbitrary.
Iterative step: Given the current iterate xn, calculate the next iterate xn+1

by

(1) xn+1 = αnu + (1− αn)Trnxn,

for all n ≥ 0, where 0 ≤ αn ≤ 1 and {rn}n≥0 ⊆ G is some given sequence.
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In 1967, Halpern [22] first showed that, for u = 0, under certain restrictions on
the scalars {αn}n≥0, any sequence generated by (1) converges strongly to PF 0 for
a single nonexpansive operator T . Ten years later, Lions [24] investigated a more
general case and showed that for any u ∈ C, any sequence generated by (1) converges
strongly to PF u, both for a single nonexpansive operator T and for any finite family
of firmly nonexpansive operators. However, since the restrictions imposed by both
Halpern and Lions on the sequence {αn}n≥0 excluded the obvious candidate αn =
1/n, Wittmann [34] and, later on, Bauschke [2] studied this algorithm for other
sets of conditions on the sequence {αn}n≥0. For any countable family of firmly
nonexpansive operators {Ti}i∈I , with F = ∩i∈I Fix(Ti) nonempty, Combettes [11]
studied a parallel companion of (1). This parallel algorithm has the following form.

Algorithm 2.
Initialization: x0 ∈ C is arbitrary.
Iterative step: Given the current iterate xn, calculate the next iterate xn+1

by

(2) xn+1 = αnu + (1− αn)
∑

i∈I

ωiTixn,

for all n ≥ 0, where 0 ≤ αn ≤ 1, ωi ∈ (0, 1], for all i ∈ I and
∑
i∈I

ωi = 1.

Combettes showed that any sequence {xn}n≥0 , generated by this algorithm, con-
verges strongly to PF u under certain assumptions on the sequence {αn}n≥0. Moti-
vated by the above results, we show here, that if Γ is a semigroup of nonexpansive
operators in a real Hilbert space and satisfies a certain regularity condition, then
the projection from u onto F can be constructed iteratively by using (1). Infinite
pools of operators are more difficult to handle than finite or even countably infi-
nite ones. Elsner, Koltracht and Neumann [17] have done some work on this for a
specially-constructed infinite pool of paracontracting operators and for the common
fixed point problem but not for the best approximation problem, as we do here.

The origin of our work lies in a recent publication by Dominguez Benavides, Lopez
Acedo and Xu [15] who attempted to construct sunny nonexpansive retractions in
Banach spaces in an iterative manner. While reading their work, we discovered that,
regrettably, their Lemma 2.1, which is a central tool in their work, is erroneous.
Subsequently, we started this study which does not replace their work because it
is formulated in a Hilbert space rather then in a Banach space, as Dominguez Be-
navides, Lopez Acedo and Xu attempted to do. Nonetheless, their approach and
techniques motivated and inspired us in the present paper which is organized as
follows. Section 2 contains some known preliminary results in fixed point theory, in
Section 3 we state and prove our main theorem and in Section 4 we give counter-
examples which show that Lemma 2.1 in [15] is not true. The main result of our
present work is the development of Algorithm 1 and its convergence proof. This is
a sequential algorithm for solving the best approximation problem with respect to
common fixed points set of infinitely countable or non-countable families of nonex-
pansive operators in a real Hilbert space. As mentioned above, the validity of this
algorithm was previously established only for families of finitely many nonexpansive
operators. An interesting direction for future research is to combine the approach
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presented here with the work of Deutsch and Yamada [13] who study a generalized
version of the best approximation problem where the objective function belongs to
a certain family of convex functions. A final comment about the novelty of our
results. The main applicational value is for projection algorithms, where the result
is new even if stated in the Euclidean space. This is so because infinite pools of
projection operators play a role if one wishes to include relaxation parameters which
may change as the projection iterations proceed.

2. Preliminaries

In this section we present definitions and some tools that will be used later on
in the proof of our main theorem. Throughout our work, we denote by <+ the set
of nonnegative real numbers, by N the set of nonnegative integers and by H a real
Hilbert space with inner product 〈· , ·〉 and induced norm ‖·‖. The projection of a
point x ∈ H onto a subset C, is a point in C nearest to x. Generally one cannot
assure the existence or uniqueness of such a point, but if C is a nonempty closed
convex set then the projection of x onto C, denoted by PCx, exists and is unique.

2.1. Projection operators and nonexpansive operators.

Definition 3. Given a nonempty closed convex subset C of a Hilbert space H,
the operator that sends every point x ∈ H to its nearest point in C (in the norm
induced by the inner product of H) is called the projection onto C and denoted
by PC , that is, y = PCx if and only if

(3) y ∈ C and ‖x− y‖ = inf {‖x− c‖ | c ∈ C} .

Projection operators are characterized by the following result, see, e.g., Goebel
and Kirk [18, Lemma 12.1].

Proposition 4. Suppose that C is a nonempty closed convex subset of a Hilbert
space H and x ∈ H. Then y = PCx, if and only if y ∈ C and, for all c ∈ C,

(4) 〈c− y, x− y〉 ≤ 0.

Seven different characterizations of (nearest point) projections in Hilbert space
(including the one given above) are assembled and proved in Goebel and Reich [20,
Proposition 3.5]. Projection operators belong to the broader class of nonexpansive
operators.

Definition 5. Let C be some given nonempty subset of a Hilbert space H. An
operator T : C → H is called Lipschitzian if there exists a constant k ≥ 0 such
that, for all x, y ∈ C,

(5) ‖Tx− Ty‖ ≤ k ‖x− y‖ .

The smallest k for which (5) holds is said to be the Lipschitz constant for T and
is denoted by k(T ).

Definition 6. Let C be some given nonempty subset of a Hilbert space H. The
Lipschitzian operator T : C → H is (i) nonexpansive if its Lipschitz constant
k(T ) does not exceed 1, that is ‖Tx− Ty‖ ≤ ‖x− y‖ , for all x, y ∈ C, (ii)
strictly contractive if its Lipschitz constant k(T ) < 1, that is, there exists
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0 ≤ k < 1 such that, ‖Tx− Ty‖ ≤ k ‖x− y‖ , for all x, y ∈ C, (iii) contractive if
‖Tx− Ty‖ < ‖x− y‖, for all x, y ∈ C, such that x 6= y, (iv) firmly nonexpansive
if, ‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉 , for all x, y ∈ C.

Obviously, the class of nonexpansive operators includes all contractions and
strictly contractive operators. Moreover, it contains all isometries (including the
identity operator, denoted by I) and the projection operators (projection operators
are firmly nonexpansive operators which in turn are nonexpansive, see, for example,
[20, Theorem 3.6]). Observe that if T is nonexpansive then all its iterates Tn (that
is, T composed with itself n times, n ∈ N and T 0 = I) are nonexpansive as well.
Now we turn to the existence and structure of the fixed points set of nonexpansive
operators.

Let C be a nonempty subset of a Hilbert space H and let T : C → H be an
operator. A point x ∈ C is called a fixed point of T if Tx = x. The set of
all fixed points of T is denoted by Fix(T ), namely, Fix(T ) = {x ∈ C | Tx = x} .
If T does not have a fixed point, then it is called a fixed point free operator. A
nonexpansive operator may be fixed point free (e.g., the operator Tx = x + y
(y 6= 0) is nonexpansive and does not have any fixed point) and, obviously, when
such an operator has a fixed point it need not be unique (e.g., the identity operator).
Moreover, in some spaces the fixed points sets of nonexpansive operators may not
be convex and may even be disconnected (e.g., [18, Example 3.6 and Example 3.7]).
The quest for geometrical conditions on C which will guarantee the existence of
at least one fixed point for each nonexpansive self-operator has led to an extensive
fixed point theory for nonexpansive operators. It turns out that in a Hilbert space
there is a useful property that the nonexpansive operators have, as the following
proposition shows.

Proposition 7. [18, Lemma 3.4]. Suppose that T is a nonexpansive self-operator
of a nonempty closed convex subset of a Hilbert space H. Then Fix(T ) is closed and
convex.

Another useful tool that we use in our work is the following Opial’s demiclosedness
principle. We denote strong or weak convergence by “→” or “⇀”, respectively.

Proposition 8. [26, Lemma 2]. Let C be some given nonempty closed convex subset
of a Hilbert space H and let T : C → H be a nonexpansive operator. If {xn}n≥0 is
a sequence in C converging weakly to x̃ and if xn−Txn → 0, then x̃ is a fixed point
of T .

We conclude this subsection with two useful tools. One relates the divergence of
an infinite product to the divergence of an infinite series and the other is the well-
known property which characterizes every bounded sequence in a Hilbert space.

Proposition 9. [14, Lemma 7.24]. Suppose that {αn}n≥0 is a sequence in the
interval [0, 1), converging to 0. Then

(6)
∞∑

n=0

αn = ∞ (i.e., lim
k→∞

k∑

n=0

αn = ∞)
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if and only if

(7)
∞∏

n=0

(1− αn) = 0 (i.e., lim
k→∞

k∏

n=0

(1− αn) = 0.

Proposition 10. [14, Theorem 9.12]. Every bounded sequence in a Hilbert space
H possesses a weakly convergent subsequence.

2.2. Semigroups of nonexpansive operators. We consider special families of
nonexpansive operators which are called semigroups of nonexpansive operators.
Such families appear, for example, in the problem of stability of the fixed point
property for nonexpansive operators (see, e.g., Kuczumov [23], Gornicki [21] and
Reich [32]).

Definition 11. Let G be an unbounded subset of <+ such that

t + s ∈ G, for all t, s ∈ G,(8)
t− s ∈ G, for all t, s ∈ G with t ≥ s,

and let Γ = {Tt | t ∈ G} be a family of self-operators on a nonempty closed
convex subset C of a Hilbert space H. The family Γ is called a semigroup of
nonexpansive operators on C if the following conditions hold:

(i) Tt is a nonexpansive self-operator on C, for all t ∈ G,
(ii) Tt+sx = TtTsx, for all t, s ∈ G and all x ∈ C.

Example 12. In the particular case G = N , the family of nonexpansive operators
on a nonempty closed convex subset C of a Hilbert space H is the semigroup of
iterates

(9) Γ = {Tt | t ∈ G} = {Tn
1 | n ∈ N} .

Semigroups of nonexpansive operators appeared early on in Brezis’ book [5].
They were studied (in a more general form as uniformly Lipschitzian semigroups)
by Goebel, Kirk and Thele [19]. The basic result of [19] asserts that there exists
a k0 > 1 such that, whenever C is a nonempty bounded closed convex subset of
a Hilbert space H and Γ is a uniformly k-Lipschitzian semigroup of self-operators
on C with k < k0, then Γ has a common fixed point in C. Another fixed point
result [21, Corollary 1] asserts that if Γ is a semigroup of nonexpansive operators
on a nonempty closed convex subset C of a Hilbert space, which satisfies certain
regularity condition and there exists an x̃ in C such that the orbit {Ttx̃ | t ∈ G} is
bounded, then Γ has a common fixed point in C. It is worthwhile to note that similar
conditions ensure existence of a fixed point of a single nonexpansive operator, see, for
example, [20, Proposition 1.4 and Theorem 3.2]. In this connection, see also Reich
[28]. In [27], Pazy studied the asymptotic behavior of a semigroup Γ = {Tt | t ∈ <+}
of nonexpansive operators on a nonempty closed convex subset C of a real Hilbert
space. He proved that, under certain conditions, the trajectory Ttx tends to a
limit, when t tends to infinity, for each x ∈ C. Reich [32, Corollary 3] pointed
out that if a semigroup Γ on the Hilbert ball is generated by some nonexpansive
operator T then Γ has a common fixed point if and only if T has a fixed point.
Since the asymptotic behavior of nonexpansive operators yields information on the
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asymptotic behavior of nonexpansive semigroups and vice versa, some known fixed
point results for a single nonexpansive operator can be reformulated in terms of
semigroups. For a general overview of theorems concerning existence of a common
fixed point of uniformly Lipschitzian semigroups and their connections to the fixed
point results established for a single nonexpansive operator see also Budzyńska,
Kuczumov and Reich [9, 10], Downing and Ray [16]. For results concerning the
asymptotic behavior of semigroups see Bruck [7], Pazy [27], Brezis [4], Reich [32],
Crandall and Pazy [12], Reich [29], Nevanlinna and Reich [25] and Reich [30, 31].

2.3. Uniformly asymptotically regular semigroups of nonexpansive opera-
tors. We consider asymptotically regular operators and provide a generalization of
this concept for a semigroup of nonexpansive operators. The concepts of asymptotic
regularity and uniform asymptotic regularity appear in Browder and Petryshyn [6]
and Schu [33, Definition 1.2], respectively.

Definition 13. Let C be a nonempty closed convex subset of a Hilbert space H.
An operator T : C → C is said to be asymptotically regular if, for all x ∈ C,

(10) lim
n→∞

∥∥Tn+1x− Tnx
∥∥ = 0.

Definition 14. Let C be a nonempty closed convex subset of a Hilbert space H.
An operator T : C → C is said to be uniformly asymptotically regular if

(11) lim
n→∞ sup

x∈C

∥∥Tn+1x− Tnx
∥∥ = 0.

Browder and Petryshyn [6] proved that whenever C is a nonempty bounded
closed convex subset of a Hilbert space, T is a nonexpansive operator on C with
a nonempty set of fixed points and I is the identity operator, then the operator
Tt = tI + (1 − t)T is nonexpansive and asymptotically regular for each 0 < t < 1
and has the same set of fixed points as T . Thus, the problem of the fixed point
existence for a nonexpansive operator is equivalent to the same problem for a non-
expansive and asymptotically regular operator. Using this idea, we can see that
fixed points theorems for nonexpansive and asymptotically regular operators pro-
vide fixed point results for nonexpansive operators (see, e.g., [6, 9, 10, 21, 23]). The
concept of asymptotic regularity was further generalized for semigroups of nonex-
pansive operators (see, e.g., [9, 10, 21]).

Definition 15. Let Γ = {Tt | t ∈ G} be a semigroup of nonexpansive operators on
a nonempty closed convex subset C of a Hilbert space H. The family Γ is called an
asymptotically regular semigroup of nonexpansive operators on C if, for
all x ∈ C and all s ∈ G,

(12) lim
r→∞ ‖TsTrx− Trx‖ = 0.

Definition 16. Let Γ = {Tt | t ∈ G} be a semigroup of nonexpansive opera-
tors on a nonempty closed convex subset C of a Hilbert space H. The family
Γ is called a uniformly asymptotically regular semigroup of nonexpansive
operators on C if

(13) lim
r→∞

(
sup
x∈C

‖TsTrx− Trx‖
)

= 0,
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uniformly for all s ∈ G.

The following examples show how these notions can be used in our context.

Example 17. (See [20, Theorem 15.2]). Let T be a linear firmly nonexpansive
self-operator on a nonempty convex compact subset C of a Hilbert space H, let
G = N , and Γ = {Tn | n ∈ G} be a semigroup of iterates of T . It is known (Baillon
[1]) that if C = −C and T is odd, then {Tnx}n≥0 converges strongly for all x ∈ C.

Fix ε > 0. Then there exist x1, x2, . . . , xk ∈ C such that C ⊆
k⋃

i=1
B(xi, ε), where

(14) B(xi, ε) = {x ∈ H | ‖x− xi‖ < ε} ,

for all i = 1, 2, . . . , k, and n0 such that

(15) ‖Tnxi − Tmxi‖ < ε,

for all n,m > n0, i = 1, 2, . . . , k. Take x ∈ C and xi such that ‖x− xi‖ ≤ ε. Then

(16) ‖Tnx− Tmx‖ ≤ ‖Tn(x− xi)‖+ ‖(Tn − Tm)(xi)‖+ ‖Tm(xi − x)‖ ≤ 3ε,

for all n,m > n0. That is, Γ is a uniformly asymptotically regular semigroup of
iterates of T .

Observe that condition (13) implies that there exists a monotone sequence
{rn}n≥0 ⊆ G such that

(17) 0 ≤ r0 ≤ r1 ≤ · · · ≤ rn ≤ · · · , and lim
n→∞ rn = ∞,

and

(18)
∞∑

n=0

sup
x∈C

‖TsTrnx− Trnx‖ < ∞,

uniformly for all s ∈ G. For results on the convergence of the iterates of linear
firmly nonexpansive mappings see Bruck and Reich [8, Corollary 2.1, p. 465] and
the discussion following it.

Example 18. Let the following assumptions hold. C is a nonempty bounded
closed convex subset of a Hilbert space H, T : C → C is a contraction operator
with Lipschitz constant k < 1, G = N , and Γ = {Tn | n ∈ G} is a semigroup of
iterates of T . Then for all n,m ∈ G we have

∥∥Tm+nx− Tnx
∥∥ ≤

m−1∑

i=0

∥∥Tn+i+1x− Tn+ix
∥∥(19)

≤
m−1∑

i=0

kn+i ‖Tx− x‖

≤ kn

1− k
‖Tx− x‖ ,

therefore,

(20) lim
n→∞

(
sup
x∈C

∥∥Tm+nx− Tnx
∥∥
)

= 0,
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uniformly for all m ∈ G. That is, Γ is a uniformly asymptotically regular semigroup
of iterates of T . Additionally, we observe, that

(21)
∞∑

n=0

sup
x∈C

∥∥Tm+nx− Tnx
∥∥ < ∞,

uniformly for all m ∈ G, that is, (18) holds for every strictly increasing sequence
{rn}n≥0 ⊆ G.

3. Main Result

The main result of our work is the next convergence theorem for Algorithm 1.
We need the following definition.

Definition 19. If a real sequence {αn}n≥0 has the following three properties

αn ∈ [0, 1) , for all n ≥ 0, and lim
n→∞αn = 0,(22)

∞∑

n=0

αn = +∞ (or, equivalently,
∞∏

n=0

(1− αn) = 0),(23)

∞∑

n=0

|αn+1 − αn| < ∞,(24)

then it is called a steering sequence.

Theorem 20. Let C be a nonempty closed convex subset of a real Hilbert space
H, let u ∈ C be a given point, let Γ = {Tt | t ∈ G} be a uniformly asymptotically
regular semigroup of nonexpansive operators on C such that F = ∩t∈G Fix(Tt) 6= ∅,
let {αn}n≥0 be a steering sequence, and let {rn}n≥0 ⊆ G be a sequence such that
(17)–(18) hold. Then any sequence {xn}n≥0, generated by Algorithm 1, converges
strongly to PF u.

Proof. Proposition 4 and Proposition 7 ensure that the point PF u is well-defined.
We prove the result first for the special case x0 = u and extend it later to the
general case. The proof is divided into a sequence of separate claims.

Claim 1. For all n ≥ 0 and every f ∈ F

(25) ‖xn − f‖ ≤ ‖u− f‖ .

We proceed by induction on n. Fix f ∈ F . Clearly, (25) holds for n = 0. If
‖xn − f‖ ≤ ‖u− f‖ then

‖xn+1 − f‖ ≤ αn ‖u− f‖+ (1− αn) ‖Trnxn − f‖(26)

≤ αn ‖u− f‖+ (1− αn) ‖xn − f‖
≤ ‖u− f‖ ,

as requested.
Claim 2. The following strong convergence holds

(27) xn+1 − Trnxn → 0.



BEST APPROXIMATION TO COMMON FIXED POINTS 145

This is true because (25) guarantees that {xn}n≥0 is bounded, which, in turn,
implies that {Trnxn}n≥0 is bounded, because ‖Trnxn − f‖ ≤ ‖xn − f‖ due to non-
expansivity of Trn . The boundedness of {Trnxn}n≥0 together with (22) imply, in
view of (1), the requested result.

Claim 3. The differences of consecutive iterates converges strongly to zero,
namely,

(28) xn+1 − xn → 0.

Let C̃ be any bounded subset of C which contains the sequence {xn}n≥0. By the
boundedness of {xn}n≥0 and {Trnxn}n≥0 there exists some constant L ≥ 0 such
that ‖xn+1 − xn‖ ≤ L and ‖u− Trnxn‖ ≤ L, for all n ≥ 0. Therefore, for all n ≥ 1,
we get

‖xn+1 − xn‖(29)

=
∥∥(αn − αn−1)(u− Trn−1xn−1) + (1− αn)(Trnxn − Trn−1xn−1)

∥∥
≤

∥∥(αn − αn−1)(u− Trn−1xn−1)
∥∥ + ‖(1− αn)(Trnxn − Trnxn−1)‖

+
∥∥(1− αn)(Trnxn−1 − Trn−1xn−1)

∥∥
≤ |αn − αn−1|

∥∥u− Trn−1xn−1

∥∥ + (1− αn) ‖xn − xn−1‖
+ (1− αn)

∥∥Trnxn−1 − Trn−1xn−1

∥∥
≤ |αn − αn−1|L + (1− αn) ‖xn − xn−1‖+

∥∥Trnxn−1 − Trn−1xn−1

∥∥ .

Since Γ is a semigroup, and by using (17), we are able to rewrite the last term as
follows

(30)
∥∥Trnxn−1 − Trn−1xn−1

∥∥ =
∥∥Trn−rn−1Trn−1xn−1 − Trn−1xn−1

∥∥ ,

for all n ≥ 1, that is,

‖xn+1 − xn‖ ≤ |αn − αn−1|L + (1− αn) ‖xn − xn−1‖(31)

+
∥∥Trn−rn−1Trn−1xn−1 − Trn−1xn−1

∥∥ ,

for all n ≥ 1. Thus, inductively,

‖xn+1 − xn‖ ≤ L

n∑

k=m

|αk − αk−1|+ ‖xm − xm−1‖
n∏

k=m

(1− αk)(32)

+
n∑

k=m

∥∥Trk−rk−1
Trk−1

xk−1 − Trk−1
xk−1

∥∥ ,

for all n ≥ m ≥ 1. Hence, by taking the limit as n tends to +∞, we have

lim sup
n→∞

‖xn+1 − xn‖ ≤ L

∞∑

k=m

|αk − αk−1|+ L

∞∏

k=m

(1− αk)(33)

+
∞∑

k=m

∥∥Trk−rk−1
Trk−1

xk−1 − Trk−1
xk−1

∥∥
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≤ L

∞∑

k=m

|αk − αk−1|+ L

∞∏

k=m

(1− αk)

+
∞∑

k=m

sup
x∈ eC

∥∥Trk−rk−1
Trk−1

x− Trk−1
x
∥∥ .

On the other hand, conditions (22), (23), (24) and (18) imply

lim
m→∞

∞∑

k=m

|αk − αk−1| = 0,(34)

lim
m→∞

∞∏

k=m

(1− αk) = 0

and

(35) lim
m→∞

∞∑

k=m

sup
x∈ eC

∥∥Trk−rk−1
Trk−1

x− Trk−1
x
∥∥ = 0.

Altogether, by letting m tend to +∞, we conclude xn+1 − xn → 0, as requested.
Claim 4. For each fixed s ∈ G

(36) Tsxn − xn → 0.

Indeed, let C̃ be any bounded subset of C which contains the sequence {xn}n≥0.
Then,

‖Tsxn − xn‖(37)

≤ ‖Tsxn − TsTrnxn‖+ ‖TsTrnxn − Trnxn‖+ ‖Trnxn − xn‖
≤ 2 ‖xn − Trnxn‖+ sup

x∈ eC
‖TsTrnx− Trnx‖

≤ 2(‖xn − xn+1‖+ ‖xn+1 − Trnxn‖) + sup
x∈ eC

‖TsTrnx− Trnx‖ .

Combining (28), (27) and (18) yields Tsxn − xn → 0.
Claim 5.

(38) lim sup
n→∞

〈xn+1 − PF u, u− PF u〉 ≤ 0.

From boundedness of {xn}n≥0 follows that there exists a subsequence {nk}k≥0 such
that

lim sup
n→∞

〈xn+1 − PF u, u− PF u〉(39)

= lim
nk→∞

〈xnk+1 − PF u, u− PF u〉 .

By using Proposition 10 we obtain (after passing to another subsequence if neces-
sary) that xnk+1 ⇀ x. From (36) follows that Tsxnk+1−xnk+1 → 0, for each s ∈ G,
hence Proposition 8 implies x ∈ F . Consequently, by Proposition 4,

lim sup
n→∞

〈xn+1 − PF u, u− PF u〉(40)

= lim
nk→∞

〈xnk+1 − PF u, u− PF u〉
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= 〈x− PF u, u− PF u〉
≤ 0,

as requested.
Now we can conclude the proof for the special case x0 = u. Since

(41) (xn+1 − PF u)− αn (u− PF u) = (1− αn) (Trnxn − PF u) ,

we have

‖xn+1 − PF u‖2 ≤ (1− αn) ‖Trnxn − PF u‖2(42)

+ 2αn 〈xn+1 − PF u, u− PF u〉 ,
which yields

‖xn+1 − PF u‖2 ≤ (1− αn) ‖xn − PF u‖2(43)

+ 2(1− (1− αn)) 〈xn+1 − PF u, u− PF u〉 ,
for all n ≥ 0. Let ε > 0. By (38) there exists an integer nε such that

(44) 〈xn+1 − PF u, u− PF u〉 ≤ ε

2
,

for all n ≥ nε. Then,

‖xn+nε − PF u‖2 ≤
n+nε−1∏

k=nε

(1− αk) ‖xk − PF u‖2(45)

+


1−

n+nε−1∏

k=nε

(1− αk)


 ε,

for all n ≥ 1. Hence, from conditions (22) and (23) follows

(46) lim sup
n→∞

‖xn − PF u‖2 = lim sup
n→∞

‖xn+nε − PF u‖2 ≤ ε.

Since ε is an arbitrary positive real number, we conclude xn → PF u, that is, the
special case is verified.

Now we extend the proof to the general case. Let {xn}n≥0 be the sequence gener-
ated by (1) with a starting point x0 (possibly different from u) and let {yn}n≥0 be
another sequence generated by (1) with a starting point y0 = u. On the one hand,
by the special case,

(47) yn → PF u.

On the other hand, it is easily checked that

(48) ‖xn − yn‖ ≤ ‖x0 − y0‖
n−1∏

k=0

(1− αk),

for all n ≥ 1. Thus, xn − yn → 0 and, altogether, xn → PF u, completing the
proof. ¤
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4. Counter-Examples

In this section we give two counter-examples showing that Lemma 2.1 in the paper
by Dominguez Benavides, Lopez Acedo and Xu [15] is not true. Our first counter-
example is contradictory to the zero convergence claim of the lemma. The second
counter-example is even stronger in that it shows that the conditions presented in
the lemma do not necessarily guarantee convergence to any finite limit. We first
quote this lemma precisely as formulated in that paper.

Lemma 21. [15, Lemma 2.1]. If {sn}n≥0 is a sequence of nonnegative numbers
satisfying

(49) sn+1 ≤ (1− αn)(sn + βn) + αnγn,

for all n ≥ 0, where {αn}n≥0 , {βn}n≥0 , {γn}n≥0 are sequences of real numbers such
that

0 ≤ αn ≤ 1, lim
n→∞αn = 0,

∞∑

n=0

αn = ∞,(50)

lim sup
n→∞

βn ≤ 0,(51)

lim sup
n→∞

γn ≤ 0,(52)

then lim
n→∞ sn = 0.

Example 22. We show that there exists a sequence, defined by (49), which fulfills
all conditions of Lemma 21 but does not converge to zero. Take αn = βn = γn =
1/(n + 1) for all n ≥ 0, let b0 be an arbitrary nonnegative real number and define
the sequence {bn}n≥0 by

(53) bn+1 := (1− 1
n + 1

)(bn +
1

n + 1
) +

1
n + 1

· 1
n + 1

,

for all n ≥ 0. It is easy to see that conditions (50)–(52) are satisfied, thus the
sequence {bn}n≥0 is one of the many sequences that can be generated by (49). By
induction on n we see that bn = 1 for all n ≥ 1, thus, lim

n→∞ bn = 1, in contradiction
to the claim of Lemma 21 .

Example 23. This example shows that the sequence defined by (49) and the other

conditions in Lemma 21 may be even divergent. Take αn =
1

n + 1
, βn =

1√
n + 1

,

γn = 0, for all n ≥ 0, let b0 be an arbitrary nonnegative real number and define the
sequence {bn}n≥0 by

(54) bn+1 := (1− 1
n + 1

)(bn +
1√

n + 1
)

for all n ≥ 0. It is easy to see that conditions (50)–(52) are satisfied, thus, the
sequence {bn}n≥0 is one of the many sequences that can be generated by (49).
From (54) we get

bn+1 = (1− 1
n + 1

)bn +
1√

n + 1
− 1

(n + 1)
√

n + 1
(55)
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= (
n

n + 1
)bn +

1√
n + 1

− 1
(n + 1)

√
n + 1

.(56)

Multiplying by (n + 1) yields

(57) (n + 1)bn+1 = nbn +
√

n + 1− 1√
n + 1

.

By denoting zn = nbn we have

(58) zn+1 = zn +
√

n + 1− 1√
n + 1

,

for all n ≥ 0. Thus,

z1 − z0 =
√

1− 1√
1
,

z2 − z1 =
√

2− 1√
2
.(59)

Similarly,

(60) zn − zn−1 =
√

n− 1√
n

.

Adding these n sequences yields

(61) zn − z0 =
n∑

k=1

(
√

k − 1√
k
),

that is,

(62) zn =
n∑

k=1

(
√

k − 1√
k
) + z0,

or

(63) bn =
1
n

n∑

k=1

(
√

k − 1√
k
) +

z0

n
.

Since lim
k→∞

(
√

k− 1√
k
) = ∞, we have lim

n→∞
1
n

n∑
k=1

(
√

k− 1√
k
) = ∞, implying lim

n→∞ bn =

∞, in contradiction to the claim of Lemma 21.
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