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This paper is dedicated to the memory of Simon Fitzpatrick, in recognition of his amazing insights

Abstract. We show in this paper how the versions of the Fenchel duality the-
orem due to Rockafellar and Attouch–Brezis can be applied to the Fitzpatrick
function determined by a maximal monotone multifunction to obtain a number
of results on maximal monotonicity, including a number of sufficient conditions
for the sum of maximal monotone multifunctions on a reflexive Banach space to
be maximal monotone, unifying a number of the results of “Attouch–Brezis type”
that have been obtained in recent years. We also obtain generalizations of the
Brezis–Crandall–Pazy result. We find various explicit formulas in terms of the
Fitzpatrick function for the minimum norm of the solutions x of (S + J)x 3 0,
where E is reflexive, S is maximal monotone on E and J is the duality map.
Among the tools that we develop are a version of the Fenchel duality theorem in
which we obtain an explicit formula for the minimum norm of solutions in certain
cases, and a generalization of the Attouch–Brezis version of the Fenchel duality
theorem to a more symmetric result for convex functions of two variables.

0. Introduction

We start off by stating a result that is an immediate consequence of Rockafellar’s
version of the Fenchel duality theorem (see [12, Theorem 1, p. 82–83] for the original
version and [16, Theorem 2.8.7, p. 126–127] for more general results):

Theorem 0.1. Let F be a normed space, f : F 7→ (−∞,∞] be proper and convex,
g : F 7→ R be convex and continuous, and f + g ≥ λ on F . Then there exists
x∗ ∈ F ∗ such that f∗(x∗) + g∗(−x∗) ≤ −λ.

We show in this paper how Theorem 0.1 and the Attouch–Brezis version of the
Fenchel duality theorem (see Theorem 4.1 below) can be used to obtain a number
of results on maximal monotonicity, including a number of sufficient conditions for
the sum of maximal monotone multifunctions on a reflexive Banach space to be
maximal monotone.

In Section 1, we show how certain convex functions on E × E∗ (E reflexive)
lead to graphs of maximal monotone multifunctions. The main results here are
Lemma 1.2(c), which will be used in our work on the Brezis–Crandall–Pazy condi-
tion for the sum of maximal monotone multifunctions to be maximal monotone (see
Theorem 6.2), and Theorem 1.4, which generalizes a result proved by Burachik and
Svaiter in [5] (see the discussion preceding Theorem 1.4 for more details of this).
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Section 2 is devoted to a single result, Theorem 2.1. Here we bootstrap Theo-
rem 0.1 in the special case where g(x) := 1

2‖x‖2 and λ := 0 to find a sharp lower
bound on the norm of the functionals x∗ that satisfy the conclusion of Theorem 0.1.
This lower bound will be used in Theorem 3.1 to find the minimum norm of the
solutions x of (S + J)x 3 0, where E is reflexive, S is maximal monotone on E and
J is the duality map.

Our results on the maximal monotonicity of a sum use the Fitzpatrick function
determined by a maximal monotone multifunction. The elementary properties of
this function will be explained in Section 3. The main result in this section is
Theorem 3.1, which we have already discussed above, and which will be used in our
work on the Brezis–Crandall–Pazy condition (see Lemma 6.1).

In Theorem 4.2, we show how the Attouch–Brezis version of the Fenchel duality
theorem can be generalized to a more symmetric version for convex functions of two
variables.

We give in Theorem 5.5 a sufficient condition for the sum of maximal monotone
multifunctions on a reflexive Banach space to be maximal monotone, unifying a
number of the results of “Attouch–Brezis type” that have been obtained in recent
years. In order to do this, we start off by combining the results of Theorem 4.2 and
Theorem 1.4(a) to establish a special case in Lemma 5.1, and then bootstrapping
Lemma 5.1 with a sequence of three lemmas in order to obtain Theorem 5.5. We
mention parenthetically that we use Theorem 1.4(a) rather than Theorem 1.4(b) in
Lemma 5.1 since we do not know that the function ρ is lower semicontinuous.

In Section 6, we use Theorem 3.1(a) and Lemma 1.2(c) to obtain generalizations
of the Brezis–Crandall–Pazy result.

In the final section, we give alternative formulas for the minimum norm of the
solutions x of (S + J)x 3 0 already discussed in Theorem 3.1.

We close this introduction with some remarks of a more historical nature. The
first person to apply convex analysis to the representation of maximal monotone
multifunctions was Krauss ([7]), who gave a represention in terms of saddle func-
tions. Fitzpatrick ([6]) was the first person to give a representation in terms of
convex functions. Fitzpatrick’s results were rediscovered by Burachik–Svaiter ([4])
and Mart́ınez-Legaz–Théra ([8]). The first people to use Fitzpatrick functions to
obtain a proof of Rockafellar’s surjectivity theorems or sufficient conditions for the
sum of maximal monotone multifunctions (for reflexive spaces) were Zălinescu and
Penot. Indeed, the authors would like to thank Jean-Paul Penot for sending them
copies of [9], which was a considerable source of inspiration.

1. Convex functions on E × E∗ for reflexive E

In this section, we assume that E is a reflexive Banach space and E∗ is its
topological dual space. We norm E × E∗ by

∥∥(x, x∗)
∥∥ :=

√
‖x‖2 + ‖x∗‖2. Then

the topological dual of E × E∗ is E∗ × E, under the pairing
〈
(x, x∗), (u∗, u)

〉
:=

〈x, u∗〉+ 〈u, x∗〉. Further,
∥∥(u∗, u)

∥∥ =
√
‖u‖2 + ‖u∗‖2.

Notation 1.1. In order to simplify some rather cumbersome algebraic expressions,
we will define ∆: E ×E∗ 7→ R by ∆(y, y∗) := 〈y, y∗〉+ 1

2

∥∥(y, y∗)
∥∥2. “∆” stands for



FENCHEL DUALITY, FITZPATRICK FUNCTIONS AND MAXIMAL MONOTONICITY 3

“discriminant”. We note then that, for all (y, y∗) ∈ E × E∗,

(1.1.1) ∆(y, y∗) = 1
2‖y‖2 + 〈y, y∗〉+ 1

2‖y∗‖2 ≥ 1
2‖y‖2 − ‖y‖‖y∗‖+ 1

2‖y∗‖2 ≥ 0.

Clearly ∆(y, y∗) = 0 =⇒ ‖y∗‖ = ‖y‖. Plugging this back into (1.1.1), we have

(1.1.2) ∆(y, y∗) = 0 =⇒ 〈y, y∗〉 = −‖y‖2 = −‖y∗‖2 = −‖y‖‖y∗‖.
The significance of this is that, if J : E ⇒ E∗ is the duality map, then

(1.1.3) ∆(y, y∗) = 0 ⇐⇒ y∗ ∈ −Jy.

Lemma 1.2. Let h : E × E∗ 7→ (−∞,∞] be convex and

(1.2.1) (x, x∗) ∈ E × E∗ =⇒ h(x, x∗) ≥ 〈x, x∗〉.
Write Mh for the set

{
(x, x∗) ∈ E × E∗ : h(x, x∗) = 〈x, x∗〉}.

(a) Mh is a monotone subset of E × E∗.
(b) Let (w, w∗) and (x, x∗) ∈ E × E∗ be such that

(1.2.2) h(x, x∗)− 〈x, x∗〉+ ∆(w − x,w∗ − x∗) ≤ 0.

Then (x, x∗) ∈ Mh.
(c) Suppose that G ⊂ Mh and, for all (w, w∗) ∈ E ×E∗ there exists (x, x∗) ∈ G

satisfying (1.2.2). Then G is a maximal monotone subset of E × E∗ (and
consequently, G = Mh).

Proof. (a) Let (x, x∗), (y, y∗) ∈ Mh. Then, from the convexity of h and (1.2.1),
1
2〈x, x∗〉+ 1

2〈y, y∗〉 = 1
2h(x, x∗) + 1

2h(y, y∗)

≥ h(1
2x + 1

2y, 1
2x∗ + 1

2y∗) ≥ 〈1
2x + 1

2y, 1
2x∗ + 1

2y∗〉.
This implies that 〈x− y, x∗ − y∗〉 ≥ 0, and so Mh is monotone.

(b) (1.2.2) and (1.1.1) give h
(
x, x∗

) ≤ 〈x, x∗〉, and it is clear from (1.2.1) that
(x, x∗) ∈ Mh.

(c) Since G ⊂ Mh, it follows from (a) that G is monotone. In order to prove that
G is maximal monotone, we suppose that (w, w∗) ∈ E × E∗ and

(1.2.3) (x, x∗) ∈ G =⇒ 〈w − x,w∗ − x∗〉 ≥ 0,

(i.e., (w, w∗) is “monotonically related” to G) and we will deduce that

(1.2.4) (w, w∗) ∈ G.

To this end, we choose (x, x∗) ∈ G as in (1.2.2). Using (1.2.1), we derive from
this that ∆(w − x,w∗ − x∗) ≤ 0 thus, from (1.2.3), 1

2

∥∥(w − x,w∗ − x∗)
∥∥2 ≤ 0, so

(w, w∗) = (x, x∗) ∈ G. This establishes (1.2.4), and completes the proof of (c). ¤
Lemma 1.3. Let E be a reflexive Banach space, k : E ×E∗ 7→ (−∞,∞] be proper
and convex, (w, w∗) ∈ E × E∗ and

(1.3.1) (x, x∗) ∈ E × E∗ =⇒ k(x, x∗)− 〈x, x∗〉+ ∆(w − x,w∗ − x∗) ≥ 0.

Then

(1.3.2) there exists (x, x∗) ∈ E × E∗

such that k∗(x∗, x)− 〈x, x∗〉+ ∆(w − x,w∗ − x∗) ≤ 0.



4 S. SIMONS AND C. ZĂLINESCU

Proof. Define δ(w,w∗) : E × E∗ 7→ R by

(1.3.3) δ(w,w∗)(x, x∗) := −〈x, x∗〉+ ∆(w − x,w∗ − x∗).

Then the identity δ(w,w∗)(x, x∗) = 〈w, w∗〉−〈
(x, x∗), (w∗, w)

〉
+ 1

2

∥∥(w, w∗)−(x, x∗)
∥∥2

shows that

(1.3.4) δ(w,w∗) is convex and norm–continuous,
hence weakly lower semicontinuous.

(The weak lower semicontinuity will be used in Theorem 6.2.) By direct computa-
tion,

(1.3.5) (x, x∗) ∈ E × E∗ =⇒ δ(w,w∗)
∗(−x∗,−x) = δ(w,w∗)(x, x∗).

Now (1.3.1) gives infE×E∗
[
k + δ(w,w∗)

] ≥ 0; thus we can deduce from Theorem 0.1
that minη∗∈E∗×E

[
k∗(η∗) + δ(w,w∗)

∗(−η∗)
] ≤ 0. Consequently, (1.3.2) now follows

from (1.3.5). ¤

Theorem 1.4(b) below was first established in [5, Theorem 3.1]. The proof given
here avoids having to use a renorming theorem. The interest of Theorem 1.4(a)
is that the function k is not required to be lower semicontinuous, which fact will
be very useful to us in Lemma 5.1. In fact, Theorem 1.4(a) can be deduced from
Theorem 1.4(b) using a technique similar to that of [9, Theorem 15].

Theorem 1.4. (a) Let k : E × E∗ 7→ (−∞,∞] be proper and convex,

(1.4.1) (x, x∗) ∈ E × E∗ =⇒ k(x, x∗) ≥ 〈x, x∗〉.
and

(1.4.2) (x, x∗) ∈ E × E∗ =⇒ k∗(x∗, x) ≥ 〈x, x∗〉.
Then G :=

{
(x, x∗) ∈ E × E∗ : k∗(x∗, x) = 〈x, x∗〉} is a maximal monotone subset

of E × E∗.
(b) Let h : E × E∗ 7→ (−∞,∞] be proper, convex and lower semicontinuous,

(1.2.1) (x, x∗) ∈ E × E∗ =⇒ h(x, x∗) ≥ 〈x, x∗〉.
and

(1.4.3) (x, x∗) ∈ E × E∗ =⇒ h∗(x∗, x) ≥ 〈x, x∗〉.
Then Mh :=

{
(x, x∗) ∈ E ×E∗ : h(x, x∗) = 〈x, x∗〉} is a maximal monotone subset

of E × E∗.

Proof. (a) Let (w, w∗) be an arbitrary element of E×E∗. Then (1.3.1) follows from
(1.4.1) and (1.1.1), and so Lemma 1.3 gives (1.3.2). Combining this with (1.1.1)
and (1.4.2), we have k∗(x∗, x) = 〈x, x∗〉, that is to say (x, x∗) ∈ G, and (1.2.2) is
satisfied with h(x, x∗) := k∗(x∗, x). (a) now follows from Lemma 1.2.

(b) Let k(x, x∗) := h∗(x∗, x). k is proper and convex on E×E∗ and (1.4.1) follows
from (1.4.3). Since h is lower semicontinuous, the Fenchel–Moreau formula shows
that k∗(x∗, x) = h(x, x∗), and so (1.4.2) follows from (1.2.1). (b) is now immediate
from (a). ¤
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2. Fenchel duality with a sharp lower bound on the norm

It is immediate from Theorem 0.1 that (2.1.1) below implies the existence of
x∗ ∈ F ∗ satisfying (2.1.3). Theorem 2.1(a) gives the additional information that
there exists such a functional x∗ with ‖x∗‖ ≤ M . This information will be used in
Theorem 3.1 and Lemma 6.1. Theorem 2.1(b) shows that this value of M is best
possible. Of course, the crux of the proof of Theorem 2.1 is the advance knowledge
of the “magic number” M . In what follows, for all λ ∈ R we write λ+ for λ ∨ 0.

Theorem 2.1. (a) Let F be a normed space, f : F 7→ (−∞,∞] be proper and
convex and

(2.1.1) x ∈ F =⇒ f(x) + 1
2‖x‖2 ≥ 0.

Let

(2.1.2) M := sup
x∈F

[
‖x‖ −

√
2f(x) + ‖x‖2

]+
.

Then there exists x∗ ∈ F ∗ such that ‖x∗‖ ≤ M and

(2.1.3) f∗(x∗) + 1
2‖x∗‖2 ≤ 0.

Further,

(2.1.4) M ≤ inf
x∈F

[
‖x‖+

√
2f(x) + ‖x‖2

]
.

(b) If x∗ ∈ F ∗ satisfies (2.1.3), then ‖x∗‖ ≥ M .

Proof. We observe from (2.1.1) that the square root in (2.1.2) is real (or +∞). We
start off by showing that

(2.1.5) u, v ∈ F =⇒ ‖v‖ −
√

2f(v) + ‖v‖2 ≤ ‖u‖+
√

2f(u) + ‖u‖2.

To this end, let u, v ∈ F . We can clearly suppose that f(u) ∈ R and f(v) ∈ R. Let
λ >

√
2f(u) + ‖u‖2 ≥ 0 and µ >

√
2f(v) + ‖v‖2 ≥ 0, and write α := ‖u‖ + λ and

β := ‖v‖ − µ. Then, since µ‖u‖+ λ‖v‖ = µα + λβ,

0 ≤
∥∥∥µu + λv

µ + λ

∥∥∥ ≤ µ‖u‖+ λ‖v‖
µ + λ

=
µα + λβ

µ + λ
.

Thus, from (2.1.1) applied to x =
µu + λv

µ + λ
∈ F , and the convexity of f and (·)2,

µf(u) + λf(v)
µ + λ

≥ f
(µu + λv

µ + λ

)
≥ −1

2

∥∥∥µu + λv

µ + λ

∥∥∥
2

≥ −1
2

(µα + λβ

µ + λ

)2
≥ −1

2
µα2 + λβ2

µ + λ
.

Multiplying by 2(µ + λ) gives

0 ≤ 2µf(u) + 2λf(v) + µα2 + λβ2 = µ
(
2f(u) + α2

)
+ λ

(
2f(v) + β2

)

= µ
(
2f(u) + ‖u‖2 + 2λ‖u‖+ λ2

)
+ λ

(
2f(v) + ‖v‖2 − 2µ‖v‖+ µ2

)

< µ
(
2λ2 + 2λ‖u‖) + λ

(
2µ2 − 2µ‖v‖) = 2µλ

(
λ + ‖u‖+ µ− ‖v‖).
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On dividing by 2µλ, we obtain ‖v‖ − µ < ‖u‖ + λ, and (2.1.5) follows by letting
µ →

√
2f(v) + ‖v‖2 and λ →

√
2f(u) + ‖u‖2. Now (2.1.2) and (2.1.5) imply that,

for all x ∈ F ,

(2.1.6) ‖x‖ −
√

2f(x) + ‖x‖2 ≤ M and M ≤ ‖x‖+
√

2f(x) + ‖x‖2,

from which

x ∈ F =⇒
∣∣‖x‖ −M

∣∣ ≤
√

2f(x) + ‖x‖2

=⇒ (‖x‖ −M
)2 ≤ 2f(x) + ‖x‖2

=⇒ f(x) + M‖x‖ ≥ 1
2M2.

Theorem 0.1 now gives the existence of x∗ ∈ F ∗ such that f∗(x∗)+(M‖·‖)∗(−x∗) ≤
−1

2M2, thus ‖x∗‖ ≤ M and f∗(x∗) ≤ −1
2M2, from which (2.1.3) is immediate. Since

(2.1.6) implies (2.1.4), this completes the proof of (a).
(b) Now suppose that x∗ ∈ F ∗ satisfies (2.1.3), and let x be an arbitrary element

of F . It follows from (2.1.3) that

f(x) ≥ 〈x, x∗〉 − f∗(x∗) ≥ 〈x, x∗〉+ 1
2‖x∗‖2 ≥ −‖x‖‖x∗‖+ 1

2‖x∗‖2,

and so 2f(x) + ‖x‖2 ≥ ‖x‖2 − 2‖x‖‖x∗‖+ ‖x∗‖2 =
(‖x‖ − ‖x∗‖)2. Thus

√
2f(x) + ‖x‖2 ≥ ‖x‖ − ‖x∗‖,

from which ‖x∗‖ ≥ ‖x‖ −
√

2f(x) + ‖x‖2, and (b) follows by taking the supremum
over x ∈ F . ¤

3. The Fitzpatrick function and surjectivity

Let E be a reflexive Banach space and S : E ⇒ E∗ be maximal monotone with
graph G(S) :=

{
(x, x∗) ∈ E × E∗ : x∗ ∈ Sx

}
. We define ψS : E × E∗ 7→ (−∞,∞]

by
ψS(x, x∗) := sup

(s,s∗)∈G(S)
〈x− s, s∗ − x∗〉,

and the Fitzpatrick function φS : E × E∗ 7→ (−∞,∞] associated with S by

φS(x, x∗) := sup
(s,s∗)∈G(S)

[〈s, x∗〉+ 〈x, s∗〉 − 〈s, s∗〉] = ψS(x, x∗) + 〈x, x∗〉.

(This function φS was introduced by Fitzpatrick in [6, Definition 3.1, p. 61] under
the notation LS . The function ψS was introduced by Brezis and Haraux in [3] and
used further by Reich in [10] in their work on the range of the sum of monotone
multifunctions on a reflexive Banach space.) The reader may ask why we have
introduced both the functions φS and ψS , which are so closely related. The reason
for this is that φS is convex and weakly lower semicontinuous, while ψS is generally
neither. On the other hand, ψS is positive while φS is generally not. So the choice
of which of the two functions we use depends on what kind of argument we are
employing. A good example of this can be found in the transition from the use
of ψS and ψT in (6.2.3) to the use of φS and φT in (6.2.5). Now the maximal
monotonicity of S gives the statements

(3.0.1) (x, x∗) ∈ E × E∗ =⇒ ψS(x, x∗) ≥ 0 ⇐⇒ φS(x, x∗) ≥ 〈x, x∗〉,
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and

(3.0.2) ψS(x, x∗) = 0 ⇐⇒ φS(x, x∗) = 〈x, x∗〉 ⇐⇒ (x, x∗) ∈ G(S).

(See [6, Corollary 3.9, p. 62]. In fact, the monotonicity of S implies that if (x, x∗) ∈
G(S) then ψS(x, x∗) = 0, while the maximality of S implies that if (x, x∗) ∈
E × E∗ \ G(S) then ψS(x, x∗) > 0.) We will have frequent occasion to use the
identity, immediate from (3.0.1), that

(3.0.3) η ∈ E × E∗ =⇒ φS(η) + 1
2‖η‖2 = ψS(η) + ∆(η) ≥ 0.

Taken together with (3.0.3) and (1.1.3), (3.0.2) implies that

(3.0.4) φS(η) + 1
2‖η‖2 = 0 ⇐⇒ ψS(η) + ∆(η) = 0 ⇐⇒ η ∈ G(S) ∩G(−J).

Clearly, φS is proper, convex and lower semicontinuous. Let (x, x∗) ∈ E×E∗. Then
we see from the definition of φS and (3.0.2) that

φS(x, x∗) = sup
(s,s∗)∈G(S)

[〈s, x∗〉+ 〈x, s∗〉 − φS(s, s∗)
]

≤ sup
(y,y∗)∈E×E∗

[〈y, x∗〉+ 〈x, y∗〉 − φS(y, y∗)
]

= sup
(y,y∗)∈E×E∗

[〈
(y, y∗), (x∗, x)

〉− φS(y, y∗)
]

= φ∗S(x∗, x).

Combining this with (3.0.1), we have (see [6, Proposition 4.2, p. 63])

(3.0.5) (x, x∗) ∈ E × E∗ =⇒ φ∗S(x∗, x) ≥ φS(x, x∗) ≥ 〈x, x∗〉.
Further, if (x, x∗) ∈ G(S) then, for all (y, y∗) ∈ E × E∗, the definition of φS(y, y∗)
yields

φS(y, y∗) ≥ 〈y, x∗〉+ 〈x, y∗〉 − 〈x, x∗〉 =
〈
(y, y∗), (x∗, x)

〉− 〈x, x∗〉.
Thus

(x, x∗) ∈ G(S)

=⇒ φ∗S(x∗, x) = sup
(y,y∗)∈E×E∗

[〈
(y, y∗), (x∗, x)

〉− φS(y, y∗)
] ≤ 〈x, x∗〉.

Combining this with (3.0.2) and (3.0.5) yields (see [6, Proposition 4.3, p. 63])

(3.0.6) φ∗S(x∗, x) = 〈x, x∗〉 ⇐⇒ (x, x∗) ∈ G(S).

We now show how φS can be used to establish Rockafellar’s surjectivity theorem
that R(S + J) 3 0 and give a sharp lower bound in terms of φS for the norm of the
solutions, s, of (S +J)s 3 0. This can, of course, be bootstrapped into a proof that
E × E∗ = G(S) + G(−J) (see [13, Theorem 10.6, p. 37] and [15, Theorem 1.2]),
with the appropriate sharp numerical estimates. The numerical estimates obtained
in Theorem 3.1 will be used in Lemma 6.1. We emphasize that we have not assumed
that E has been renormed in any particular way.

Theorem 3.1. Let E be a nontrivial reflexive Banach space, S : E ⇒ E∗ be a
maximal monotone multifunction and

N := 1√
2
supη∈E×E∗

[
‖η‖ −

√
2φS(η) + ‖η‖2

]+

.
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(a) There exists η∗ ∈ E∗ × E such that ‖η∗‖ ≤ √
2N and

(3.1.1) φ∗S(η∗) + 1
2‖η∗‖2 ≤ 0.

Let (z, z∗) ∈ E × E∗ be such that η∗ = (z∗, z). Then

(3,1,2) 1
2

∥∥(z, z∗)
∥∥2 ≤ N2

and

(3.1.3) φS(z, z∗) + 1
2

∥∥(z, z∗)
∥∥2 = ψS(z, z∗) + ∆(z, z∗) ≤ 0.

Finally,

(3.1.4)





N ≤ 1√
2
infη∈E×E∗

[
‖η‖+

√
2φS(η) + ‖η‖2

]

= 1√
2
infη∈E×E∗

[
‖η‖+

√
2ψS(η) + 2∆(η)

]
.

(b) There exists x ∈ E such that (S + J)x 3 0, and further

min
{‖x‖ : x ∈ E, (S + J)x 3 0

}
= N.

Proof. (a) It is immediate from (3.0.3) and Theorem 2.1(a) with F := E × E∗ and
f := φS that there exists η∗ ∈ E∗ × E satisfying (3.1.1) such that ‖η∗‖ ≤ √

2N .
(3,1,2) is also clear since

∥∥(z, z∗)
∥∥2 = ‖η∗‖2. (3.1.3) now follows from (3.1.1), (3.0.5)

and (3.0.3), and (3.1.4) follows from (2.1.4). This completes the proof of (a).
(b) If (z, z∗) is as in (a), then (3.1.3), (3.0.3) and (??) give us that (z, z∗) ∈ G(S)

and −z∗ ∈ Jz. Since 0 = z∗ + (−z∗), it is now immediate that (S + J)z 3 0, and
(1.1.2) and (3,1,2) imply that ‖z‖ ≤ N . In order to complete the proof of (b), we
must show that

(3.1.5) x ∈ E and (S + J)x 3 0 =⇒ ‖x‖ ≥ N

So suppose that x ∈ E and (S + J)x 3 0. Then there exists x∗ ∈ Sx such that
−x∗ ∈ Jx. From (3.0.6), φ∗S(x∗, x) + 1

2

∥∥(x∗, x)
∥∥2 = 〈x, x∗〉+ 1

2

∥∥(x∗, x)
∥∥2 = 1

2‖x‖2−
‖x‖‖x∗‖ + 1

2‖x∗‖2 = 1
2

(‖x‖ − ‖x∗‖)2 = 0. Theorem 2.1(b) now gives
√

2‖x‖ =∥∥(x∗, x)
∥∥ ≥ √

2N , from which (3.1.5) follows, completing the proof of (b). ¤
Remark 3.2. Some of the techniques introduced in this section have been used in
[11] to give a proof of the Kirszbraun–Valentine extension theorem for nonexpansive
maps on a Hilbert space.

4. A More symmetric version of a result of Attouch and Brezis

For the initial results of this section we consider (possibly) nonreflexive Banach
spaces. Theorem 4.1 below was first proved by Attouch–Brezis (this follows from [1,
Corollary 2.3, p. 131–132]) — there is a somewhat different proof in [13, Theorem
14.2, p. 51], and a much more general result was established in [16, Theorem 2.8.6,
p. 125–126]:

Theorem 4.1. Let K be a Banach space, f, g : K 7→ (−∞,∞] be convex and
lower semicontinuous,

⋃
λ>0

λ
[
dom f − dom g

]
be a closed subspace of K
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and
f + g ≥ 0 on K.

Then
there exists z∗ ∈ K∗ such that f∗(−z∗) + g∗(z∗) ≤ 0.

Our next result is a generalization of Theorem 4.1 to functions of two variables.
We note that ρ(x, ·) is the inf–convolution (=episum) of σ(x, ·) and τ(x, ·), and the
conclusion of Theorem 4.2 is that ρ∗(·, y∗) is the exact inf–convolution of σ∗(·, y∗)
and τ∗(·, y∗).
Theorem 4.2. Let E and F be Banach spaces, σ, τ : E×F 7→ (−∞,∞] be proper,
convex and lower semicontinuous and, for all (x, y) ∈ E × F ,

ρ(x, y) := inf
{
σ(x, u) + τ(x, v) : u, v ∈ F, u + v = y

}
> −∞.

Defining pr1(x, y) := x, let

L :=
⋃

λ>0
λ
[
pr1 dom σ − pr1 dom τ

]
be a closed subspace of E.

Then, for all (x∗, y∗) ∈ E∗ × F ∗,

ρ∗(x∗, y∗) = min
{
σ∗(s∗, y∗) + τ∗(t∗, y∗) : s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
.

Proof. We first note that it is easy to see that ρ is convex. Furthermore, the
conditions imply that pr1 dom σ∩pr1 dom τ 6= ∅, and so ρ is proper. Let (x∗, y∗) ∈
E∗ × F ∗. We leave to the reader the simple verification that

ρ∗(x∗, y∗) ≤ inf
{
σ∗(s∗, y∗) + τ∗(t∗, y∗) : s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
.

So what we have to prove is that there exists t∗ ∈ E∗ such that

(4.2.1) σ∗(x∗ − t∗, y∗) + τ∗(t∗, y∗) ≤ ρ∗(x∗, y∗),

Since ρ is proper, ρ∗(x∗, y∗) > −∞, so we can suppose that ρ∗(x∗, y∗) ∈ R. Define
f, g : E × F × F 7→ (−∞,∞] by

f(s, u, v) := ρ∗(x∗, y∗)− 〈s, x∗〉 − 〈u + v, y∗〉+ σ(s, u)

and
g(s, u, v) := τ(s, v).

We note then that

dom f = {(s, u, v) : (s, u) ∈ dom σ} and dom g = {(s, u, v) : (s, v) ∈ dom τ}.
We next prove that

(4.2.2)
⋃

λ>0
λ
[
dom f − dom g

]
= L× F × F,

which is a closed subspace of E × F × F . Since the inclusion “⊂” is immediate, it
remains to prove “⊃”. To this end, let (s, u, v) ∈ L × F × F . The definition of L
gives λ > 0, (s1, u1) ∈ dom σ and (t1, v1) ∈ dom τ such that s = λ(s1 − t1). Let
u2 := u1 − u/λ and v2 := v1 + v/λ. Then (s, u, v) = λ

[
(s1, u1, v2) − (t1, u2, v1)

] ∈
λ
[
dom f − dom g

]
, which completes the proof of (4.2.2). Now let (s, u, v) ∈ E ×

F × F . Then

(f + g)(s, u, v) = ρ∗(x∗, y∗)− 〈s, x∗〉 − 〈u + v, y∗〉+ σ(s, u) + τ(s, v)
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≥ ρ∗(x∗, y∗)− 〈s, x∗〉 − 〈u + v, y∗〉+ ρ(s, u + v) ≥ 0.

Theorem 4.1 now gives (t∗, u∗, v∗) ∈ E∗ × F ∗ × F ∗ such that

(4.2.3) f∗(−t∗,−u∗,−v∗) + g∗(t∗, u∗, v∗) ≤ 0.

Since this implies that f∗(−t∗,−u∗,−v∗) < ∞, we must have

v∗ = y∗ and f∗(−t∗,−u∗,−v∗) = σ∗(x∗ − t∗, y∗ − u∗)− ρ∗(x∗, y∗).

(4.2.3) also implies that g∗(t∗, u∗, v∗) < ∞, from which

u∗ = 0 and g∗(t∗, u∗, v∗) = τ∗(t∗, v∗).

Thus (4.2.3) reduces to

σ∗(x∗ − t∗, y∗ − 0)− ρ∗(x∗, y∗) + τ∗(t∗, y∗) ≤ 0.

This gives (4.2.1), and completes the proof of Theorem 4.2. ¤

Remark 4.3. We noted in the comments preceding Theorem 4.2 that Theorem 4.2
is, in fact, a generalization of Theorem 4.1. To see this, suppose that f , g and K
are as in the statement of Theorem 4.1. Then we can obtain the result of Theorem
4.1 by applying Theorem 4.2 with E = K, F = {0}, for all x ∈ E, σ(x, 0) = f(x)
and τ(x, 0) = g(x), and (x∗, y∗) = (0, 0) ∈ E∗ × F ∗.

5. The maximal monotonicity of a sum in reflexive spaces

We start this section by using Fitzpatrick functions to obtain a sufficient con-
dition for the sum of maximal monotone multifunctions on a reflexive space to be
maximal monotone. However, the main result in this section is the “sandwiched
closed subspace theorem”, Theorem 5.5, a template for such existence theorems
obtained by bootstrapping Lemma 5.1 through a sequence of four lemmas. Lemma
5.1 can also be established using a technique similar to that of [9, Theorem 15].

Lemma 5.1. Let E be a reflexive Banach space, S : E ⇒ E∗ and T : E ⇒ E∗ be
maximal monotone and, writing pr1(x, x∗) := x,

(5.1.1)
⋃

λ>0
λ
[
pr1 dom φS − pr1 dom φT

]
be a closed subspace of E.

Then S + T is maximal monotone.

Proof. Let ρ(x, x∗) := inf
{
φS(x, s∗) + φT (x, t∗) : s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
. From

(3.0.1),

ρ(x, x∗) ≥ inf
{〈x, s∗〉+ 〈x, t∗〉 : s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
= 〈x, x∗〉.

We now derive from Theorem 4.2 and (3.0.5) that, for all (x, x∗) ∈ E × E∗,

ρ∗(x∗, x) = min
{
φ∗S(s∗, x) + φ∗T (t∗, x) : s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}

≥ inf
{〈x, s∗〉+ 〈x, t∗〉 : s∗, t∗ ∈ E∗, s∗ + t∗ = x∗

}
= 〈x, x∗〉.

Theorem 1.4(a) with k := ρ now gives that the set
{
(x, x∗) ∈ E × E∗ : ρ∗(x∗, x) =

〈x, x∗〉} is maximal monotone. However, by direct computation from (3.0.6), this
set is exactly G(S + T ), which completes the proof of Lemma 5.1. ¤
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Lemma 5.2 is the first of the lemmas that we use to bootstrap Lemma 5.1 in
our proof of Theorem 5.5, and is purely algebraic in character. In fact Lemma 5.2
is equivalent to the known fact that if C is convex then a ∈ C and b ∈ icrC =⇒
]a, b] ⊂ icr C.

Lemma 5.2. Let C be a convex subset of a vector space E, and F :=
⋃

λ>0 λC be
a subspace of E. Let c ∈ C and α ∈ (0, 1). Then

(5.2.1)
⋃

λ>0
λ
[
C − αc

]
= F.

Proof. C − αc ⊂ F − F = F , which gives the inclusion “⊂” in (5.2.1). Now let
y ∈ F . Then there exist µ > 0 and a ∈ C such that y = µa. Thus

(1− α)a =
[
(1− α)a + αc

]− αc ∈ C − αc

and so
y = µa ∈ µ

1− α

[
C − αc

] ⊂
⋃

λ>0
λ
[
C − αc

]
,

which gives the inclusion “⊃” in (5.2.1), and thus completes the proof of Lemma
5.2. ¤

Lemma 5.3 gives some connections between the sets used in Lemma 5.1. The
technique used in Lemma 5.3(b) is taken from [13, Section 16, p. 57–62]. The
technique used in Lemma 5.3(c) is taken from [13, Theorem 23.2, p. 87–88], which
is not surprising given the identity “pr1 dom φS = dom χS” that we will establish
in Remark 5.6.

Lemma 5.3. Let E be a reflexive Banach space and S : E ⇒ E∗ be maximal
monotone. Then, writing pr2(x∗, x) := x, D(S) := pr1 G(S) =

{
x ∈ E : Sx 6= ∅},

“co” for “convex hull” and “lin” for “linear span”:
(a) D(S) ⊂ co D(S) ⊂ pr2 dom φ∗S ⊂ pr1 dom φS.
(b) If F is a closed subspace of E, w ∈ E and D(S) ⊂ F +w then pr1 dom φS ⊂

F + w.
(c) Let T : E ⇒ E∗ also be maximal monotone. Then

⋃
λ>0

λ
[
pr1 dom φS − pr1 dom φT

] ⊂ lin
(
D(S)−D(T )

)
.

Proof. It is clear from (3.0.5) that pr2 dom φ∗S ⊂ pr1 dom φS so, since pr2 dom φ∗S
is convex, in order to prove (a) it remains to show that D(S) ⊂ pr2 dom φ∗S . To
this end, let x ∈ D(S). Then there exists x∗ ∈ Sx. From (3.0.6), φ∗S(x∗, x) ∈ R, and
so x ∈ pr2 dom φ∗S . This completes the proof of (a). In order to prove (b), we shall
write F⊥ for the subspace

{
y∗ ∈ E∗ : 〈F, y∗〉 = {0}} of E∗. Let x be an arbitrary

element of pr1 dom φS and u ∈ D(S). Then there exists u∗ ∈ Su, and there also
exists x∗ ∈ E∗ such that φS(x, x∗) < ∞. Let y∗ be an arbitrary element of F⊥. We
first prove that

(5.3.1) u∗ + y∗ ∈ Su.

To this end, let (s, s∗) be an arbitrary element of G(S). Then, since

u− s ∈ D(S)−D(S) ⊂ F + w − (F + w) = F − F = F and y∗ ∈ F⊥,
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we must have 〈u− s, y∗〉 = 0 and so, since u∗ ∈ Su, s∗ ∈ Ss and S is monotone,

〈u− s, (u∗ + y∗)− s∗〉 = 〈u− s, u∗ − s∗〉 ≥ 0.

The maximality of S now gives (5.3.1). We now derive from the definition of
φS(x, x∗) that

∞ > φS(x, x∗) ≥ 〈u, x∗〉+ 〈x, u∗ + y∗〉 − 〈u, u∗ + y∗〉
from which

∞ > φS(x, x∗)− 〈u, x∗〉 − 〈x, u∗〉+ 〈u, u∗〉 ≥ 〈x− u, y∗〉.
Since F⊥ is a subspace of E∗, it follows that 〈x − u, F⊥〉 = {0}, and the bipolar
theorem now implies that x− u ∈ F . Thus

(5.3.2) x = (x− u) + u ∈ F + D(S) ⊂ F + (F + w) = (F + F ) + w = F + w.

(b) now follows since (5.3.2) holds for all x ∈ pr1 dom φS . For (c), we write F for
the closed linear subspace lin

(
D(S)−D(T )

)
of E. Let x be an arbitrary element

of pr1 dom φS and y be an arbitrary element of pr1 dom φT . Let t be an arbitrary
element of D(T ). Then D(S) − t ∈ D(S) − D(T ) ⊂ F . Consequently, D(S) ⊂
F + t, and it follows from (b) that x ∈ F + t, and so t ∈ F + x. Since t is an
arbitrary element of D(T ), we have in fact proved that D(T ) ⊂ F + x, and it
follows from (b) (again) that y ∈ F + x, and so x − y ∈ F . Since this holds for
all x ∈ pr1 dom φS and y ∈ pr1 dom φT , we have established that pr1 dom φS −
pr1 dom φT ⊂ lin

(
D(S)−D(T )

)
, from which (c) follows immediately. ¤

Lemma 5.4 explores how the concepts introduced in Lemma 5.1 react under a
translation in the domain space.

Lemma 5.4. Let E be a reflexive Banach space, S : E ⇒ E∗ be maximal monotone
and w ∈ E. Define the maximal monotone multifunction U : E ⇒ E∗ by

(u, u∗) ∈ G(U) ⇐⇒ (u + w, u∗) ∈ G(S).

Then:
(a) (x, x∗) ∈ E × E∗ =⇒ φU (x, x∗) = φS(x + w, x∗)− 〈w, x∗〉.
(b) pr1 dom φU = pr1 dom φS − w.
(c) D(U) = D(S)− w.

Proof. (a) Let (x, x∗) ∈ E × E∗. Then

φU (x, x∗) = sup(u,u∗)∈G(U)

[〈u, x∗〉+ 〈x, u∗〉 − 〈u, u∗〉]

= sup(s,s∗)∈G(S)

[〈s− w, x∗〉+ 〈x, s∗〉 − 〈s− w, s∗〉]

= sup(s,s∗)∈G(S)

[〈s, x∗〉+ 〈x + w, s∗〉 − 〈s, s∗〉]− 〈w, x∗〉
= φS(x + w, x∗)− 〈w, x∗〉.

(b) follows from (a), and (c) is immediate from the definition of U . ¤

We now come to the main result of this section, the “sandwiched closed subspace
theorem”. We shall show in Remark 5.6 how different choices for F lead to known
sufficient conditions for S + T to be maximal monotone.
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Theorem 5.5. Let E be a reflexive Banach space, and S : E ⇒ E∗ and T : E ⇒ E∗
be maximal monotone. Suppose there exists a closed subspace F of E such that

(5.5.1) D(S)−D(T ) ⊂ F ⊂
⋃

λ>0
λ
[
pr1 dom φS − pr1 dom φT

]
.

Then S + T is maximal monotone. Furthermore, for all ε > 0,

(5.5.2) D(S)−D(T ) ⊂ pr1 dom φS − pr1 dom φT ⊂ (1 + ε)
[
D(S)−D(T )

]
,

(that is to say, pr1 dom φS − pr1 dom φT and D(S) −D(T ) are almost identical)
and

(5.5.3)
⋃

λ>0
λ
[
pr1 dom φS − pr1 dom φT

]
=

⋃
λ>0

λ
[
D(S)−D(T )

]
.

Proof. (5.5.1) gives lin
(
D(S)−D(T )

) ⊂ F . We then obtain from Lemma 5.3(c)
that

⋃
λ>0 λ

[
pr1 dom φS − pr1 dom φT

] ⊂ F , and another application of (5.5.1)
implies that

(5.5.4)
⋃

λ>0
λ
[
pr1 dom φS − pr1 dom φT

]
= F,

so (5.1.1) is satisfied, and the maximal monotonicity of S + T follows from Lemma
5.1. Let ε > 0 and α := 1/(1 + ε) ∈ (0, 1). Let c ∈ C := pr1 dom φS − pr1 dom φT .
We now apply Lemma 5.2 and obtain from (5.5.4) that
⋃

λ>0
λ
[
pr1 dom φS−pr1 dom φT−αc

]
=

⋃
λ>0

λ
[
pr1 dom φS−pr1 dom φT

]
= F.

Define U as in Lemma 5.4, with w := αc. Lemma 5.4(b) now gives that
⋃

λ>0
λ
[
pr1 dom φU−pr1 dom φT

]
=

⋃
λ>0

λ
[
pr1 dom φS−αc−pr1 dom φT

]
= F,

and so Lemma 5.1 (with S replaced by U) implies that U +T is maximal monotone
and, in particular, D(U) ∩D(T ) 6= ∅. Using Lemma 5.4(c), we derive that

(
D(S)− αc

) ∩D(T ) 6= ∅,
from which αc ∈ D(S)−D(T ), that is to say c ∈ (1 + ε)

(
D(S)−D(T )

)
. Since this

holds for any c ∈ pr1 dom φS − pr1 dom φT , we have proved that

pr1 dom φS − pr1 dom φT ⊂ (1 + ε)
(
D(S)−D(T )

)
.

(5.5.2) now follows from Lemma 5.3(a), and (5.5.3) is an immediate consequence of
(5.5.2). ¤

Remark 5.6. We end up with some comments about possible choices for F in The-
orem 5.5, recalling from Lemma 5.3(a) that D(S) ⊂ co D(S) ⊂ pr2 dom φ∗S ⊂
pr1 dom φS . If we take F =

⋃
λ>0 λ

[
D(S) − D(T )

]
, we obtain [13, (23.2.2), p.

87], while the choice F =
⋃

λ>0 λ
[
co D(S)− co D(T )

]
gives us [13, (23.2.4), p. 87].

Either of these cases can be used to establish [9, Theorem 15] (but without the need
to renorm E). We now discuss the choice F =

⋃
λ>0 λ

[
pr2 dom φ∗S − pr2 dom φ∗T

]
.

Here, we define the function cS : E × E∗ 7→ (−∞,∞] by

cS(x, x∗) :=

{
〈x, x∗〉, if (x, x∗) ∈ G(S);
∞, otherwise.
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Then (see [6, Proposition 4.1, p. 63]) φ∗S(x∗, x) = c∗∗S (x, x∗) = co cS(x, x∗) (in the
notation of [17]) and so we obtain [17, Corollary 4]. Lemma 5.3(a) also leads us to
the choice F =

⋃
λ>0 λ

[
pr1 dom φS − pr1 dom φT

]
. In order to examine this, we

must discuss briefly the technique of the big convexification. It was shown in [13,
Section 9] how to define a convex subset C of a vector space, δ : G(S) 7→ C, affine
maps p : C 7→ E, q : C 7→ E∗ and r : C 7→ R such that

(5.6.1) C = co δ
(
G(S)

)

and
(5.6.2)
(s, s∗) ∈ G(S) =⇒ p ◦ δ(s, s∗) = s, q ◦ δ(s, s∗) = s∗ and r ◦ δ(s, s∗) = 〈s, s∗〉.

Now x ∈ pr1 dom φS if, and only if there exists x∗ ∈ E∗ such that φS(x, x∗) < ∞,
or equivalently, such that, for some M ≥ 0,

(s, s∗) ∈ G(S) =⇒ 〈s, x∗〉+ 〈x, s∗〉 − 〈s, s∗〉 ≤ M.

Using (5.6.2), this can be rewritten

(s, s∗) ∈ G(S) =⇒ 〈
p ◦ δ(s, s∗), x∗

〉
+

〈
x, q ◦ δ(s, s∗)

〉− r ◦ δ(s, s∗) ≤ M.

(5.6.1) implies that this is equivalent to

c ∈ C =⇒ 〈−p(c), x∗
〉− 〈

x, q(c)
〉

+ r(c) ≥ −M.

Since the maps c 7→ −p(c) and c 7→ 〈
x, q(c)

〉−r(c) are affine, it follows from a special
case of the new version of the Hahn–Banach theorem proved in [14, Theorem 1.5]
(if E is a nontrivial vector space, S : E 7→ R is sublinear, C is a nonempty convex
subset of a vector space, g : C 7→ E is affine and f : C 7→ R is convex then there
exists a linear functional L on E such that L ≤ S on E and infC

[
f + L ◦ g

]
=

infC
[
f + S ◦ g

]
) that this is, in turn, equivalent to

there exists N ≥ 0 such that c ∈ C =⇒ N‖−p(c)‖−〈
x, q(c)

〉
+r(c) ≥ −M.

Combining together M and N into a single constant, we derive that x ∈ pr1 dom φS

if, and only if

there exists K ≥ 0 such that c ∈ C =⇒ K + K‖p(c)‖ ≥ 〈
x, q(c)

〉− r(c),

that is to say,

sup
c∈C

〈
x, q(c)

〉− r(c)
1 + ‖p(c)‖ < ∞, in other words, χS(x) < ∞,

where the convex function χS is as defined in [13, Definition 15.1, p. 53]. So we
have proved that pr1 dom φS = dom χS , and so this choice of F gives us [13,
(23.2.6), p. 87]. Of course, there are also valid “hybrid” choices, such as F =⋃

λ>0 λ
[
D(S)− pr1 dom φT

]
.

In all these cases, it follows from (5.5.4) that F is the same set, independently of
how F is initially defined.
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6. The Brezis–Crandall–Pazy condition

In this section, we investigate sufficient conditions for S+T to be maximal mono-
tone of a kind different from those considered in previous sections. The most general
result in this section is Theorem 6.2, which is a generalization of [13, Theorem 24.3,
p. 94]. We show in Corollary 6.5 how to deduce from this the result of Brezis,
Crandall and Pazy, which has found applications to partial differential equations.
We refer the reader to their original paper, [2], for more details.

Lemma 6.1. Let E be a nontrivial reflexive Banach space, U : E ⇒ E∗ and
V : E ⇒ E∗ be maximal monotone and pr1 dom φU ∩ pr1 dom φV 6= ∅. Then there
exists R ≥ 0 (independent of n) with the following property: for all n ≥ 1, there
exist (zn, ξn) ∈ E × E and (z∗n, ξ∗n) ∈ E∗ × E∗ such that

(6.1.1) ‖zn‖2 + n2‖ξn‖2 + ‖z∗n‖2 ≤ R2,

and

(6.1.2) ψU (zn, z∗n − ξ∗n) + ψV (zn + ξn, ξ∗n) + ∆(zn, z∗n) + ∆(nξn, ξ∗n/n) = 0.

Proof. Since pr1 dom φU ∩ pr1 dom φV 6= ∅, we can choose (u0, u
∗
0) ∈ dom φU and

(v0, v
∗
0) ∈ dom φV such that that u0 = v0. Let Q :=

√‖u0‖2 + ‖u∗0 + v∗0‖2 + ‖v∗0‖2.
Q is clearly independent of n. Define Sn : E × E ⇒ E∗ × E∗ by

G(Sn) =
{(

(s, σ), (s∗, σ∗)
)
: (s, s∗ − nσ∗) ∈ G(U), (s + σ/n, nσ∗) ∈ G(V )

}
.

Using the equality
〈
(z, z + ζ/n), (z∗ − nζ∗, nζ∗)

〉
= 〈z, z∗〉 + 〈ζ, ζ∗〉, which is valid

for all
(
(z, ζ), (z∗, ζ∗)

) ∈ (E×E)× (E∗×E∗), it is easy to check that Sn is maximal
monotone and, for all

(
(z, ζ), (z∗, ζ∗)

) ∈ (E × E)× (E∗ × E∗),

φSn

(
(z, ζ), (z∗, ζ∗)

)
= φU (z, z∗ − nζ∗) + φV (z + ζ/n, nζ∗)(6.1.3)

and

ψSn

(
(z, ζ), (z∗, ζ∗)

)
= ψU (z, z∗ − nζ∗) + ψV (z + ζ/n, nζ∗).(6.1.4)

Let ηn =
(
(u0, 0), (u∗0 + v∗0, v

∗
0/n)

) ∈ (E × E)× (E∗ × E∗). Then

‖ηn‖ =
√
‖u0‖2 + ‖u∗0 + v∗0‖2 + ‖v∗0‖2/n2 ≤ Q,

so, even though ηn depends on n, {‖ηn‖}n≥1 is bounded. Furthermore, (6.1.3) gives
φSn(ηn) = φU (u0, u

∗
0)+φV (v0, v

∗
0), which is independent of n. Then, from Theorem

3.1(a), there exists
(
(zn, ζn), (z∗n, ζ∗n)

) ∈ (E × E)× (E∗ × E∗) such that
(6.1.5)∥∥(

(zn, ζn), (z∗n, ζ∗n)
)∥∥ ≤ 1√

2
‖ηn‖+

√
φSn(ηn) + 1

2‖ηn‖2 ≤ 1√
2
Q +

√
φSn(ηn) + 1

2Q2,

which is independent of n, and

(6.1.6) ψSn

(
(zn, ζn), (z∗n, ζ∗n)

)
+ ∆

(
(zn, ζn), (z∗n, ζ∗n)

)
= 0.

Let ξn := ζn/n and ξ∗n := nζ∗n. (6.1.1) follows by expanding out the terms in (6.1.5),
and (6.1.2) follows by expanding out the terms in (6.1.6) and using (6.1.4). ¤



16 S. SIMONS AND C. ZĂLINESCU

By saying that j is increasing in the statement of Theorem 6.2 below, we mean
that

0 ≤ ρ1 ≤ ρ2, 0 ≤ σ1 ≤ σ2 and 0 ≤ τ1 ≤ τ2 =⇒ j(ρ1, σ1, τ1) ≤ j(ρ2, σ2, τ2).

Theorem 6.2. Let E be a nontrivial reflexive Banach space, S : E ⇒ E∗ and
T : E ⇒ E∗ be maximal monotone and pr1 dom φS ∩ pr1 dom φT 6= ∅. Suppose that
there exists an increasing function j : [0,∞)× [0,∞)× [0,∞) → [0,∞) such that

(6.2.1)

{
(x, x∗ − ξ∗) ∈ G(S), (x + ξ, ξ∗) ∈ G(T ), ξ 6= 0 and 〈ξ, ξ∗〉 = −‖ξ‖‖ξ∗‖

=⇒ ‖ξ∗‖ ≤ j
(‖x‖, ‖x∗‖, ‖ξ‖‖ξ∗‖).

Then S + T is maximal monotone.

Proof. We will first prove that, for all (w, w∗) ∈ E × E∗, there exists (x, x∗, ξ∗) ∈
E × E∗ × E∗ such that (see (1.3.3) for the definition of δ(w,w∗))

(6.2.2) φS(x, x∗ − ξ∗) + φT (x, ξ∗) + δ(w,w∗)(x, x∗) ≤ 0.

So let (w, w∗) be an arbitrary element of E × E∗. Define the maximal monotone
multifunctions U : E ⇒ E∗ and V : E ⇒ E∗ by G(U) := G(S) − (w, w∗) and
G(V ) := G(T )− (w, 0). From a slight extension of the argument of Lemma 5.4(b),

pr1 dom φU ∩ pr1 dom φV = (pr1 dom φS − w) ∩ (pr1 dom φT − w) 6= ∅.
Let R be as in Lemma 6.1. From Lemma 6.1, for all n ≥ 1, there exist (zn, ξn) ∈
E × E and (z∗n, ξ∗n) ∈ E∗ × E∗ such that (6.1.1) and (6.1.2) are satisfied. For all
n ≥ 1, let xn = w + zn and x∗n = w∗ + z∗n. Then (6.1.2) becomes

(6.2.3) ψS(xn, x∗n− ξ∗n)+ψT (xn + ξn, ξ∗n)+∆(xn−w, x∗n−w∗)+∆(nξn, ξ∗n/n) = 0.

This implies that ∆(nξn, ξ∗n/n) = 0 and so, from (1.1.2),

(6.2.4) 〈ξn, ξ∗n〉 = −‖ξn‖‖ξ∗n‖ ≤ 0 and ‖ξn‖‖ξ∗n‖ = ‖nξn‖2.

(6.2.3) also implies that ψS(xn, x∗n− ξ∗n)+ψT (xn + ξn, ξ∗n)+∆(xn−w, x∗n−w∗) = 0,
i.e., φS(xn, x∗n− ξ∗n)+φT (xn + ξn, ξ∗n)+ δ(w,w∗)(xn, x∗n)−〈ξn, ξ∗n〉 = 0. Taking (6.2.4)
into account, we derive that

(6.2.5) φS(xn, x∗n − ξ∗n) + φT (xn + ξn, ξ∗n) + δ(w,w∗)(xn, x∗n) ≤ 0.

If there exists n ≥ 1 such that ξn = 0 then this gives (6.2.2) with (x, x∗, ξ∗) :=
(xn, x∗n, ξ∗n). So we can and will assume that, for all n ≥ 1, ξn 6= 0. It is clear from
(6.1.1) that supn≥1 ‖xn‖ ≤ R+‖w‖, supn≥1 ‖x∗n‖ ≤ R+‖w∗‖ and supn≥1 ‖nξn‖ ≤ R.
Using (6.2.4) and applying (6.2.1) gives

supn≥1 ‖ξ∗n‖ ≤ j
(
R + ‖w‖, R + ‖w∗‖, R2

)
< ∞.

Thus, by passing to a subnet, we can suppose that xα ⇀ x, ξα → 0, x∗α ⇀ x∗ and
ξ∗α ⇀ ξ∗. For all α, (6.2.5) gives

φS(xα, x∗α − ξ∗α) + φT (xα + ξα, ξ∗α) + δ(w,w∗)(xα, x∗α) ≤ 0.

We now obtain (6.2.2) by passing to the limit, and using (1.3.4) and the weak lower
semicontinuity of φS and φT . Combining (1.1.1), (1.3.3), (3.0.1) and (6.2.2) gives
us that

0 ≤ 〈x, x∗ − ξ∗〉+ 〈x, ξ∗〉+ δ(w,w∗)(x, x∗)
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≤ φS(x, x∗ − ξ∗) + φT (x, ξ∗) + δ(w,w∗)(x, x∗) ≤ 0.

Thus φS(x, x∗ − ξ∗) = 〈x, x∗ − ξ∗〉 and φT (x, ξ∗) = 〈x, ξ∗〉, and (3.0.2) implies that
(x, x∗ − ξ∗) ∈ G(S) and (x, ξ∗) ∈ G(T ), from which (x, x∗) ∈ G(S + T ). Define the
convex function h : E × E∗ 7→ (−∞,∞] by

h(x, x∗) := inf
{
φS(x, x∗ − v∗) + φT (x, v∗) : v∗ ∈ E∗} ≥ 〈x, x∗〉.

(h is identical with the function ρ of Lemma 5.1. It is clear from (3.0.2) that
G(S + T ) ⊂ Mh, and (6.2.2) implies (1.2.2) since h(x, x∗) ≤ φS(x, x∗ − ξ∗) +
φT (x, ξ∗). Lemma 1.2(c) with G := G(S + T ) now gives that G(S + T ) is maximal
monotone. ¤
Remark 6.3. We note that (6.2.1) is satisfied if we assume that the first line of
(6.2.1) implies that ‖ξ∗‖ is bounded by certain special functions of ‖ξ‖ only. Let a
and b be large positive numbers, λ, µ ≥ 0 and µ ≤ a ∨ λb. Then

µ > a =⇒ µ ≤ λb =⇒ µ
1

b+1 ≤ λ
b

b+1 =⇒ µ ≤ (λµ)
b

b+1 .

Consequently, µ ≤ a ∨ (λµ)
b

b+1 . Thus, if the first line of (6.2.1) implies that ‖ξ∗‖ ≤
a ∨ ‖ξ‖b, then (6.2.1) is satisfied with j(·, ·, θ) := a ∨ θ

b
b+1 .

In what follows, if U : E ⇒ E∗ and x ∈ E, we write |Ux| = inf ‖Ux‖. The next
result is an implicit version of the Brezis–Crandall–Pazy theorem on the perturba-
tion of multifunctions (“implicit” because the quantity |Tx| appears on both sides
of the inequality in (6.4.1)). The original explicit version will appear in Corollary
6.5, and a new explicit version in Corollary 6.6.

Corollary 6.4. Let E be a nontrivial reflexive Banach space, S : E ⇒ E∗ and
T : E ⇒ E∗ be maximal monotone, D(S) ⊂ D(T ), and suppose that there exists an
increasing function j : [0,∞)× [0,∞) → [0,∞) such that,

(6.4.1) x ∈ D(S) =⇒ |Tx| ≤ j
(‖x‖, (|Sx| − |Tx|)+)

.

Then S + T is maximal monotone.

Proof. We first note from Lemma 5.3(a) that pr1 dom φS ∩pr1 dom φT ⊃ D(S) 6= ∅.
We now show that (6.2.1) is satisfied. To this end, suppose that

(x, x∗ − ξ∗) ∈ G(S), (x + ξ, ξ∗) ∈ G(T ), ξ 6= 0 and 〈ξ, ξ∗〉 = −‖ξ‖‖ξ∗‖.
This clearly implies that x ∈ D(S) ⊂ D(T ). Now let t∗ be an arbitrary element of
Tx. We then have (x, t∗) ∈ G(T ). Since (x + ξ, ξ∗) ∈ G(T ) and T is monotone,
〈ξ, ξ∗ − t∗〉 ≥ 0, and so −〈ξ, ξ∗〉 ≤ −〈ξ, t∗〉. Thus ‖ξ‖‖ξ∗‖ ≤ ‖ξ‖‖t∗‖, and division
by ‖ξ‖ gives ‖ξ∗‖ ≤ ‖t∗‖. If we now take the infimum over t∗ ∈ Tx, we obtain
‖ξ∗‖ ≤ |Tx|. Since (x, x∗−ξ∗) ∈ G(S), we also have |Sx| ≤ ‖x∗−ξ∗‖ ≤ ‖x∗‖+‖ξ∗‖ ≤
‖x∗‖ + |Tx|, and so |Sx| − |Tx| ≤ ‖x∗‖, from which (|Sx| − |Tx|)+ ≤ ‖x∗‖. Thus
(6.4.1) implies that ‖ξ∗‖ ≤ |Tx| ≤ j

(‖x‖, ‖x∗‖), and it now follows from Theorem
6.2 that S + T is maximal monotone. ¤
Corollary 6.5. Let E be a nontrivial reflexive Banach space, S : E ⇒ E∗ and
T : E ⇒ E∗ be maximal monotone, D(S) ⊂ D(T ), and suppose that there exist
increasing functions k : [0,∞) → [0, 1) and C : [0,∞) → [0,∞) such that,

(6.5.1) x ∈ D(S) =⇒ |Tx| ≤ k(‖x‖)|Sx|+ C(‖x‖).
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Then S + T is maximal monotone.

Proof. Let x ∈ D(S). From (6.5.1),
(
1 − k(‖x‖))|Tx| ≤ k(‖x‖)(|Sx| − |Tx|) +

C(‖x‖) ≤ k(‖x‖)(|Sx|− |Tx|)+ +C(‖x‖), and the result now follows from Corollary
6.4 with

j(ρ, σ) :=
k(ρ)σ + C(ρ)

1− k(ρ)
. ¤

In our final result, we allow k to take values bigger than 1, but we replace |Sx|
by |Sx|p in the statement of Corollary 6.5.

Corollary 6.6. Let E be a nontrivial reflexive Banach space, S : E ⇒ E∗ and
T : E ⇒ E∗ be maximal monotone, D(S) ⊂ D(T ), and suppose that 0 < p < 1 and
there exist increasing functions k : [0,∞) → [0,∞) and C : [0,∞) → [0,∞) such
that,

(6.6.1) x ∈ D(S) =⇒ |Tx| ≤ k(‖x‖)|Sx|p + C(‖x‖).
Then S + T is maximal monotone.

Proof. Let x ∈ D(S). From (6.6.1) and the fact that λ, µ ≥ 0 =⇒ (λ+µ)p ≤ λp+µp,

|Tx| ≤ k(‖x‖)(|Tx| ∨ |Sx|)p + C(‖x‖) = k(‖x‖)(|Tx|+ (|Sx| − |Tx|)+)p + C(‖x‖)
≤ k(‖x‖)|Tx|p + k(‖x‖)((|Sx| − |Tx|)+)p + C(‖x‖).

Now if k(‖x‖)|Tx|p ≤ 1
2 |Tx| then this gives |Tx| ≤ 2k(‖x‖)((|Sx| − |Tx|)+)p +

2C(‖x‖), while if 1
2 |Tx| < k(‖x‖)|Tx|p then, of course, |Tx| <

(
2k(‖x‖))1/(1−p).

Thus the result follows from Corollary 6.4, with j(ρ, σ) :=
[
2k(ρ)σp + 2C(ρ)

] ∨(
2k(ρ)

)1/(1−p). ¤

Remark 6.7. We emphasize that, unlike the analysis in [2], we do not use any
renorming or fixed–point theorems in any of the above results. Theorem 6.2 does
not have the limitation D(S) ⊂ D(T ) of Corollary 6.5, though we do not know
if it has any practical applications other than those that can be obtained from
Corollaries 6.5 and 6.6.

7. Other formulas for min
{‖x‖ : x ∈ E, (S + J)x 3 0

}

Let E be a nontrivial reflexive Banach space and S : E ⇒ E∗ be a maximal
monotone multifunction. We showed in Theorem 3.1 that

(7.0.1) min
{‖x‖ : x ∈ E, (S + J)x 3 0

}

= 1√
2
supη∈E×E∗

[
‖η‖ −

√
2φS(η) + ‖η‖2

]+
.

In this final section, we give a general result that leads to other formulas for the
left–hand side, which might be more convenient for computation. In particular, we
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will see that if ‖(x, x∗)‖1 := ‖x‖+ ‖x∗‖ and ‖(x, x∗)‖∞ := ‖x‖ ∨ ‖x∗‖ then

min
{‖x‖ : x ∈ E, (S + J)x 3 0

}

= 1
2 sup

η∈E×E∗

[
‖η‖1 −

√
4φS(η) + ‖η‖1

2

]+

(7.0.2)

= sup
η∈E×E∗

[
‖η‖∞ −

√
φS(η) + ‖η‖∞2

]+

.(7.0.3)

We start off by investigating some elementary properties of norms on R2. Let N be
a norm on R2. We say that N is octagonal if

(λ1, λ2) ∈ R2 =⇒ N (λ1, λ2) = N (λ2, λ1) = N (|λ1|, |λ2|),
and we write CN := N (1, 1). If N (λ1, λ2) =

√
λ1

2 + λ2
2 then CN =

√
2, if

N (λ1, λ2) = |λ1|+ |λ2| then CN = 2, while if N (λ1, λ2) = |λ1|∨|λ2| then CN = 1. If
we substitute these three values of N in Theorem 7.3 below we obtain, respectively,
(7.0.1), (7.0.2) and (7.0.3). If N is octagonal, 0 ≤ λ1 ≤ µ1 and 0 ≤ λ2 ≤ µ2 then
(λ1, λ2) is a convex combination of (µ1, µ2), (−µ1, µ2) and (µ1,−µ2), consequently
N (λ1, λ2) ≤ N (µ1, µ2). In order to prove Theorem 7.3, we will need to discuss the
dual norm N ∗ on R2, defined by

N ∗(λ∗1, λ
∗
2) := max

N (λ1,λ2)≤1
λ1λ

∗
1 + λ2λ

∗
2.

If N is octagonal then

N ∗(λ∗1, λ
∗
2) = max

N (|λ1|,|λ2|)≤1
λ1λ

∗
1 + λ2λ

∗
2 = max

N (|λ1|,|λ2|)≤1
|λ1||λ∗1|+ |λ2||λ∗2|,

from which it follows easily that N ∗ is octagonal.

Lemma 7.1. Let N be a octagonal norm on R2. Then:
(a) For all λ1, λ2 ≥ 0, N (λ1, λ2) ≥ 1

2(λ1 + λ2)CN .

(b) CNCN ∗ = 2. Let γN := CN /CN ∗: then 1
2CN 2 = γN .

(c) For all λ1, λ2 ≥ 0,

(7.1.1) 1
2N (λ1, λ2)2 ≥ γNλ1λ2,

with equality if, and only if, λ1 = λ2.

Proof. (a) Let λ1, λ2 ≥ 0. Then

N (λ1, λ2) = 1
2N (λ1, λ2) + 1

2N (λ2, λ1)

≥ N (
1
2(λ1, λ2) + 1

2(λ2, λ1)
)

= N (
1
2(λ1 + λ2, λ1 + λ2)

)
,

which gives (a).
(b) From (a), for all (λ1, λ2) ∈ R2,
〈
(λ1, λ2), 1

2(CN , CN )
〉

= 1
2(λ1 + λ2)CN

≤ 1
2(|λ1|+ |λ2|)CN ≤ N (|λ1|, |λ2|) = N (λ1, λ2),

thus N ∗(1
2(CN , CN )

) ≤ 1, which gives CNCN ∗ ≤ 2. On the other hand,

CNCN ∗ = N (1, 1)N ∗(1, 1) ≥ 〈
(1, 1), (1, 1)

〉
= 2,
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which completes the proof of the first equality, and the second follows from the
definition of γN .

(c) Since (λ1 + λ2)2 ≥ 4λ1λ2, (7.1.1) is immediate from (a) and (b). If λ1 = λ2

then we obviously have equality in (7.1.1). If, conversely, we have equality in (7.1.1)
then, from (a) again, γNλ1λ2 = 1

2N (λ1, λ2)2 ≥ 1
8(λ1 + λ2)2CN 2 = 1

4γN (λ1 + λ2)2.
Thus 4λ1λ2 ≥ (λ1 + λ2)2, which implies that λ1 = λ2. ¤

IfN is a octagonal norm on R2, we define a norm ‖·‖N on E×E∗ by ‖(x, x∗)‖N :=
N (‖x‖, ‖x∗‖). Since ‖ · ‖N and ‖ · ‖ are equivalent norms, (E × E∗)∗ = E∗ × E as
before. The next result tells us that the dual norm, ‖ · ‖∗N , of ‖ · ‖N on E∗ × E is
exactly what we would like.

Lemma 7.2. Let N be a octagonal norm on R2. Then, for all (u∗, u) ∈ E∗ × E,
‖(u∗, u)‖∗N = N ∗(‖u∗‖, ‖u‖).
Proof. We have

‖(u∗, u)‖∗N := max
‖(x,x∗)‖N≤1

〈x, u∗〉+ 〈u, x∗〉 = max
N (‖x‖,‖x∗‖)≤1

〈x, u∗〉+ 〈u, x∗〉

≤ max
N (‖x‖,‖x∗‖)≤1

‖x‖‖u∗‖+ ‖u‖‖x∗‖

≤ max
N (λ1,λ2)≤1

λ1‖u∗‖+ λ2‖u‖ = N ∗(‖u∗‖, ‖u‖).

On the other hand, it follows from the last equality above that there exists (λ1, λ2) ∈
R2 such that N (λ1, λ2) ≤ 1 and N ∗(‖u∗‖, ‖u‖) = λ1‖u∗‖ + λ2‖u‖. Now we can
choose (x, x∗) ∈ E × E∗ such that ‖x‖ = |λ1|, ‖x∗‖ = |λ2|, 〈x, u∗〉 = λ1‖u∗‖ and
〈u, x∗〉 = λ2‖u‖. But then, since ‖(x, x∗)‖N = N (‖x‖, ‖x∗‖) = N (|λ1|, |λ2|) ≤ 1,

N ∗(‖u∗‖, ‖u‖) = 〈x, u∗〉+ 〈u, x∗〉 =
〈
(x, x∗), (u∗, u)

〉 ≤ ‖(u∗, u)‖∗N ,

which completes the proof of Lemma 7.2. ¤

In what follows, of course γN ∗ := CN ∗/CN = 1/γN .

Theorem 7.3. Let E be a nontrivial reflexive Banach space and S : E ⇒ E∗ be a
maximal monotone multifunction. Let N be any octagonal norm on R2 and

PN :=
1

CN
sup

η∈E×E∗

[
‖η‖N −

√
CN 2φS(η) + ‖η‖N 2

]+

.

Then
min

{‖x‖ : x ∈ E, (S + J)x 3 0
}

= PN ,

and so PN is independent of N .

Proof. It follows from (3.0.1) and Lemma 7.1(c), with (λ1, λ2) = (‖x‖, ‖x∗‖), that

(x, x∗) ∈ E × E∗

=⇒ γNφS(x, x∗) + 1
2‖(x, x∗)‖N 2 ≥ γN 〈x, x∗〉+ 1

2N (‖x‖, ‖x∗‖)2
≥ 1

2N (‖x‖, ‖x∗‖)2 − γN ‖x‖‖x∗‖ ≥ 0.
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Thus (3.0.3), and Theorem 2.1(a) with F :=
(
E × E∗, ‖ · ‖N

)
and f := γNφS =

1
2CN 2φS , give η∗ ∈ E∗ × E such that

(7.3.1) ‖η∗‖∗N ≤ sup
η∈E×E∗

[
‖η‖N −

√
CN 2φS(η) + ‖η‖N 2

]+

= CNPN

and (γNφS)∗(η∗) + 1
2‖η∗‖∗N 2 ≤ 0. Writing ζ∗ = γN ∗η∗, or equivalently, η∗ = γN ζ∗,

this becomes γNφ∗S(ζ∗)+ 1
2γ2
N ‖ζ∗‖∗N 2 ≤ 0, that is to say, γN ∗φ∗S(ζ∗)+ 1

2‖ζ∗‖∗N 2 ≤ 0.
Let (z, z∗) ∈ E × E∗ be such that ζ∗ = (z∗, z). Then, using Lemma 7.2, we derive
that γN ∗φ∗S(z∗, z) + 1

2N ∗(‖z∗‖, ‖z‖)2 ≤ 0. But since the left hand side of this
inequality is

γN ∗
[
φ∗S(z∗, z)−〈z, z∗〉]+γN ∗

[‖z‖‖z∗‖+〈z, z∗〉]+
[

1
2N ∗(‖z∗‖, ‖z‖)2−γN ∗‖z‖‖z∗‖

]
,

and, from (3.0.5) and Lemma 7.1(c), with N replaced by N ∗ and (λ1, λ2) =
(‖z∗‖, ‖z‖), each of the three summands is nonnegative, it follows that

φ∗S(z∗, z) = 〈z, z∗〉, ‖z‖‖z∗‖ = −〈z, z∗〉, and 1
2N ∗(‖z∗‖, ‖z‖)2 = γN ∗‖z∗‖‖z‖.

Taking into account (3.0.6) and Lemma 7.1(c), with N replaced by N ∗ and
(λ1, λ2) = (‖z∗‖, ‖z‖) again, we have (z, z∗) ∈ G(S), ‖z‖‖z∗‖ = −〈z, z∗〉 and
‖z∗‖ = ‖z‖, that is to say, −z∗ ∈ Jz. Since 0 = z∗ + (−z∗), it is now immedi-
ate that (S + J)z 3 0. Further, ‖ζ∗‖∗N = N ∗(‖z∗‖, ‖z‖) = N ∗(‖z‖, ‖z‖) = CN ∗‖z‖
and so, from (7.3.1),

‖z‖ =
1

CN ∗
‖ζ∗‖∗N =

γN ∗

CN ∗
‖η∗‖∗N =

1
CN

‖η∗‖∗N ≤ PN .

In order to complete the proof, we must show that

(7.3.2) x ∈ E and (S + J)x 3 0 =⇒ ‖x‖ ≥ PN .

So suppose that x ∈ E and (S + J)x 3 0. Then there exists x∗ ∈ Sx such that
−x∗ ∈ Jx. Write η∗ = γN (x∗, x). Then, from Lemma 7.2 and the fact that
‖x∗‖ = ‖x‖,

‖η∗‖∗N = γN ‖(x∗, x)‖∗N = γNN ∗(‖x∗‖, ‖x‖)
= γNN ∗(‖x‖, ‖x‖) = γNCN ∗‖x‖ = CN ‖x‖.

Consequently, from the fact that ‖x‖2 = −〈x, x∗〉 and (3.0.6),
1
2‖η∗‖∗N 2 = 1

2CN 2‖x‖2 = γN ‖x‖2 = −γN 〈x, x∗〉 = −γNφS
∗(x∗, x) = −(γNφS)∗(η∗).

So we have proved that (γNφS)∗(η∗) + 1
2‖η∗‖∗N 2 = 0. Theorem 2.1(b) now gives

‖η∗‖∗N ≥ CNPN , from which (7.3.2) follows, completing the proof of Theorem
7.3. ¤
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E-mail address: zalinesc@uaic.ro


