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SHADOWS OF FUZZY SETS ON BANACH SPACES

MASATO AMEMIYA

ABSTRACT. In this paper, we define the shadow of fuzzy sets in a uniformly
convex Banach space and prove some theorems for two convex fuzzy sets. Then we
shall observe that these results improve the result of Takahashi and Takahashi [3].
Moreover, we prove a theorem concerning the relationship between the shadows
defined here and the fuzzy sets defined by Amemiya and Takahashi [1].

1. INTRODUCTION

In [5], Zadeh defined the shadow of fuzzy sets in the finite dimensional real
Euclidean space and proved a theorem for two convex fuzzy sets to equal each other;
see also [6]. It was later shown that this result admitted a counterexample, however,
Takahashi and Takahashi [3] proved the following revised version of Zadeh’s result:

Let A and B be two convex fuzzy sets in a real Hilbert space X. If both A and
B are closed and Sg[A] = Su[B] for every closed hyperplane H in X, then A = B.

Recently, Amemiya and Takahashi [1] studied the shadows of fuzzy sets in a
normed linear space. They defined a fuzzy set without using the metric projection,
which was in essence a generalization of the shadows of fuzzy sets, and extended
the result of Takahashi and Takahashi [3] to that in a normed linear space (see
Section 3).

However, their fuzzy set did not give the definition of the shadow of fuzzy sets in
a normed linear space.

In this paper, we first define the shadow of fuzzy sets in a uniformly convex
Banach space and prove some theorems for two convex fuzzy sets by applying the
result of Amemiya and Takahashi [1]. Then, we shall observe that these theorems
improve the result of Takahashi and Takahashi [3]. Moreover, we prove a theorem
concerning the relationship between the shadows defined here and the fuzzy sets
defined by Amemiya and Takahashi.

2. PRELIMINARIES

Throughout this paper, all linear spaces are real and R denotes the set of real
numbers. Also, if X is a normed linear space, then X* denotes its dual and, for any
f € X* and any z € X, (z, f) denotes the value of f at x.

Let X be a nonempty set. A fuzzy set in X is a function of X into [0,1]. Let A
be a fuzzy set in X. Then, the complement A’ of A is a fuzzy set in X, which is
defined by the formula

Allx) =1- A(x)
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for every z € X. Let A and B be two fuzzy sets in X. We write A C B if
A(z) < B(x) forevery z € X and A= Bif AC B and B C A. Let r € [0,1].
Then, the r-cut A, of a fuzzy set A in X is a subset of X defined by

A, ={zeX:Ax)>r}.

Let X be a topological space and let A be a fuzzy set A in X. Then, A is said to
be closed if for each r € (0,1], A, is a closed subset of X. This implies that the
function A : X — [0, 1] is upper semicontinuous. Let X be a linear space and let A
be a fuzzy set A in X. Then, A is said to be convex if for each r € (0,1], A, is a
convex subset of X. This implies that the function A : X — [0, 1] is quasi-concave.

Let X be a normed linear space and let Sx (respectively Bx) denote the subset
{z € X : ||z = 1} (respectively {z € X : [|z| < 1}) of X. Then, X is said to be
strictly convex if for each z,y € Sx,

|z + vl

x # y implies — < 1.

X is said to be uniformly convex if for each € € (0, 2], there exists § > 0 such that
for each z,y € Sx,

|z + y
2

|z — y|| > € implies <1-9.

Moreover, the norm of X is said to be Gateaux differentiable (and X is called
smooth) if

N

t—o00 t
exists for each z,y € Sx.

We note that, if X is uniformly convex, then X is reflexive and strictly convex
and that, if X* is strictly convex, then X is smooth; see, for instance, [4]. Therefore,
if X is uniformly convex, then X* is smooth.

The duality map J of X is a set-valued map from X into the class of nonempty
subsets of X* defined by

Ja)={f e X :(z.f)=|l=lI> = | fII* }
for every x € X. Then, for any z,y € X and any f € J(z), it is easy to see that
||| = lyll> > 2(x — y, f). J is single-valued if and only if X is smooth. J is
continuous from X to X* supplied with the weak™ topology if X is smooth. J is
surjective (in the sense that U J(xz) = X™) if and only if X is reflexive. Moreover,

zeX
for any f € X* and any z € J*(f), we have J(z) = f if X is reflexive and smooth,

where J* is the duality map of X*; see, for instance, [4].

Let f: X — (—00,00 | be a function. Then, domf denotes the subset {z € X :
flz) < oo} of X. f is said to be proper if domf # (). Let C be a convex subset of
X. Then, f is said to be convex on C'if f(Az+ (1 —A)y) < Af(x)+ (1 —X)f(y) for
any z,y € domf NC and any A € (0,1).

We know the following theorem; see, for instance, [4]:

Let C' be a nonempty closed convex subset of a reflexive Banach space. Let
f:C — (—00,00] be a proper, convex and lower semicontinuous function such that
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for any sequence {x,} of elements of C, f(z,) — oo whenever |z,| — oco. Then
there exists g € C' such that

f(xo) =inf{f(z): 2z € C}.
Using this theorem, we immediately obtain the following; see [4] for instance:

Let C be a nonempty closed convex subset of a uniformly convex Banach space
X. Then, for each z € X, there exists a unique element Po(x) of C such that

o — Po(@)| = inf{lle —y| : y € C}.
The mapping P¢ is said to be the metric projection from X onto C.

3. SHADOWS

First of all, we present some definitions and results concerning shadows of fuzzy
sets. Let A be a fuzzy set in a Hilbert space X and let H be a closed hyperplane
in X. The shadow Sg[A] of A on H is a fuzzy set in H defined by

SulAl(z*) = sup{ A(z) : Py(z) = z*}

for every xz* € H, where Py is the metric projection from X onto H; see [3, 5].
In [3], Takahashi and Takahashi proved the following revised version of Zadeh’s
result [5]:

Let A and B be two convex fuzzy sets in a real Hilbert space X. If both A and
B (or A" and B’) are closed and Sy[A] = Sg[B] for every closed hyperplane H in
X, then A =B.

Let X be a normed linear space, let H be a closed hyperplane in X* containing
0 € X* and let A be a fuzzy set in X. In [1], Amemiya and Takahashi defined a
fuzzy set S mz[A] in X by

SHS (z) =sup{A(z): z € MHS (z)}
for every x € X, where M my () is a subset of X defined by

Myga)= () {zeX:(29) = (2.9}
gEHg

for every x € X.

Then, they proved the following theorem extending the result of Takahashi and
Takahashi to that in a normed linear space:

Let A and B be two convex fuzzy sets in a normed linear space X. If both A and
B (or A’ and B') are closed and S m:[Al = S m;[B] for every closed hyperplane Hj
in X* containing 0 € X*, then A = B.

We should mention that the proof of this result implies that, if there exists g € X
such that A(xo) < B(xo), there is Hj € Hj satisfying SH; [A](xg) < gHS [B] (o).

We begin with proving the following theorem by using the result of Amemiya and
Takahashi described above.

Theorem 3.1. Let A and B be two convexr fuzzy sets in a normed linear space
X. If both A and B (or A" and B') are closed and if there exists ¢ € R such
that for every closed hyperplane Hj in X* containing 0 € X* and every x € X,

Suz[Al(z) — Spz[Bl(z) = ¢, then A(z) — B(z) =¢ for all z € X.
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Proof. Without loss of generality, we may suppose € > 0. Let H{ be the class of all
closed hyperplanes in X* containing 0 € X™*. Then, by the fact mentioned above,
we infer that A(z) > B(z) for all x € X. We set M4 = supA(z) and then, define a

zeX
convex fuzzy set C' and D in X by
1
= A
C(w) = 3772 A@
and by
1
D(z) = B
@) = 7 P@+9)

for every x € X, respectively. Then we deduce from assumption that for every
Hj € Hj and every = € X,

N 1 N
Sug [C](z) = e sup{A(z) 12 € My (m)}
1 4 1 . .
f— * A ey * B = * D .
s S A@) = 5 (S B)@) + ) = S Dl(@)
Therefore, noting that both C and D (or C" and D’) are closed, we have C = D,
that is, A(x) = B(x) + ¢ for every z € X. O

Next, we provide the following result; see, for instance, [4].

Proposition 3.1. Let M be a linear subspace in a normed linear space X with a
Gateauz differentiable norm, let J be the duality map of X and let N = M + p for
any p € X, where M + p denotes the subset {m+p e X :m e M} of X. Let us fix
x € X and xg € N arbitrarily. Then the following two conditions are equivalent;
(i) (J(z —z0),m) =0 for all m € M;
(ii) |z — 2ol = inf{[|z — ul| : w € N}.
Proof. For the sake of completeness, we give a proof.

(i) = (ii): Since ||lz]|* = |y[|* = 2(x —y, J(y)) for all z,y € X, it follows from the
assumption that for each u € NV,

lz = ul]? = [z = zo[|* > 2(wo — u, J(z — x0)) = 0

since xg — u € M. Therefore, the claim ensues.
(ii) = (i): Putting y = x —x0, we infer from the assumption that for each m € M
and each A € R,

ly + Aml| = [lz — (zo — Am)|| = [l — 2ol = [yl
since xg — Am € N. Therefore, we deduce that for any m € M and any A > 0,
2(Am, J(y + xm)) > [ly + Am|* |ly|* = 0

and thus, that (m, J(y + )\m)) > 0. Since the duality map J of X is continuous
from X to X* supplied with the weak™ topology, the inequality implies, by letting
A — 40, that (m, J(y)) > 0 for all m € M. Moreover, since M is a linear subspace
in X, we have (—m, J(y)) > 0, that is, (m, J(y)) < 0 for all m € M. This completes
the proof. O
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Now, we define the shadow of fuzzy sets in a uniformly convex Banach space.

Let X be a uniformly convex Banach space and let A be a fuzzy set in X. Let H*
be a closed hyperplane in X* and let Hj be a closed hyperplane in X* containing
0 € X* and being parallel to H* (in the sense that there exists fy € X* such that
H* = H§ + fo). Then, the shadow Sg+[A] of A on H* is a fuzzy set in H* defined
by

Su+[A](f) = sup{A(2) : z € Mp-(f)}

for every f € H*, where Mp~(f) is a subset of X defined by

M ()= () {rex: (- () =0}
geH
and J* is the duality map of X*.
Before stating a theorem concerning the shadows of fuzzy sets in a uniformly
convex Banach space, we provide the following result; see, for instance, [2].

Proposition 3.2. Let X be a normed linear space, let J be the duality map of X
and let xg € X and f € X* be fized arbitrarily. Then the following two conditions
are equivalent;

(i) There exists fo € J(xo) such that (u, fo — f) > 0 for allu € X;
(ii) for any u € X and any A > 0, ||xo + Aul|? — ||2o]|? > 2\ (u, £).

Proof. For the sake of completeness, we give a proof.

(i) = (ii): Let w € X. Then, since fy € J(zo) and (u, fo — f) > 0, we deduce
that for any A > 0, ||z + Aul|? — ||zo||? > 2(A\u, fo) > 2(\u, f). Therefore, the claim
ensues.

(ii) = (i): Let uw € X. If there exists A\g > 0 such that ||zg + Aou|| = 0, that is,
To = —Aou, we have (—\ou, fo) = (w0, fo) = ||xol|* = Ng||u||? for every fo € J(zo).
Therefore, it follows from the assumption that for any A > 0 and any fy € J(x¢),

2M\(u, ) < flzo + ull* = [lzoll* = [A = Xol*Jull* Ao |[u®
= M ull® = 22ollul® = N|Jul|* + 2A(w, fo)

and hence, that \||u||? + 2(u, fo — f) > 0. Letting A\ — +0, we have (u, fo — f) > 0.
I
1]l
once that the elements gy belong to the subset Bx+ of X*. Since Bx+ is a compact
subset of X* supplied with the weak™ topology, there exists a subnet {gy,} of {gx}
such that g, converges to some g € Bx+ in the weak® topology. Therefore, we

deduce that

Otherwise, putting g\ =

for any A > 0 and any f) € J(xo + Au), we see at

lzoll = Aallue]l < [[zo + Aaull = (20 + Aau, gr,,)
= (20, 9xa) + Aa(u, 9x,)
< [lwoll + Aalu, gx.) < llzoll + Aallull
and thus, that ||zo|| = (x0,9) and ||g|| = 1. Further, we infer by assumption that
(70 + el + 1201 - A1t 95) = (0 + Aael] + Ifzoll)- (20 + Aatell = [0l
= Jlz0 + Aat? = lz0]> > 2a(u, f)
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and consequently, that
(o + Aaell + llzoll) - (u, gx.) = 2(u, f).

This implies that (u,||zo|lg) > (u, f). Hence, putting fo = ||zo|lg, we have (u, fo —
f) >0 and fy € J(xg). This completes the proof. O

Using Proposition 3.2, we obtain the following lemma.

Lemma 3.1. Let X be a reflexive Banach space with a Gateauz differentiable norm
and let Hy be a closed hyperplane in X containing 0 € X. Then, for each r € X,
there exists xg € Hy such that

(u, J(z) — J(z0)) =0
for all w € Hy, where J is the duality map of X.

Proof. Let © € X be fixed arbitrarily. Then, we define a convex, continuous and
real-valued function ¢ on Hy by

o(z) = SlaI? = (2, (2)

for every z € Hy. Since

1 1
o) 2 17 = Bl = 1 510 - D).

we infer that, for any sequence {z,} of elements of X, ¢(x,) — oo whenever
|xn|| — oo. Therefore, we have zyp € Hy such that

p(2) = p(@0)

for all z € Hy. Replacing z by xg + Au in the above inequality, we deduce that for
any u € Hy and any A > 0,

llzo + Aul|® — ||lzo|* > 2X(u, J(2)).
Hence, by Proposition 3.2, we have
(u, I (0) — T () = 0

for all u € Ho. Moreover, since —u € Hy, we also have (u, J(zo) — J(z)) <0 for all
u € Hy. This completes the proof. [

Applying Theorem 3.1 and Lemma 3.1, we prove the following theorem.

Theorem 3.2. Let A and B be two convex fuzzy sets in a uniformly convex Banach
space X. If both A and B (or A" and B’) are closed and if there exists e € R such
that for every closed hyperplane Hgy in X* containing 0 € X* and every x* € Hp,
Sug[Al(x*) — Sps [Bl(z*) = ¢, then A(z) — B(x) = ¢ for allx € X.

Proof. Let J (respectively J*) be the duality map of X (respectively X*) and let
H§ be the class of all closed hyperplanes in X* containing 0 € X*. By Theorem 3.1,
it is sufficient to show that for each Hj € Hj and each z € X,

Sy [Al(z) = Suz [Bl(z) +e.
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Let z € X and let f € J(z). Then, by Lemma 3.1, there exists fo € Hj such that
(J*(f) - J*(fo),g) = 0, that is, (:L' - J*(fg),g) = 0 for all g € Hj. Therefore, we
infer that
zEMHa(a:) < (z—x,9)=0forall g € Hj

& (2= J*(fo) + J*(fo) — x,g) =0 for all g € H;

& (2= J*(fo0),g9) =0 for all g € Hy

Sz e MHg(fo).
and consequently, that M 1z (r) = My (fo). Hence, it follows that

S [Al(z) = sup{A(2) : z € My (2)}

= sup{A(z) iz € MHg(fo)}

= Su;[A](fo) = Suz[B](fo) + € = Suz[B](x) +«.
This completes the proof. O

As a direct consequence of Theorem 3.2, we have the following theorem which
improves the result of Takahashi and Takahashi [3].

Theorem 3.3. Let A and B be two convex fuzzy sets in a Hilbert space X. If both A
and B (or A" and B') are closed and Sg,[A] = Su,[B| for every closed hyperplane
Hy in X containing 0 € X, then A = B.

Using Theorem 3.3, we have the following theorem for two closed convex subsets
of a Hilbert space.

Theorem 3.4. Let A and B be two closed convex subsets of a Hilbert space X.
If AN Hy = BN Hy for every closed hyperplane Hy in X containing 0 € X, then
A= B.

Proof. Let Hg be the class of all closed hyperplanes in X containing 0 € X. We
define a closed convex fuzzy set f4 in X by

fa(@) =14(z)
and fp in X by

fB(x) =15(z)
for every x € X. By Theorem 3.3, it is sufficient to show that Sw,[fa] = Su,[fB]
for every closed hyperplane Hy € Hy. In order to do it, we suppose that there exist
Hy € Hp and x € Hy such that S, [fa](x) # Su,[fB](x). Without loss of generality,
we may assume that Spg,[fa] =1 and Sy, [fB] = 0. Then there exists o € X with
P, (x0) = = such that 29 € A and zg ¢ B. If 29 = 0, then g € AN Hy = BN H.
This is a contradiction. So, we suppose that xg # 0. Then we have p # 0 such that
(zo,p) = 0. Putting H = {z € X : (z,p) = 0}, it follows that H € Ho and zo € H.
Therefore we have xg € AN Hy = BN Hy. This is a contradiction. O

At the end of this paper, we state a theorem dealing with the relationship between
the shadows of fuzzy sets defined here and the fuzzy sets due to Amemiya and
Takahashi [1] in a uniformly convex Banach space.
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Let X be a uniformly convex Banach space, let Hj be a closed hyperplane in
X* containing 0 € X* and let J* be the duality map of X*. Then we observe by
Lemma 3.1 that for each x € X, there exists fo € H{ such that

(z = J*(fo),g) =0 for all g € Hj.
On the other hand, we see at once that for each z € X, there exists fo € X* such
that J*(fo) = =, that is,

(x = J*(fo),g) =0 for all g € X*;
(see Section 2.) Moreover, it is obvious from the definitions that for each f € Hj,
My (f) = MH{)« (J*(f)). Thus, we have proved the following theorem.

Theorem 3.5. Let X be a uniformly convexr Banach space, let Hj be a closed
hyperplane in X* containing 0 € X* and let A be a fuzzy set in X. Then the
following (i) and (ii) hold:

(i) For each x € X, there exists fo € Hy such that

St [Al(x) = Suz[A](fo);
(ii) for each f € H, there exists xg € X such that

Sz [A(f) = Sz [A)(zo).
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