Journal of Nonlinear and Convex Analysis Volume 5, Number 3, 2004, 415–422

SHADOWS OF FUZZY SETS ON BANACH SPACES

MASATO AMEMIYA

ABSTRACT. In this paper, we define the shadow of fuzzy sets in a uniformly convex Banach space and prove some theorems for two convex fuzzy sets. Then we shall observe that these results improve the result of Takahashi and Takahashi [3]. Moreover, we prove a theorem concerning the relationship between the shadows defined here and the fuzzy sets defined by Amemiya and Takahashi [1].

1. INTRODUCTION

In [5], Zadeh defined the shadow of fuzzy sets in the finite dimensional real Euclidean space and proved a theorem for two convex fuzzy sets to equal each other; see also [6]. It was later shown that this result admitted a counterexample, however, Takahashi and Takahashi [3] proved the following revised version of Zadeh's result:

Let A and B be two convex fuzzy sets in a real Hilbert space X. If both A and B are closed and $S_H[A] = S_H[B]$ for every closed hyperplane H in X, then A = B.

Recently, Amemiya and Takahashi [1] studied the shadows of fuzzy sets in a normed linear space. They defined a fuzzy set without using the metric projection, which was in essence a generalization of the shadows of fuzzy sets, and extended the result of Takahashi and Takahashi [3] to that in a normed linear space (see Section 3).

However, their fuzzy set did not give the definition of the shadow of fuzzy sets in a normed linear space.

In this paper, we first define the shadow of fuzzy sets in a uniformly convex Banach space and prove some theorems for two convex fuzzy sets by applying the result of Amemiya and Takahashi [1]. Then, we shall observe that these theorems improve the result of Takahashi and Takahashi [3]. Moreover, we prove a theorem concerning the relationship between the shadows defined here and the fuzzy sets defined by Amemiya and Takahashi.

2. Preliminaries

Throughout this paper, all linear spaces are real and \mathbb{R} denotes the set of real numbers. Also, if X is a normed linear space, then X^* denotes its dual and, for any $f \in X^*$ and any $x \in X$, (x, f) denotes the value of f at x.

Let X be a nonempty set. A fuzzy set in X is a function of X into [0, 1]. Let A be a fuzzy set in X. Then, the complement A' of A is a fuzzy set in X, which is defined by the formula

$$A'(x) = 1 - A(x)$$

Copyright (C) Yokohama Publishers

²⁰⁰⁰ Mathematics Subject Classification. 03E72, 46N99.

Key words and phrases. Shadow of fuzzy sets, Convex fuzzy set, Uniformly convex Banach space.

MASATO AMEMIYA

for every $x \in X$. Let A and B be two fuzzy sets in X. We write $A \subset B$ if $A(x) \leq B(x)$ for every $x \in X$ and A = B if $A \subset B$ and $B \subset A$. Let $r \in [0, 1]$. Then, the r-cut A_r of a fuzzy set A in X is a subset of X defined by

$$A_r = \{ x \in X : A(x) \ge r \}.$$

Let X be a topological space and let A be a fuzzy set A in X. Then, A is said to be closed if for each $r \in (0, 1]$, A_r is a closed subset of X. This implies that the function $A: X \to [0, 1]$ is upper semicontinuous. Let X be a linear space and let A be a fuzzy set A in X. Then, A is said to be convex if for each $r \in (0, 1]$, A_r is a convex subset of X. This implies that the function $A: X \to [0, 1]$ is quasi-concave.

Let X be a normed linear space and let S_X (respectively B_X) denote the subset $\{x \in X : ||x|| = 1\}$ (respectively $\{x \in X : ||x|| \le 1\}$) of X. Then, X is said to be strictly convex if for each $x, y \in S_X$,

$$x \neq y$$
 implies $\frac{\|x+y\|}{2} < 1.$

X is said to be uniformly convex if for each $\varepsilon \in (0, 2]$, there exists $\delta > 0$ such that for each $x, y \in S_X$,

$$||x - y|| \ge \varepsilon$$
 implies $\frac{||x + y||}{2} \le 1 - \delta$.

Moreover, the norm of X is said to be Gâteaux differentiable (and X is called smooth) if

$$\lim_{t \to \infty} \frac{\|x + ty\| - \|x\|}{t}$$

exists for each $x, y \in S_X$.

We note that, if X is uniformly convex, then X is reflexive and strictly convex and that, if X^* is strictly convex, then X is smooth; see, for instance, [4]. Therefore, if X is uniformly convex, then X^* is smooth.

The duality map J of X is a set-valued map from X into the class of nonempty subsets of X^* defined by

$$J(x) = \left\{ f \in X^* : (x, f) = \|x\|^2 = \|f\|^2 \right\}$$

for every $x \in X$. Then, for any $x, y \in X$ and any $f \in J(x)$, it is easy to see that $||x||^2 - ||y||^2 \ge 2(x - y, f)$. J is single-valued if and only if X is smooth. J is continuous from X to X^* supplied with the weak* topology if X is smooth. J is surjective (in the sense that $\bigcup_{x \in X} J(x) = X^*$) if and only if X is reflexive. Moreover, for any $f \in X^*$ and any $x \in I^*(f)$ we have I(x) = f if X is reflexive and smooth

for any $f \in X^*$ and any $x \in J^*(f)$, we have J(x) = f if X is reflexive and smooth, where J^* is the duality map of X^* ; see, for instance, [4].

Let $f: X \to (-\infty, \infty]$ be a function. Then, dom f denotes the subset $\{x \in X : f(x) < \infty\}$ of X. f is said to be proper if dom $f \neq \emptyset$. Let C be a convex subset of X. Then, f is said to be convex on C if $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$ for any $x, y \in \text{dom } f \cap C$ and any $\lambda \in (0, 1)$.

We know the following theorem; see, for instance, [4]:

Let C be a nonempty closed convex subset of a reflexive Banach space. Let $f: C \to (-\infty, \infty]$ be a proper, convex and lower semicontinuous function such that

for any sequence $\{x_n\}$ of elements of C, $f(x_n) \to \infty$ whenever $||x_n|| \to \infty$. Then there exists $x_0 \in C$ such that

$$f(x_0) = \inf\{f(x) : x \in C\}.$$

Using this theorem, we immediately obtain the following; see [4] for instance:

Let C be a nonempty closed convex subset of a uniformly convex Banach space X. Then, for each $x \in X$, there exists a unique element $P_C(x)$ of C such that

$$||x - P_C(x)|| = \inf\{||x - y|| : y \in C\}.$$

The mapping P_C is said to be the metric projection from X onto C.

3. Shadows

First of all, we present some definitions and results concerning shadows of fuzzy sets. Let A be a fuzzy set in a Hilbert space X and let H be a closed hyperplane in X. The shadow $S_H[A]$ of A on H is a fuzzy set in H defined by

$$S_H[A](x^*) = \sup\{A(x) : P_H(x) = x^*\}$$

for every $x^* \in H$, where P_H is the metric projection from X onto H; see [3, 5]. In [3], Takahashi and Takahashi proved the following revised version of Zadeh's result [5]:

Let A and B be two convex fuzzy sets in a real Hilbert space X. If both A and B (or A' and B') are closed and $S_H[A] = S_H[B]$ for every closed hyperplane H in X, then A = B.

Let X be a normed linear space, let H_0^* be a closed hyperplane in X^* containing $0 \in X^*$ and let A be a fuzzy set in X. In [1], Amemiya and Takahashi defined a fuzzy set $\hat{S}_{H_0^*}[A]$ in X by

$$\hat{S}_{H_0^*}(x) = \sup\{A(z) : z \in \hat{M}_{H_0^*}(x)\}$$

for every $x \in X$, where $\hat{M}_{H_0^*}(x)$ is a subset of X defined by

$$\hat{M}_{H_0^*}(x) = \bigcap_{g \in H_0^*} \left\{ z \in X : (z,g) = (x,g) \right\}$$

for every $x \in X$.

Then, they proved the following theorem extending the result of Takahashi and Takahashi to that in a normed linear space:

Let A and B be two convex fuzzy sets in a normed linear space X. If both A and B (or A' and B') are closed and $\hat{S}_{H_0^*}[A] = \hat{S}_{H_0^*}[B]$ for every closed hyperplane H_0^* in X^{*} containing $0 \in X^*$, then A = B.

We should mention that the proof of this result implies that, if there exists $x_0 \in X$ such that $A(x_0) < B(x_0)$, there is $H_0^* \in \mathcal{H}_0^*$ satisfying $\hat{S}_{H_0^*}[A](x_0) < \hat{S}_{H_0^*}[B](x_0)$.

We begin with proving the following theorem by using the result of Amemiya and Takahashi described above.

Theorem 3.1. Let A and B be two convex fuzzy sets in a normed linear space X. If both A and B (or A' and B') are closed and if there exists $\varepsilon \in \mathbb{R}$ such that for every closed hyperplane H_0^* in X^* containing $0 \in X^*$ and every $x \in X$, $\hat{S}_{H_0^*}[A](x) - \hat{S}_{H_0^*}[B](x) = \varepsilon$, then $A(x) - B(x) = \varepsilon$ for all $x \in X$.

Proof. Without loss of generality, we may suppose $\varepsilon > 0$. Let \mathcal{H}_0^* be the class of all closed hyperplanes in X^* containing $0 \in X^*$. Then, by the fact mentioned above, we infer that $A(x) \ge B(x)$ for all $x \in X$. We set $M_A = \sup_{x \in X} A(x)$ and then, define a convex fuzzy set C and D in X by

$$C(x) = \frac{1}{M_A + \varepsilon} A(x)$$

and by

$$D(x) = \frac{1}{M_A + \varepsilon} (B(x) + \varepsilon)$$

for every $x \in X$, respectively. Then we deduce from assumption that for every $H_0^* \in \mathcal{H}_0^*$ and every $x \in X$,

$$\hat{S}_{H_0^*}[C](x) = \frac{1}{M_A + \varepsilon} \sup \{ A(z) : z \in \hat{M}_{H_0^*}(x) \}$$

= $\frac{1}{M_A + \varepsilon} \hat{S}_{H_0^*}[A](x) = \frac{1}{M_A + \varepsilon} (\hat{S}_{H_0^*}[B](x) + \varepsilon) = \hat{S}_{H_0^*}[D](x).$

Therefore, noting that both C and D (or C' and D') are closed, we have C = D, that is, $A(x) = B(x) + \varepsilon$ for every $x \in X$.

Next, we provide the following result; see, for instance, [4].

Proposition 3.1. Let M be a linear subspace in a normed linear space X with a Gâteaux differentiable norm, let J be the duality map of X and let N = M + p for any $p \in X$, where M + p denotes the subset $\{m + p \in X : m \in M\}$ of X. Let us fix $x \in X$ and $x_0 \in N$ arbitrarily. Then the following two conditions are equivalent;

- (i) $(J(x-x_0), m) = 0$ for all $m \in M$;
- (ii) $||x x_0|| = \inf\{||x u|| : u \in N\}.$

Proof. For the sake of completeness, we give a proof.

(i) \Rightarrow (ii): Since $||x||^2 - ||y||^2 \ge 2(x - y, J(y))$ for all $x, y \in X$, it follows from the assumption that for each $u \in N$,

$$||x - u||^{2} - ||x - x_{0}||^{2} \ge 2(x_{0} - u, J(x - x_{0})) = 0$$

since $x_0 - u \in M$. Therefore, the claim ensues.

(ii) \Rightarrow (i): Putting $y = x - x_0$, we infer from the assumption that for each $m \in M$ and each $\lambda \in \mathbb{R}$,

$$||y + \lambda m|| = ||x - (x_0 - \lambda m)|| \ge ||x - x_0|| = ||y||$$

since $x_0 - \lambda m \in N$. Therefore, we deduce that for any $m \in M$ and any $\lambda > 0$,

$$2(\lambda m, J(y+\lambda m)) \ge \|y+\lambda m\|^2 - \|y\|^2 \ge 0$$

and thus, that $(m, J(y + \lambda m)) \geq 0$. Since the duality map J of X is continuous from X to X^* supplied with the weak^{*} topology, the inequality implies, by letting $\lambda \to +0$, that $(m, J(y)) \geq 0$ for all $m \in M$. Moreover, since M is a linear subspace in X, we have $(-m, J(y)) \geq 0$, that is, $(m, J(y)) \leq 0$ for all $m \in M$. This completes the proof. \Box

Now, we define the shadow of fuzzy sets in a uniformly convex Banach space.

Let X be a uniformly convex Banach space and let A be a fuzzy set in X. Let H^* be a closed hyperplane in X^* and let H_0^* be a closed hyperplane in X^* containing $0 \in X^*$ and being parallel to H^* (in the sense that there exists $f_0 \in X^*$ such that $H^* = H_0^* + f_0$. Then, the shadow $S_{H^*}[A]$ of A on H^* is a fuzzy set in H^* defined bv

$$S_{H^*}[A](f) = \sup\{A(z) : z \in M_{H^*}(f)\}$$

for every $f \in H^*$, where $M_{H^*}(f)$ is a subset of X defined by

$$M_{H^*}(f) = \bigcap_{g \in H_0^*} \left\{ z \in X : \left(z - J^*(f), g \right) = 0 \right\}$$

and J^* is the duality map of X^* .

Before stating a theorem concerning the shadows of fuzzy sets in a uniformly convex Banach space, we provide the following result; see, for instance, [2].

Proposition 3.2. Let X be a normed linear space, let J be the duality map of X and let $x_0 \in X$ and $f \in X^*$ be fixed arbitrarily. Then the following two conditions are equivalent;

- (i) There exists $f_0 \in J(x_0)$ such that $(u, f_0 f) \ge 0$ for all $u \in X$; (ii) for any $u \in X$ and any $\lambda \ge 0$, $||x_0 + \lambda u||^2 ||x_0||^2 \ge 2\lambda(u, f)$.

Proof. For the sake of completeness, we give a proof.

(i) \Rightarrow (ii): Let $u \in X$. Then, since $f_0 \in J(x_0)$ and $(u, f_0 - f) \ge 0$, we deduce that for any $\lambda \ge 0$, $||x_0 + \lambda u||^2 - ||x_0||^2 \ge 2(\lambda u, f_0) \ge 2(\lambda u, f)$. Therefore, the claim ensues.

(ii) \Rightarrow (i): Let $u \in X$. If there exists $\lambda_0 > 0$ such that $||x_0 + \lambda_0 u|| = 0$, that is, $x_0 = -\lambda_0 u$, we have $(-\lambda_0 u, f_0) = (x_0, f_0) = ||x_0||^2 = \lambda_0^2 ||u||^2$ for every $f_0 \in J(x_0)$. Therefore, it follows from the assumption that for any $\lambda > 0$ and any $f_0 \in J(x_0)$,

$$2\lambda(u, f) \le ||x_0 + \lambda u||^2 - ||x_0||^2 = |\lambda - \lambda_0|^2 ||u||^2 - |\lambda_0|^2 ||u||^2$$

= $\lambda^2 ||u||^2 - 2\lambda\lambda_0 ||u||^2 = \lambda^2 ||u||^2 + 2\lambda(u, f_0)$

and hence, that $\lambda \|u\|^2 + 2(u, f_0 - f) \ge 0$. Letting $\lambda \to +0$, we have $(u, f_0 - f) \ge 0$. Otherwise, putting $g_{\lambda} = \frac{f_{\lambda}}{\|f_{\lambda}\|}$ for any $\lambda > 0$ and any $f_{\lambda} \in J(x_0 + \lambda u)$, we see at once that the elements g_{λ} belong to the subset B_{X^*} of X^* . Since B_{X^*} is a compact subset of X^{*} supplied with the weak^{*} topology, there exists a subnet $\{g_{\lambda_{\alpha}}\}$ of $\{g_{\lambda}\}$ such that $g_{\lambda_{\alpha}}$ converges to some $g \in B_{X^*}$ in the weak^{*} topology. Therefore, we deduce that

$$\begin{aligned} \|x_0\| - \lambda_{\alpha} \|u\| &\leq \|x_0 + \lambda_{\alpha} u\| = (x_0 + \lambda_{\alpha} u, g_{\lambda_{\alpha}}) \\ &= (x_0, g_{\lambda_{\alpha}}) + \lambda_{\alpha} (u, g_{\lambda_{\alpha}}) \\ &\leq \|x_0\| + \lambda_{\alpha} (u, g_{\lambda_{\alpha}}) \leq \|x_0\| + \lambda_{\alpha} \|u\| \end{aligned}$$

and thus, that $||x_0|| = (x_0, g)$ and ||g|| = 1. Further, we infer by assumption that

$$(\|x_0 + \lambda_{\alpha} u\| + \|x_0\|) \cdot \lambda_{\alpha}(u, g_{\lambda_{\alpha}}) \ge (\|x_0 + \lambda_{\alpha} u\| + \|x_0\|) \cdot (\|x_0 + \lambda_{\alpha} u\| - \|x_0\|)$$

= $\|x_0 + \lambda_{\alpha} u\|^2 - \|x_0\|^2 \ge 2\lambda_{\alpha}(u, f)$

and consequently, that

$$\left(\|x_0 + \lambda_\alpha u\| + \|x_0\|\right) \cdot (u, g_{\lambda_\alpha}) \ge 2(u, f).$$

This implies that $(u, ||x_0||g) \ge (u, f)$. Hence, putting $f_0 = ||x_0||g$, we have $(u, f_0 - f) \ge 0$ and $f_0 \in J(x_0)$. This completes the proof.

Using Proposition 3.2, we obtain the following lemma.

Lemma 3.1. Let X be a reflexive Banach space with a Gâteaux differentiable norm and let H_0 be a closed hyperplane in X containing $0 \in X$. Then, for each $x \in X$, there exists $x_0 \in H_0$ such that

$$(u, J(x) - J(x_0)) = 0$$

for all $u \in H_0$, where J is the duality map of X.

Proof. Let $x \in X$ be fixed arbitrarily. Then, we define a convex, continuous and real-valued function φ on H_0 by

$$\varphi(z) = \frac{1}{2} ||z||^2 - (z, J(x))$$

for every $z \in H_0$. Since

$$\varphi(z) \ge \frac{1}{2} \|z\|^2 - \|z\| \|x\| = \|z\| \left(\frac{1}{2} \|z\| - \|x\|\right)$$

we infer that, for any sequence $\{x_n\}$ of elements of X, $\varphi(x_n) \to \infty$ whenever $||x_n|| \to \infty$. Therefore, we have $x_0 \in H_0$ such that

 $\varphi(z) \ge \varphi(x_0)$

for all $z \in H_0$. Replacing z by $x_0 + \lambda u$ in the above inequality, we deduce that for any $u \in H_0$ and any $\lambda \ge 0$,

$$||x_0 + \lambda u||^2 - ||x_0||^2 \ge 2\lambda (u, J(x)).$$

Hence, by Proposition 3.2, we have

$$\left(u, J(x_0) - J(x)\right) \ge 0$$

for all $u \in H_0$. Moreover, since $-u \in H_0$, we also have $(u, J(x_0) - J(x)) \leq 0$ for all $u \in H_0$. This completes the proof.

Applying Theorem 3.1 and Lemma 3.1, we prove the following theorem.

Theorem 3.2. Let A and B be two convex fuzzy sets in a uniformly convex Banach space X. If both A and B (or A' and B') are closed and if there exists $\varepsilon \in \mathbb{R}$ such that for every closed hyperplane H_0^* in X^* containing $0 \in X^*$ and every $x^* \in H_0^*$, $S_{H_0^*}[A](x^*) - S_{H_0^*}[B](x^*) = \varepsilon$, then $A(x) - B(x) = \varepsilon$ for all $x \in X$.

Proof. Let J (respectively J^*) be the duality map of X (respectively X^*) and let \mathcal{H}_0^* be the class of all closed hyperplanes in X^* containing $0 \in X^*$. By Theorem 3.1, it is sufficient to show that for each $H_0^* \in \mathcal{H}_0^*$ and each $x \in X$,

$$\hat{S}_{H_0^*}[A](x) = \hat{S}_{H_0^*}[B](x) + \varepsilon.$$

420

Let $x \in X$ and let $f \in J(x)$. Then, by Lemma 3.1, there exists $f_0 \in H_0^*$ such that $(J^*(f) - J^*(f_0), g) = 0$, that is, $(x - J^*(f_0), g) = 0$ for all $g \in H_0^*$. Therefore, we infer that

$$z \in M_{H_0^*}(x) \Leftrightarrow (z - x, g) = 0 \text{ for all } g \in H_0^*$$

$$\Leftrightarrow (z - J^*(f_0) + J^*(f_0) - x, g) = 0 \text{ for all } g \in H_0^*$$

$$\Leftrightarrow (z - J^*(f_0), g) = 0 \text{ for all } g \in H_0^*$$

$$\Leftrightarrow z \in M_{H_0^*}(f_0).$$

and consequently, that $\hat{M}_{H_0^*}(x) = M_{H_0^*}(f_0)$. Hence, it follows that

$$\hat{S}_{H_0^*}[A](x) = \sup\{A(z) : z \in \hat{M}_{H_0^*}(x)\} = \sup\{A(z) : z \in M_{H_0^*}(f_0)\} = S_{H_0^*}[A](f_0) = S_{H_0^*}[B](f_0) + \varepsilon = \hat{S}_{H_0^*}[B](x) + \varepsilon.$$

This completes the proof.

As a direct consequence of Theorem 3.2, we have the following theorem which improves the result of Takahashi and Takahashi [3].

Theorem 3.3. Let A and B be two convex fuzzy sets in a Hilbert space X. If both A and B (or A' and B') are closed and $S_{H_0}[A] = S_{H_0}[B]$ for every closed hyperplane H_0 in X containing $0 \in X$, then A = B.

Using Theorem 3.3, we have the following theorem for two closed convex subsets of a Hilbert space.

Theorem 3.4. Let A and B be two closed convex subsets of a Hilbert space X. If $A \cap H_0 = B \cap H_0$ for every closed hyperplane H_0 in X containing $0 \in X$, then A = B.

Proof. Let \mathcal{H}_0 be the class of all closed hyperplanes in X containing $0 \in X$. We define a closed convex fuzzy set f_A in X by

$$f_A(x) = \mathbf{1}_A(x)$$

and f_B in X by

$$f_B(x) = \mathbf{1}_B(x)$$

for every $x \in X$. By Theorem 3.3, it is sufficient to show that $S_{H_0}[f_A] = S_{H_0}[f_B]$ for every closed hyperplane $H_0 \in \mathcal{H}_0$. In order to do it, we suppose that there exist $H_0 \in \mathcal{H}_0$ and $x \in H_0$ such that $S_{H_0}[f_A](x) \neq S_{H_0}[f_B](x)$. Without loss of generality, we may assume that $S_{H_0}[f_A] = 1$ and $S_{H_0}[f_B] = 0$. Then there exists $x_0 \in X$ with $P_{H_0}(x_0) = x$ such that $x_0 \in A$ and $x_0 \notin B$. If $x_0 = 0$, then $x_0 \in A \cap H_0 = B \cap H_0$. This is a contradiction. So, we suppose that $x_0 \neq 0$. Then we have $p \neq 0$ such that $(x_0, p) = 0$. Putting $H = \{x \in X : (x, p) = 0\}$, it follows that $H \in \mathcal{H}_0$ and $x_0 \in H$. Therefore we have $x_0 \in A \cap H_0 = B \cap H_0$. This is a contradiction.

At the end of this paper, we state a theorem dealing with the relationship between the shadows of fuzzy sets defined here and the fuzzy sets due to Amemiya and Takahashi [1] in a uniformly convex Banach space.

MASATO AMEMIYA

Let X be a uniformly convex Banach space, let H_0^* be a closed hyperplane in X^* containing $0 \in X^*$ and let J^* be the duality map of X^* . Then we observe by Lemma 3.1 that for each $x \in X$, there exists $f_0 \in H_0^*$ such that

$$(x - J^*(f_0), g) = 0$$
 for all $g \in H_0^*$.

On the other hand, we see at once that for each $x \in X$, there exists $f_0 \in X^*$ such that $J^*(f_0) = x$, that is,

$$(x - J^*(f_0), g) = 0$$
 for all $g \in X^*$;

(see Section 2.) Moreover, it is obvious from the definitions that for each $f \in H_0^*$, $M_{H_0^*}(f) = \hat{M}_{H_0^*}(J^*(f))$. Thus, we have proved the following theorem.

Theorem 3.5. Let X be a uniformly convex Banach space, let H_0^* be a closed hyperplane in X^* containing $0 \in X^*$ and let A be a fuzzy set in X. Then the following (i) and (ii) hold:

(i) For each $x \in X$, there exists $f_0 \in H_0^*$ such that

$$S_{H_0^*}[A](x) = S_{H_0^*}[A](f_0);$$

(ii) for each $f \in H_0^*$, there exists $x_0 \in X$ such that

$$S_{H_0^*}[A](f) = S_{H_0^*}[A](x_0)$$

References

- M. Amemiya and W. Takahashi, Generalization of shadows and fixed point theorems for fuzzy sets, Fuzzy Sets and Systems, 114 (2000), 469-479.
- [2] J. Diestel, Geometry of Banach spaces, Selected Topics, Lecture notes in mathematics, vol. 485, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
- [3] M. Takahashi and W. Takahashi, Separation theorems and minimax theorems for fuzzy sets, J. Optimization Theory and Applications, 31 (1980), 179-194.
- [4] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [5] L. A. Zadeh, *Fuzzy sets*, Information and Control, **8** (1965), 338-353.
- [6] _____, Shadows of fuzzy sets, Problems of information transmission, 2 (1966), 29-34.

Manuscript received March 3, 2004 revised November 8, 2004

Masato Amemiya

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo 152-8552, Japan

E-mail address: amemiya@is.titech.ac.jp

422