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SHADOWS OF FUZZY SETS ON BANACH SPACES

MASATO AMEMIYA

Abstract. In this paper, we define the shadow of fuzzy sets in a uniformly
convex Banach space and prove some theorems for two convex fuzzy sets. Then we
shall observe that these results improve the result of Takahashi and Takahashi [3].
Moreover, we prove a theorem concerning the relationship between the shadows
defined here and the fuzzy sets defined by Amemiya and Takahashi [1].

1. Introduction

In [5], Zadeh defined the shadow of fuzzy sets in the finite dimensional real
Euclidean space and proved a theorem for two convex fuzzy sets to equal each other;
see also [6]. It was later shown that this result admitted a counterexample, however,
Takahashi and Takahashi [3] proved the following revised version of Zadeh’s result:

Let A and B be two convex fuzzy sets in a real Hilbert space X. If both A and
B are closed and SH [A] = SH [B] for every closed hyperplane H in X, then A = B.

Recently, Amemiya and Takahashi [1] studied the shadows of fuzzy sets in a
normed linear space. They defined a fuzzy set without using the metric projection,
which was in essence a generalization of the shadows of fuzzy sets, and extended
the result of Takahashi and Takahashi [3] to that in a normed linear space (see
Section 3).

However, their fuzzy set did not give the definition of the shadow of fuzzy sets in
a normed linear space.

In this paper, we first define the shadow of fuzzy sets in a uniformly convex
Banach space and prove some theorems for two convex fuzzy sets by applying the
result of Amemiya and Takahashi [1]. Then, we shall observe that these theorems
improve the result of Takahashi and Takahashi [3]. Moreover, we prove a theorem
concerning the relationship between the shadows defined here and the fuzzy sets
defined by Amemiya and Takahashi.

2. Preliminaries

Throughout this paper, all linear spaces are real and R denotes the set of real
numbers. Also, if X is a normed linear space, then X∗ denotes its dual and, for any
f ∈ X∗ and any x ∈ X, (x, f) denotes the value of f at x.

Let X be a nonempty set. A fuzzy set in X is a function of X into [0, 1]. Let A
be a fuzzy set in X. Then, the complement A′ of A is a fuzzy set in X, which is
defined by the formula

A′(x) = 1−A(x)
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for every x ∈ X. Let A and B be two fuzzy sets in X. We write A ⊂ B if
A(x) ≤ B(x) for every x ∈ X and A = B if A ⊂ B and B ⊂ A. Let r ∈ [0, 1].
Then, the r-cut Ar of a fuzzy set A in X is a subset of X defined by

Ar =
{
x ∈ X : A(x) ≥ r

}
.

Let X be a topological space and let A be a fuzzy set A in X. Then, A is said to
be closed if for each r ∈ (0, 1], Ar is a closed subset of X. This implies that the
function A : X → [0, 1] is upper semicontinuous. Let X be a linear space and let A
be a fuzzy set A in X. Then, A is said to be convex if for each r ∈ (0, 1], Ar is a
convex subset of X. This implies that the function A : X → [0, 1] is quasi-concave.

Let X be a normed linear space and let SX (respectively BX) denote the subset{
x ∈ X : ‖x‖ = 1

}
(respectively

{
x ∈ X : ‖x‖ ≤ 1

}
) of X. Then, X is said to be

strictly convex if for each x, y ∈ SX ,

x 6= y implies
‖x + y‖

2
< 1.

X is said to be uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that
for each x, y ∈ SX ,

‖x− y‖ ≥ ε implies
‖x + y‖

2
≤ 1− δ.

Moreover, the norm of X is said to be Gâteaux differentiable (and X is called
smooth) if

lim
t→∞

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ SX .
We note that, if X is uniformly convex, then X is reflexive and strictly convex

and that, if X∗ is strictly convex, then X is smooth; see, for instance, [4]. Therefore,
if X is uniformly convex, then X∗ is smooth.

The duality map J of X is a set-valued map from X into the class of nonempty
subsets of X∗ defined by

J(x) =
{
f ∈ X∗ : (x, f) = ‖x‖2 = ‖f‖2

}

for every x ∈ X. Then, for any x, y ∈ X and any f ∈ J(x), it is easy to see that
‖x‖2 − ‖y‖2 ≥ 2(x − y, f). J is single-valued if and only if X is smooth. J is
continuous from X to X∗ supplied with the weak∗ topology if X is smooth. J is
surjective (in the sense that

⋃

x∈X

J(x) = X∗) if and only if X is reflexive. Moreover,

for any f ∈ X∗ and any x ∈ J∗(f), we have J(x) = f if X is reflexive and smooth,
where J∗ is the duality map of X∗; see, for instance, [4].

Let f : X → (−∞,∞ ] be a function. Then, domf denotes the subset
{
x ∈ X :

f(x) < ∞}
of X. f is said to be proper if domf 6= ∅. Let C be a convex subset of

X. Then, f is said to be convex on C if f
(
λx + (1− λ)y

) ≤ λf(x) + (1− λ)f(y) for
any x, y ∈ domf ∩ C and any λ ∈ (0, 1).

We know the following theorem; see, for instance, [4]:
Let C be a nonempty closed convex subset of a reflexive Banach space. Let

f : C → (−∞,∞] be a proper, convex and lower semicontinuous function such that
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for any sequence {xn} of elements of C, f(xn) → ∞ whenever ‖xn‖ → ∞. Then
there exists x0 ∈ C such that

f(x0) = inf
{
f(x) : x ∈ C

}
.

Using this theorem, we immediately obtain the following; see [4] for instance:
Let C be a nonempty closed convex subset of a uniformly convex Banach space

X. Then, for each x ∈ X, there exists a unique element PC(x) of C such that

‖x− PC(x)‖ = inf
{‖x− y‖ : y ∈ C

}
.

The mapping PC is said to be the metric projection from X onto C.

3. Shadows

First of all, we present some definitions and results concerning shadows of fuzzy
sets. Let A be a fuzzy set in a Hilbert space X and let H be a closed hyperplane
in X. The shadow SH [A] of A on H is a fuzzy set in H defined by

SH [A](x∗) = sup
{
A(x) : PH(x) = x∗

}

for every x∗ ∈ H, where PH is the metric projection from X onto H; see [3, 5].
In [3], Takahashi and Takahashi proved the following revised version of Zadeh’s
result [5]:

Let A and B be two convex fuzzy sets in a real Hilbert space X. If both A and
B (or A′ and B′) are closed and SH [A] = SH [B] for every closed hyperplane H in
X, then A = B.

Let X be a normed linear space, let H∗
0 be a closed hyperplane in X∗ containing

0 ∈ X∗ and let A be a fuzzy set in X. In [1], Amemiya and Takahashi defined a
fuzzy set ŜH∗

0
[A] in X by

ŜH∗
0
(x) = sup

{
A(z) : z ∈ M̂H∗

0
(x)

}

for every x ∈ X, where M̂H∗
0
(x) is a subset of X defined by

M̂H∗
0
(x) =

⋂

g∈H∗
0

{
z ∈ X : (z, g) = (x, g)

}

for every x ∈ X.
Then, they proved the following theorem extending the result of Takahashi and

Takahashi to that in a normed linear space:
Let A and B be two convex fuzzy sets in a normed linear space X. If both A and

B (or A′ and B′) are closed and ŜH∗
0
[A] = ŜH∗

0
[B] for every closed hyperplane H∗

0

in X∗ containing 0 ∈ X∗, then A = B.
We should mention that the proof of this result implies that, if there exists x0 ∈ X

such that A(x0) < B(x0), there is H∗
0 ∈ H∗0 satisfying ŜH∗

0
[A](x0) < ŜH∗

0
[B](x0).

We begin with proving the following theorem by using the result of Amemiya and
Takahashi described above.

Theorem 3.1. Let A and B be two convex fuzzy sets in a normed linear space
X. If both A and B (or A′ and B′) are closed and if there exists ε ∈ R such
that for every closed hyperplane H∗

0 in X∗ containing 0 ∈ X∗ and every x ∈ X,
ŜH∗

0
[A](x)− ŜH∗

0
[B](x) = ε, then A(x)−B(x) = ε for all x ∈ X.
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Proof. Without loss of generality, we may suppose ε > 0. Let H∗0 be the class of all
closed hyperplanes in X∗ containing 0 ∈ X∗. Then, by the fact mentioned above,
we infer that A(x) ≥ B(x) for all x ∈ X. We set MA = sup

x∈X
A(x) and then, define a

convex fuzzy set C and D in X by

C(x) =
1

MA + ε
A(x)

and by

D(x) =
1

MA + ε

(
B(x) + ε

)

for every x ∈ X, respectively. Then we deduce from assumption that for every
H∗

0 ∈ H∗0 and every x ∈ X,

ŜH∗
0
[C](x) =

1
MA + ε

sup
{
A(z) : z ∈ M̂H∗

0
(x)

}

=
1

MA + ε
ŜH∗

0
[A](x) =

1
MA + ε

(
ŜH∗

0
[B](x) + ε

)
= ŜH∗

0
[D](x).

Therefore, noting that both C and D (or C ′ and D′) are closed, we have C = D,
that is, A(x) = B(x) + ε for every x ∈ X. ¤

Next, we provide the following result; see, for instance, [4].

Proposition 3.1. Let M be a linear subspace in a normed linear space X with a
Gâteaux differentiable norm, let J be the duality map of X and let N = M + p for
any p ∈ X, where M + p denotes the subset {m + p ∈ X : m ∈ M} of X. Let us fix
x ∈ X and x0 ∈ N arbitrarily. Then the following two conditions are equivalent;

(i)
(
J(x− x0),m

)
= 0 for all m ∈ M ;

(ii) ‖x− x0‖ = inf
{‖x− u‖ : u ∈ N

}
.

Proof. For the sake of completeness, we give a proof.
(i) ⇒ (ii): Since ‖x‖2−‖y‖2 ≥ 2

(
x− y, J(y)

)
for all x, y ∈ X, it follows from the

assumption that for each u ∈ N,

‖x− u‖2 − ‖x− x0‖2 ≥ 2
(
x0 − u, J(x− x0)

)
= 0

since x0 − u ∈ M. Therefore, the claim ensues.
(ii) ⇒ (i): Putting y = x−x0, we infer from the assumption that for each m ∈ M

and each λ ∈ R,

‖y + λm‖ = ‖x− (x0 − λm)‖ ≥ ‖x− x0‖ = ‖y‖
since x0 − λm ∈ N. Therefore, we deduce that for any m ∈ M and any λ > 0,

2
(
λm, J(y + λm)

) ≥ ‖y + λm‖2 − ‖y‖2 ≥ 0

and thus, that
(
m,J(y + λm)

) ≥ 0. Since the duality map J of X is continuous
from X to X∗ supplied with the weak∗ topology, the inequality implies, by letting
λ → +0, that

(
m,J(y)

) ≥ 0 for all m ∈ M . Moreover, since M is a linear subspace
in X, we have

(−m,J(y)
) ≥ 0, that is,

(
m,J(y)

) ≤ 0 for all m ∈ M. This completes
the proof. ¤
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Now, we define the shadow of fuzzy sets in a uniformly convex Banach space.
Let X be a uniformly convex Banach space and let A be a fuzzy set in X. Let H∗

be a closed hyperplane in X∗ and let H∗
0 be a closed hyperplane in X∗ containing

0 ∈ X∗ and being parallel to H∗ (in the sense that there exists f0 ∈ X∗ such that
H∗ = H∗

0 + f0). Then, the shadow SH∗ [A] of A on H∗ is a fuzzy set in H∗ defined
by

SH∗ [A](f) = sup
{
A(z) : z ∈ MH∗(f)

}

for every f ∈ H∗, where MH∗(f) is a subset of X defined by

MH∗(f) =
⋂

g∈H∗
0

{
z ∈ X :

(
z − J∗(f), g

)
= 0

}

and J∗ is the duality map of X∗.
Before stating a theorem concerning the shadows of fuzzy sets in a uniformly

convex Banach space, we provide the following result; see, for instance, [2].

Proposition 3.2. Let X be a normed linear space, let J be the duality map of X
and let x0 ∈ X and f ∈ X∗ be fixed arbitrarily. Then the following two conditions
are equivalent;

(i) There exists f0 ∈ J(x0) such that (u, f0 − f) ≥ 0 for all u ∈ X;
(ii) for any u ∈ X and any λ ≥ 0, ‖x0 + λu‖2 − ‖x0‖2 ≥ 2λ(u, f).

Proof. For the sake of completeness, we give a proof.
(i) ⇒ (ii): Let u ∈ X. Then, since f0 ∈ J(x0) and (u, f0 − f) ≥ 0, we deduce

that for any λ ≥ 0, ‖x0 + λu‖2−‖x0‖2 ≥ 2(λu, f0) ≥ 2(λu, f). Therefore, the claim
ensues.

(ii) ⇒ (i): Let u ∈ X. If there exists λ0 > 0 such that ‖x0 + λ0u‖ = 0, that is,
x0 = −λ0u, we have (−λ0u, f0) = (x0, f0) = ‖x0‖2 = λ2

0‖u‖2 for every f0 ∈ J(x0).
Therefore, it follows from the assumption that for any λ > 0 and any f0 ∈ J(x0),

2λ(u, f) ≤ ‖x0 + λu‖2 − ‖x0‖2 = |λ− λ0|2‖u‖2 − |λ0|2‖u‖2

= λ2‖u‖2 − 2λλ0‖u‖2 = λ2‖u‖2 + 2λ(u, f0)

and hence, that λ‖u‖2 + 2(u, f0 − f) ≥ 0. Letting λ → +0, we have (u, f0 − f) ≥ 0.

Otherwise, putting gλ =
fλ

‖fλ‖ for any λ > 0 and any fλ ∈ J(x0 + λu), we see at

once that the elements gλ belong to the subset BX∗ of X∗. Since BX∗ is a compact
subset of X∗ supplied with the weak∗ topology, there exists a subnet {gλα} of {gλ}
such that gλα converges to some g ∈ BX∗ in the weak∗ topology. Therefore, we
deduce that

‖x0‖ − λα‖u‖ ≤ ‖x0 + λαu‖ = (x0 + λαu, gλα)

= (x0, gλα) + λα(u, gλα)

≤ ‖x0‖+ λα(u, gλα) ≤ ‖x0‖+ λα‖u‖
and thus, that ‖x0‖ = (x0, g) and ‖g‖ = 1. Further, we infer by assumption that(‖x0 + λαu‖+ ‖x0‖

) · λα(u, gλα) ≥(‖x0 + λαu‖+ ‖x0‖
)·(‖x0 + λαu‖ − ‖x0‖

)

= ‖x0 + λαu‖2 − ‖x0‖2 ≥ 2λα(u, f)
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and consequently, that
(‖x0 + λαu‖+ ‖x0‖

) · (u, gλα) ≥ 2(u, f).

This implies that
(
u, ‖x0‖g

) ≥ (u, f). Hence, putting f0 = ‖x0‖g, we have (u, f0 −
f) ≥ 0 and f0 ∈ J(x0). This completes the proof. ¤

Using Proposition 3.2, we obtain the following lemma.

Lemma 3.1. Let X be a reflexive Banach space with a Gâteaux differentiable norm
and let H0 be a closed hyperplane in X containing 0 ∈ X. Then, for each x ∈ X,
there exists x0 ∈ H0 such that

(
u, J(x)− J(x0)

)
= 0

for all u ∈ H0, where J is the duality map of X.

Proof. Let x ∈ X be fixed arbitrarily. Then, we define a convex, continuous and
real-valued function ϕ on H0 by

ϕ(z) =
1
2
‖z‖2 − (

z, J(x)
)

for every z ∈ H0. Since

ϕ(z) ≥ 1
2
‖z‖2 − ‖z‖‖x‖ = ‖z‖

(
1
2
‖z‖ − ‖x‖

)
,

we infer that, for any sequence {xn} of elements of X, ϕ(xn) → ∞ whenever
‖xn‖ → ∞. Therefore, we have x0 ∈ H0 such that

ϕ(z) ≥ ϕ(x0)

for all z ∈ H0. Replacing z by x0 + λu in the above inequality, we deduce that for
any u ∈ H0 and any λ ≥ 0,

‖x0 + λu‖2 − ‖x0‖2 ≥ 2λ
(
u, J(x)

)
.

Hence, by Proposition 3.2, we have
(
u, J(x0)− J(x)

) ≥ 0

for all u ∈ H0. Moreover, since −u ∈ H0, we also have
(
u, J(x0)− J(x)

) ≤ 0 for all
u ∈ H0. This completes the proof. ¤

Applying Theorem 3.1 and Lemma 3.1, we prove the following theorem.

Theorem 3.2. Let A and B be two convex fuzzy sets in a uniformly convex Banach
space X. If both A and B (or A′ and B′) are closed and if there exists ε ∈ R such
that for every closed hyperplane H∗

0 in X∗ containing 0 ∈ X∗ and every x∗ ∈ H∗
0 ,

SH∗
0
[A](x∗)− SH∗

0
[B](x∗) = ε, then A(x)−B(x) = ε for all x ∈ X.

Proof. Let J (respectively J∗) be the duality map of X (respectively X∗) and let
H∗0 be the class of all closed hyperplanes in X∗ containing 0 ∈ X∗. By Theorem 3.1,
it is sufficient to show that for each H∗

0 ∈ H∗0 and each x ∈ X,

ŜH∗
0
[A](x) = ŜH∗

0
[B](x) + ε.



SHADOWS OF FUZZY SETS ON BANACH SPACES 421

Let x ∈ X and let f ∈ J(x). Then, by Lemma 3.1, there exists f0 ∈ H∗
0 such that(

J∗(f) − J∗(f0), g
)

= 0, that is,
(
x − J∗(f0), g

)
= 0 for all g ∈ H∗

0 . Therefore, we
infer that

z ∈ M̂H∗
0
(x) ⇔ (z − x, g) = 0 for all g ∈ H∗

0

⇔ (
z − J∗(f0) + J∗(f0)− x, g

)
= 0 for all g ∈ H∗

0

⇔ (
z − J∗(f0), g

)
= 0 for all g ∈ H∗

0

⇔ z ∈ MH∗
0
(f0).

and consequently, that M̂H∗
0
(x) = MH∗

0
(f0). Hence, it follows that

ŜH∗
0
[A](x) = sup

{
A(z) : z ∈ M̂H∗

0
(x)

}

= sup
{
A(z) : z ∈ MH∗

0
(f0)

}

= SH∗
0
[A](f0) = SH∗

0
[B](f0) + ε = ŜH∗

0
[B](x) + ε.

This completes the proof. ¤

As a direct consequence of Theorem 3.2, we have the following theorem which
improves the result of Takahashi and Takahashi [3].

Theorem 3.3. Let A and B be two convex fuzzy sets in a Hilbert space X. If both A
and B (or A′ and B′) are closed and SH0 [A] = SH0 [B] for every closed hyperplane
H0 in X containing 0 ∈ X, then A = B.

Using Theorem 3.3, we have the following theorem for two closed convex subsets
of a Hilbert space.

Theorem 3.4. Let A and B be two closed convex subsets of a Hilbert space X.
If A ∩ H0 = B ∩ H0 for every closed hyperplane H0 in X containing 0 ∈ X, then
A = B.

Proof. Let H0 be the class of all closed hyperplanes in X containing 0 ∈ X. We
define a closed convex fuzzy set fA in X by

fA(x) = 1A(x)

and fB in X by
fB(x) = 1B(x)

for every x ∈ X. By Theorem 3.3, it is sufficient to show that SH0 [fA] = SH0 [fB]
for every closed hyperplane H0 ∈ H0. In order to do it, we suppose that there exist
H0 ∈ H0 and x ∈ H0 such that SH0 [fA](x) 6= SH0 [fB](x). Without loss of generality,
we may assume that SH0 [fA] = 1 and SH0 [fB] = 0. Then there exists x0 ∈ X with
PH0(x0) = x such that x0 ∈ A and x0 /∈ B. If x0 = 0, then x0 ∈ A ∩H0 = B ∩H0.
This is a contradiction. So, we suppose that x0 6= 0. Then we have p 6= 0 such that
(x0, p) = 0. Putting H =

{
x ∈ X : (x, p) = 0

}
, it follows that H ∈ H0 and x0 ∈ H.

Therefore we have x0 ∈ A ∩H0 = B ∩H0. This is a contradiction. ¤

At the end of this paper, we state a theorem dealing with the relationship between
the shadows of fuzzy sets defined here and the fuzzy sets due to Amemiya and
Takahashi [1] in a uniformly convex Banach space.
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Let X be a uniformly convex Banach space, let H∗
0 be a closed hyperplane in

X∗ containing 0 ∈ X∗ and let J∗ be the duality map of X∗. Then we observe by
Lemma 3.1 that for each x ∈ X, there exists f0 ∈ H∗

0 such that(
x− J∗(f0), g

)
= 0 for all g ∈ H∗

0 .

On the other hand, we see at once that for each x ∈ X, there exists f0 ∈ X∗ such
that J∗(f0) = x, that is,(

x− J∗(f0), g
)

= 0 for all g ∈ X∗;

(see Section 2.) Moreover, it is obvious from the definitions that for each f ∈ H∗
0 ,

MH∗
0
(f) = M̂H∗

0

(
J∗(f)

)
. Thus, we have proved the following theorem.

Theorem 3.5. Let X be a uniformly convex Banach space, let H∗
0 be a closed

hyperplane in X∗ containing 0 ∈ X∗ and let A be a fuzzy set in X. Then the
following (i) and (ii) hold:

(i) For each x ∈ X, there exists f0 ∈ H∗
0 such that

ŜH∗
0
[A](x) = SH∗

0
[A](f0);

(ii) for each f ∈ H∗
0 , there exists x0 ∈ X such that

SH∗
0
[A](f) = ŜH∗

0
[A](x0).
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