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ITERATIVE SCHEME FOR FINDING A COMMON POINT
OF INFINITELY MANY CONVEX SETS IN A BANACH SPACE

FUMIAKI KOHSAKA AND WATARU TAKAHASHI

Abstract. In this paper, we introduce an iterative scheme for finding a common
point of a countable infinite family of closed convex subsets of a uniformly convex
Banach space by using the hybrid method in mathematical programming. Then,
we prove that the sequence converges strongly to an element of the intersection
set.

1. Introduction

Let {Ci}∞i=1 be a countable infinite family of closed convex subsets of a Banach
space E such that

⋂∞
i=1 Ci 6= ∅. Then we study the problem of finding an element of⋂∞

i=1 Ci by an iterative scheme. Such a problem is connected with the convex fea-
sibility problem. In fact, if f1, f2, · · · : E → R are continuous and convex functions,
then the convex feasibility problem is to find an element of the following set:

∞⋂

i=1

{x ∈ E : fi(x) ≤ 0}.

There are some weak convergence theorems for a finite family of closed convex sub-
sets of a Banach space which were proved in Alber [1] and Reich [10], assuming that
the duality mapping is weakly sequentially continuous. On the other hand, using
the notion of W -mapping, Kimura and Takahashi [7] and Shimoji and Takahashi
[11] proved weak and strong convergence theorems for a countable infinite family
of nonexpansive mappings in a Banach space, respectively. Then they applied their
results to the problem of finding a common point of a countable infinite family of
nonexpansive retracts; see also Atsushiba and Takahashi [2], Takahashi [13] and
Takahashi and Shimoji [16].

Recently, using the hybrid method in mathematical programming, Kamimura
and Takahashi [6] obtained a strong convergence theorem for maximal monotone
operators in a Banach space, which is a generalization of Solodov and Svaiter [12];
see also Ohsawa and Takahashi [9] for another generalization of the result of Solodov
and Svaiter [12]. More recently, using the notion of Bregman distance, Bauschke
and Combettes [3] also proved a strong convergence theorem extending the result
of Solodov and Svaiter [12].

In this paper, motivated by Kamimura and Takahashi [6] and Nakajo and Taka-
hashi [8], we study the convergence of the following iterative sequence {xn} for
finding an element of

⋂∞
i=1 Ci in a smooth and uniformly convex Banach space:
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x1 = x ∈ E and




yn = P1P2 · · ·Pn(xn);
Xn = {z ∈ E : φ(z, yn) ≤ φ(z, xn)};
Yn = {z ∈ E : 〈z − xn, Jx− Jxn〉 ≤ 0};
xn+1 = PXn∩Yn(x) (n = 1, 2, . . . ),

where Pi : E → Ci is the generalized projection [1, 6] onto Ci for each i ∈ N,

φ(u, v) = ‖u‖2 − 2〈u, Jv〉+ ‖v‖2

for all u, v ∈ E and J is the duality mapping from E into E∗. Then we prove that
the sequence {xn} converges strongly to an element of

⋂∞
i=1 Ci. We finally study a

convex minimization problem in a Banach space.

2. Preliminaries

Let E be a (real) Banach space with norm ‖ · ‖ and let E∗ denote the Banach
space of all continuous linear functionals on E. We denote the strong convergence
and the weak convergence of vectors in E by → and ⇀, respectively. For all x ∈ E
and x∗ ∈ E∗, we denote x∗(x) by 〈x, x∗〉. We denote by R and N the set of all real
numbers and the set of all positive integers, respectively. The duality mapping J
from E into 2E∗ is defined by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for all x ∈ E. A function f : E → (−∞,∞] is said to be proper if the set {x ∈ E :
f(x) ∈ R} is nonempty. A proper function f : E → (−∞,∞] is said to be convex if

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y)

for all x, y ∈ E and α ∈ (0, 1). Also f is said to be lower semicontinuous if the set
{x ∈ E : f(x) ≤ r} is closed in E for all r ∈ R.

A Banach space E is said to be strictly convex if ‖x‖ = ‖y‖ = 1 and x 6= y imply
‖(x + y)/2‖ < 1. Also, E is said to be uniformly convex if for each ε ∈ (0, 2], there
exists δ > 0 such that

‖x‖ = ‖y‖ = 1, ‖x− y‖ ≥ ε

imply ‖(x + y)/2‖ ≤ 1− δ. It is also said to be smooth if the limit

(1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for all x, y ∈ S(E) = {z ∈ E : ‖z‖ = 1}. Further, a Banach space E is said
to have a uniformly Gâteaux differentiable norm if for each y ∈ S(E), the limit (1)
exists uniformly in x ∈ S(E). We know that if E is smooth, strictly convex and
reflexive, then the duality mapping J is single-valued, one to one and onto. We also
know the following; see Takahashi [14, 15] for details:

(1) If E is uniformly convex, then it is reflexive;
(2) if E is uniformly convex, then xn ⇀ x and ‖xn‖ → ‖x‖ imply xn → x;
(3) if E has a uniformly Gâteaux differentiable norm, then J is uniformly norm

to weak* continuous on each bounded subset of E.
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Let E be a smooth, strictly convex and reflexive Banach space and let φ : E×E →
[0,∞) be the function defined as follows:

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for all x, y ∈ E. It is easy to see that (‖x‖− ‖y‖)2 ≤ φ(x, y) for all x, y ∈ E. If C is
a nonempty closed convex subset of E, then for each x ∈ E, there exists a unique
x0 ∈ C such that φ(x0, x) = miny∈C φ(y, x) and we denote the point x0 by PC(x).
The mapping PC is called the generalized projection from E onto C; see Alber [1]
or Kamimura and Takahashi [6]. It is known that for each x ∈ E, x0 = PC(x) is
equivalent to the following:

〈y − x0, Jx− Jx0〉 ≤ 0

for all y ∈ C; see [1, 6] for details. We also know the following:

Lemma 2.1 ([1]; see also [6]). Let C be a nonempty closed convex subset of a
smooth, strictly convex and reflexive Banach space E. Then

φ(u, PCx) + φ(PCx, x) ≤ φ(u, x)

for all u ∈ C and x ∈ E.

Lemma 2.2 (Kamimura-Takahashi [6]). Let E be a smooth and uniformly convex
Banach space and let {xn} and {yn} be sequences in E such that either {xn} or
{yn} is bounded. If limn→∞ φ(xn, yn) = 0, then limn→∞ ‖xn − yn‖ = 0.

3. Strong Convergence Theorem

Now, we prove a strong convergence theorem for finding a common point of closed
convex subsets in a Banach space.

Theorem 3.1. Let E be a uniformly convex Banach space with a uniformly Gâteaux
differentiable norm and let {Ci}∞i=1 be a countable infinite family of closed convex
subsets of E such that

⋂∞
i=1 Ci 6= ∅. Let Pi be the generalized projection from E

onto Ci for each i ∈ N and let {xn} be a sequence defined as follows: x1 = x ∈ E
and 




yn = P1P2 · · ·Pn(xn);
Xn = {z ∈ E : φ(z, yn) ≤ φ(z, xn)};
Yn = {z ∈ E : 〈z − xn, Jx− Jxn〉 ≤ 0};
xn+1 = PXn∩Yn(x) (n = 1, 2, . . . ).

Then the sequence {xn} converges strongly to PT∞
i=1 Ci

(x).

Proof. Put C0 =
⋂∞

i=1 Ci. We denote the mapping PC0 by P0. Note that for each
n ∈ N,

Xn = {z ∈ E : 2〈z, Jxn − Jyn〉 ≤ ‖xn‖2 − ‖yn‖2}
is closed and convex. We first prove that {xn} is well-defined. Let u ∈ C0 be given.
Then by Lemma 2.1 we have

φ(u, y1) = φ(u, P1x1) ≤ φ(u, x1).
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Hence C0 ⊂ X1. Since Y1 = E, we have C0 ⊂ X1 ∩ Y1 and hence x2 = PX1∩Y1(x)
and y2 = P1P2x2 are defined. If C0 ⊂ Xn−1 ∩ Yn−1 for some n ≥ 2, then xn =
PXn−1∩Yn−1(x) and yn = P1 · · ·Pnxn are defined. For each u ∈ C0, we have

φ(u, yn) = φ(u, P1 · · ·Pnxn)

≤ φ(u, P2 · · ·Pnxn)
≤ · · ·
≤ φ(u, xn).

Hence u ∈ Xn. And it holds from xn = PXn−1∩Yn−1(x) and u ∈ Xn−1 ∩ Yn−1 that

〈u− xn, Jx− Jxn〉 ≤ 0.

Thus u ∈ Yn and hence we have C0 ⊂ Xn ∩ Yn. Thus xn+1 = PXn∩Yn(x) and
yn+1 = P1 · · ·Pn+1xn+1 are defined. Therefore the sequence {xn} is well-defined
and C0 ⊂ Xn ∩ Yn for all n ∈ N.

Let us prove that limn→∞ ‖xn − xn+1‖ = 0. For any n ∈ N, we have from
xn+1 ∈ Yn and Lemma 2.1 that

φ(xn+1, xn) + φ(xn, x) = φ(xn+1, PYnx) + φ(PYnx, x)(2)

≤ φ(xn+1, x)

= φ(PXn∩Yn(x), x)

≤ φ(P0x, x).

Hence the sequence {φ(xn, x)} is nondecreasing and bounded from above. Therefore
the limit of φ(xn, x) exists. Since (‖xn‖ − ‖u‖)2 ≤ φ(xn, x), {xn} is bounded. It
also holds from φ(u, yn) ≤ φ(u, xn) that {yn} is bounded. By the existence of
limn→∞ φ(xn, x) and (2), we have

(3) lim
n→∞φ(xn+1, xn) = 0.

Then Lemma 2.2 ensures that

(4) lim
n→∞ ‖xn+1 − xn‖ = 0.

Let {xni} be any subsequence of {xn}. Since {xn} is bounded, we have a subse-
quence {xnij

} of {xni} such that xnij
⇀ v as j →∞. Then to show that xn → P0x,

it is sufficient to show that xnij
→ P0x as j →∞. Without loss of generality, let us

denote {xnij
} by {xnj}. We prove that v ∈ Ci for all i ∈ N by induction. We have

from the definition of Xn that

φ(xn+1, yn) ≤ φ(xn+1, xn).

By (3), we get limn→∞ φ(xn+1, yn) = 0. Then Lemma 2.2 implies that

(5) lim
n→∞ ‖xn+1 − yn‖ = 0.

By (4) and (5), we obtain

(6) lim
n→∞ ‖xn − yn‖ = 0.
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Hence the subsequence {ynj} converges weakly to v. From yn = P1 · · ·Pn(xn), we
have that yn ∈ C1 for all n ∈ N. Since C1 is weakly closed, we have v ∈ C1. Set
z
(2)
n = P2 · · ·Pnxn for all n ≥ 2 and let u ∈ C0 be given. Then it holds that

φ(u, yn) + φ(yn, z(2)
n ) = φ(u, P1(z(2)

n )) + φ(P1(z(2)
n ), z(2)

n )

≤ φ(u, z(2)
n )

≤ φ(u, xn)

for all n ≥ 2. Thus we get

(7) φ(yn, z(2)
n ) ≤ φ(u, xn)− φ(u, yn)

for all n ≥ 2. Since the norm of E is uniformly Gâteaux differentiable, we have
from (6) that

φ(yn, z(2)
n ) ≤ φ(u, xn)− φ(u, yn)

= ‖xn‖2 − ‖yn‖2 + 2〈u, Jyn − Jxn〉
≤ 2M‖xn − yn‖+ 2〈u, Jyn − Jxn〉
→ 0

as n → ∞, where M > 0 is a real number satisfying ‖xn‖ ≤ M and ‖yn‖ ≤ M for
all n ∈ N. Then by Lemma 2.2, we have

lim
n→∞ ‖yn − z(2)

n ‖ = 0.

Hence we have z
(2)
nj ⇀ v as j → ∞. Since z

(2)
n ∈ C2 for all n ≥ 2, we get v ∈ C2.

Put
z(3)
n = P3 · · ·Pnxn

for all n ≥ 3. By the above method, we have

lim
n→∞ ‖z

(2)
n − z(3)

n ‖ = 0.

Further, we have z
(3)
nj ⇀ v as j → ∞. Thus we have v ∈ C3. Similarly, we have

v ∈ Cn for all n ≥ 4.
Since the function φ is weakly lower semicontinuous in its first variable, we get

φ(P0x, x) ≤ φ(v, x)

≤ lim inf
j→∞

φ(xnj , x)

≤ lim sup
j→∞

φ(xnj , x)

≤ φ(P0x, x).

Hence we have
lim

j→∞
φ(xnj , x) = φ(v, x) = φ(P0x, x)

and hence v = P0x. This also implies that limj→∞ ‖xnj‖ = ‖P0x‖. Then the
uniform convexity of E implies

lim
j→∞

xnij
= lim

j→∞
xnj = P0x.
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Therefore the sequence {xn} converges strongly to P0x as n →∞. This completes
the proof. ¤

As a direct consequence of Theorem 3.1, we obtain the following:

Corollary 3.2. Let H be a Hilbert space and let {Ci}∞i=0 be a countable infinite
family of closed convex subsets of H such that

⋂∞
i=1 Ci 6= ∅. Let Pi be the metric

projection from H onto Ci for each i ∈ N and let {xn} be a sequence defined as
follows: x1 = x ∈ H and





yn = P1P2 · · ·Pn(xn);
Xn = {z ∈ H : ‖z − yn‖ ≤ ‖z − xn‖};
Yn = {z ∈ H : 〈z − xn, x− xn〉 ≤ 0};
xn+1 = PXn∩Yn(x) (n = 1, 2, . . . ).

Then the sequence {xn} converges strongly to PT∞
i=1 Ci

(x).

4. Application to a Convex Minimization Problem

We next consider a convex minimization problem. Let E be a Banach space,
let f : E → (−∞,∞] be a proper lower semicontinuous convex function and let
f1, f2, · · · : E → R be a sequence of continuous convex functions. Then we study
the problem of finding an element u of

C =
∞⋂

i=1

{x ∈ E : fi(x) ≤ 0}

such that

f(u) = min
y∈C

f(y) = α.

If the optimal set M = {x ∈ E : f(x) = α} is nonempty and the optimal value
α is known, then we can define a proper lower semicontinuous convex function
f0 : E → (−∞,∞] by f0(x) = f(x)− α for all x ∈ E. Then we have

M =
∞⋂

i=0

{x ∈ E : fi(x) ≤ 0}.

Therefore, using Theorem 3.1, we obtain the following strong convergence theorem:

Theorem 4.1. Let E be a uniformly convex Banach space with a uniformly Gâteaux
differentiable norm. Let f : E → (−∞,∞] be a proper lower semicontinuous convex
function and let f1, f2, · · · : E → R be a sequence of continuous convex functions
such that

M = {x ∈ C : f(x) = inf
y∈C

f(y)(= α)}

is nonempty, where C =
⋂∞

i=1{x ∈ E : fi(x) ≤ 0}. Let f0(x) = f(x) − α for all
x ∈ E and let Pi be the generalized projection from E onto {x ∈ E : fi(x) ≤ 0} for



ITERATIVE SCHEME FOR FINDING A COMMON POINT 413

each i = 0, 1, 2, . . . . Let {xn} be a sequence defined as follows: x0 = x ∈ E and




yn = P0P1 · · ·Pn(xn);
Xn = {z ∈ E : φ(z, yn) ≤ φ(z, xn)};
Yn = {z ∈ E : 〈z − xn, Jx− Jxn〉 ≤ 0};
xn+1 = PXn∩Yn(x) (n = 0, 1, 2, . . . ).

Then the sequence {xn} converges strongly to PM (x).
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