R Py, 6,/‘

%,

>,

Journal of Nonlinear and Convex Analysis ;E: E ka Pﬂb"Shel'S
Volume 5, Number 3, 2004, 395-405 L op¥ ISSN 1880-5221 ONLINE JOURNAL

Sinee 19

EXISTENCE OF EQUILIBRIA IN N-PERSON GAMES VIA
CONNECTEDNESS

WON KYU KIM AND SANGHO KUM

ABSTRACT. The purpose of this paper is to prove a generalization on the preser-
vation of connectedness for single-valued mappings to multi-valued mappings,
and next prove some maximal element existence theorem and fixed point the-
orem for connected settings. As applications, we shall prove three equilibrium
existence theorems for connected n-person games without assuming compact con-
vex conditions.

1. INTRODUCTION

As is well-known, connectedness can be preserved by continuous mappings, and
in the case of R, we can obtain the intermediate value theorem as a consequence.
Since multi-valued mappings are very natural extensions of single-valued mappings
and useful tools in many real applications, their properties have been extensively
studied in many literature, and most results in single-valued mappings have been
generalized in multi-valued mappings.

The purpose of this paper is two-fold. First, we provide a proof of a generalization
on the preservation of connectedness for single-valued mappings to multi-valued
mappings, and next obtain some maximal element existence theorem and fixed
point theorem for connected sets. Using those results, we prove three equilibrium
existence theorems for connected n-person games without assuming compact convex
conditions. We also give some examples that the previous results due to Borglin-
Keiding [3], Kim [8], Shafer-Sonnenschein [12], Tian [14], Yannelis-Prabhakar [15]
do not work whereas our results do.

2. PRELIMINARIES

We first recall the following notations and definitions. Let A be a non-empty
set. We shall denote by 24 the family of all subsets of A. Let X,Y be non-
empty topological spaces and T : X — 2¥ be a multimap. Then T is said to be
open or have open graph (respectively, closed or closed graph) if the graph of T (
GrT = {(z,T(z)) € X xY |z € X}) is open (respectively, closed) in X xY. We
may call T'(x) the upper section of T, and T~(y) (= {z € X |y € T(x)}) the lower
section of T'. It is easy to check that if T has open graph, then the upper and lower
sections of 1" are open ; however the converse is not true in general. A multimap
T : X — 2Y is said to be closed at = if for each net (zo) — z, Yo € T(z4) and
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(ya) — vy, then y € T(x). A multimap T is said to be closed on X if it is closed at
every point of X. Note that if T is single-valued, then the closedness is equivalent
to continuity as a function.

A multimap T : X — 2Y is said to be upper semicontinuous if for each z € X
and each open set V in Y with T'(z) C V, then there exists an open neighborhood
U of z in X such that T'(y) C V for each y € U. Also T : X — 2 is said to be lower
semicontinuous if for each € X and each open set V in Y with T'(z) NV # 0,
then there exists an open neighborhood U of x in X such that T'(y) NV # 0 for each
y € U. A multimap T is said to be continuous if T is both upper semicontinuous
and lower semicontinuous.

Let T : X — 2Y be a multimap; then & € X is called a mazimal element for
T if T(z) = (0. Indeed, in real applications, the maximal element may be
interpreted as the set of those objects in X that are the “best” or “largest” choices.

Let I be a (possibly uncountable) set of agents. For each i € I, let X; be a non-
empty set of actions. A generalized game T' = (X;, A;, P;)ier s defined as a family
of ordered triples (X;, A;, P;) where X; is a non-empty topological space (a choice
set), A; :Ijer X; — 2Xi is a constraint multimap and P; : e X5 — 2Xi s a
preference multimap. An equilibrium for I is a point & € X = Il;c; X; such that for
eachi € I, &; € A;(2) and P;(2) N A;(2) = 0. In particular, when I = {1,--- ,n},
we may call I' an n-person game.

For each i € I and a given multimap A; : X = Il;c; X; — 2Xi we simply denote
a multimap A} : X — 2X | without any confusion of notation, by

A;(ZL‘) =Xy x - X, X Al(.f) X Xip1 X -+ X Xy, for each x € X.
3. CONNECTEDNESS AND MAXIMAL ELEMENTS

The following is a well-known result on the preservation of connectedness via
multimaps, e.g., see [4, 9].

Lemma 1. Let X,Y be non-empty topological spaces, X a connected set, and T :
X — 2Y be a multimap such that each T(x) is non-empty connected. If T is either
lower semicontinuous or upper semicontinuous, then the image T(X) is a connected
set.

If we assume stronger continuity on 7' in Lemma 1, then we can prove the fol-
lowing by relaxing the connectedness assumption on 7'(z) for each z € X :

Proposition 1. Let X,Y be non-empty topological spaces and T : X — 2Y be
a continuous multimap such that each T(x) is non-empty. If X is connected and
T(x0) is connected for some xy € X, then the image T(X) is a connected set.

Proof. Suppose the contrary, i.e., T'(X) is disconnected. Then there exists a sepa-
ration for T'(X), i.e., there exist two non-empty open sets U,V in T(X) such that
UUV =T(X)and UNV = (. Since T(x¢) is connected, either T'(xg) C U or
T(xz9) C V; hence we may assume T'(xg) C U without loss of generality.

We now set

Xy :={x e X | T(x)NV # 0}
Xy ={zeX|Tx)NnV =0}
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then X = Xy U Xy. Since UUV =T(X) and U NV = (), we have that
Xy={zeX|T@)NnV=0}={zxeX|T(z) CU}

Then, by the lower semicontinuity of 1" and the assumption, it is easy to see that
Xy is a non-empty open subset of X; and by the upper semicontinuity of 1" and
the assumption that T'(xg) C U, Xy is a non-empty open subset of X.

In the case that Xy N Xy = (), then { Xy, Xy} is a separation of the connected
set X; which is a contradiction.

Next, we assume that there exists a point £ € Xy N Xy. Then we obtain that

zeXy=TE)CU and z€Xy=T(x)NV £
which contradicts the fact that U NV = (). This completes the proof. O

In Theorem 1, the continuity of 7" and the connectedness of T'(x() are essential
as seen in the following example :

Example 1. Let X = Y = R be the connected set and the multimap S, 7 : X — 2%
be defined as follows :
1
(=,0), for each x € (—o0,0),
x
S(xz):= ¢R\ {0}, whenz =0,

1
(0, -), for each x € (0, 00);
T

{1}, for each z € [0, 00).

Then all hypotheses of Theorem 1 are satisfied except the lower semicontinuity of S
at 0 and the upper semicontinuity of 7" at 0, respectively ; but the both image sets
S(X) =R\ {0} and T(X) = {—1,1} are disconnected. Therefore, the continuity
of T' is essential in Theorem 1.  Also, the connectedness of T'(zg) are essential in
Theorem 1 by using a constant multimap 7" : R — 2R defined by T'(x) := {1, 1} for
each x € R, and the connectedness of the domain X is very essential in Theorem 1.

T(z) = {{—1, 1}, for each x € (—o0,0),

The following simple example shows that the converse of Theorem 1 need not be
true :

Example 2. Let X = R be the connected set and the multimap 7 : X — 2% be
defined as follows :

T(x) :=[0,00) U{—e "}, for each z € X.

Then we know that 7" is continuous on X and the image set T'(X ) = X is connected.
However, each T'(x) is disconnected. Therefore, the converse of Theorem 1 does not
hold.

We shall need the following result in [1] :

Lemma 2. Let X and Y be two topological spaces, Y be a regular space, and
T:X — 2 be an upper semicontinuous multimap such that for each v € X, T(x)
1s non-empty closed. Then T is a closed multimap.
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For the equilibrium existence theorem, we shall prove the following existence
theorem of maximal element :

Lemma 3. Let X be a non-empty connected subset of a regular topological space
E, and T : X — 2F be upper semicontinuous at every x where T(x) # () such that
(1) T(x) is (possibly empty) closed for each v € X ;
(2) T~ Y(yo) is non-empty open and yo & T(yo) for some yo € X.
Then T has a mazimal element & € X, i.e., T(Z) = 0.

Proof. Suppose the assertion were false. Then T'(x) is non-empty for each z € X.
By the assumption, since 7' is upper semicontinuous at = and T'(z) is closed, T
is closed at x; hence the lower section T!(y,) is non-empty closed. In fact, for
every net (rq4)aer C T (y,) with (z4) — z, we have y, € T(x,) for each a € T
and (z,) — x, so by the closedness of T at =, we have y, € T'(x). Therefore,
xr € T7(y,), and hence T~ 1(y,) is closed. By the assumption (2), T7!(y,) is also
non-empty open. Therefore, by the connectedness of X, T~!(y,) = X. Hence we
have y, € T'(x) for each x € X which contradicts the assumption (2). Therefore, T
has a maximal element % € X, i.e., T(%) = 0. This completes the proof. O

Remarks. (i) It should be noted that in Lemma 3, we do not need any compact
convexity of X nor the convex assumption on 7'(x) in contrast to the previous many
existence theorems for maximal elements (e.g., see [3, 8, 12-15]); however, we shall
need the non-empty open lower section at some special point and the connectedness
of the domain X.

(ii) In Lemma 3, if we assume that T is closed at every x where T'(x) # 0, by
replacing the condition of upper semicontinuity with closed values, then we can
obtain the same conclusion without assuming the regularity of F.

If we assume that each T'(x) is non-empty in Lemma 3, then we can obtain the
following fixed point theorem :

Corollary 1. Let X be a non-empty connected subset of a Hausdorff topological
space E and T : X — 2F be a closed multimap such that each T(x) is non-empty.
If T7'(y,) is non-empty open for some y, € E, then y, € T(x) for every x € X.
In particular, if y, € X, then y, is a fixed point for T.

Next we shall prove the following :

Proposition 2. Let X be a non-empty connected subset of a regular topological
space E and T : X — 2F be upper semicontinuous such that
(1) T(x) is non-empty closed for each v € X ;
(2) T7Y(y) is (possibly empty) open in X for eachy € E.
Then there ezists a non-empty (closed) subset K C E such that T(x) = K for each
x € X, i.e., T is a constant multimap.
Furthermore, if T(Z)NX #0 for some T € X, then T has a fized point & € X .

Proof. Suppose the assertion were false. Then we can find distinct points xg, 1 € X
and yo € F such that yo € T'(z9)\ T (x1). Since T is upper semicontinuous at xo and
each T'(x) is closed, by repeating the same argument in the proof of Lemma 3, we
can show that T~!(y,) is non-empty closed. By the assumption, 7~ !(y,) is open.
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Therefore, by the connectedness of X, T~ (y,) = X. Hence we have y, € T(z) for
each x € X which contradicts the condition that yo ¢ T'(z1). Therefore T' must be
constant, i.e., there exists a non-empty subset K C F such that T'(z) = K for each
x € X. Furthermore, if 2 € T(z)N X = KNX, then & € X so that £ € T'(¢). This
completes the proof. O

Remarks. (i) In Proposition 2, the point z € X need not be a fixed point for T'
but every point in 7'(z) N X must be a fixed point for 7. And, if we assume that
T : X — 2% has no fixed point and T is upper semicontinuous with closed values,
then we conclude that T must have a maximal element, i.e., there exists an z € X
such that T'(z) = 0.

(ii) In Proposition 2, if we assume that 7" is a closed multimap in place of the
upper semicontinuity having closed values, then we can obtain the same conclusion
without assuming the regularity of F as in [7].

4. EXISTENCE OF EQUILIBRIA IN N-PERSON GAMES

As an application of Corollary 1, we provide a new equilibrium existence theorem
for a connected n-person game :

Theorem 2. Let ' = (X, A;, P;)ier be a generalized game where I = {1,--- ,n} is
a finite set of agents such that for each i € I,
(1) X; is a non-empty connected subset of a regular topological space E;, and
denote X = Hie]Xi and E = HieIEi 5
(2) the multimap A; - X — 25 is upper semicontinuous such that A;(x) is a
non-empty closed subset of E; for each x € X;
(3) the multimap A;NP; is upper semicontinuous at every x where (A;NP;)(x) #
0, and (A; N P;)(x) is (possibly empty) closed for each x € X ;
(4) the set W :={x € X : (A;NP;)(x) # 0} is (possibly empty) open in X, and
for each x € W;, z; ¢ Pi(z) ;
(5) A;7N(@i) and (X \ Wi) U P Y(5;) are open in X for some §; € X;.
If the set ;e (AiNP) "1 (y;) is non-empty, then §= (y1,-- ,¥n) € X is actually
an equilibrium for I, i.e., for each i € I,

yi € Ai(y) and  Ai(y) N Fi(y) = 0.

Proof. Since each X is connected, X = IT;c;X; is also connected. Let I, ={i € I :
W; # (0}. For each i € I,, we now define a multimap ¢; : X — 2% by

Ai(z), if x¢ W,
bi(z) = (x) ' ¢
(Az N R)(CE), if zeW,.
Then for each x € X, ¢;(x) is a non-empty closed subset of F;. To show ¢; is upper

semicontinuous, we must show that the set U := {z € X : ¢;(z) C V'} is open in X
for every open subset V of E;. Now we have

U={xeW;:¢i(x) cVIU{x e X\ W;: ¢i(x) CV}
={zeW,: (4iNP)(x) cV}IU{z e X\W,;: Ai(x) CV}
={zeW;,: (4iNPE)(x) cV}U{zre X:A(x) CV}
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Since W; is open and A; N P; is upper semicontinuous on W;, U is open ; and hence
¢; is upper semicontinuous such that each ¢;(z) is non-empty closed. Therefore, by
Lemma 3, ¢; is a closed multimap on X.
Next we shall show that ¢, 1(,1;1-) is a non-empty open subset of X. In fact, since
(X \ Wi) U P 1(5;) is open, we have
¢; () = {z € X : 55 € ¢u(x)}
={zeW;,:g, € ¢i(x)} U{z e X\ W, :y; € ¢i(z)}
= [Win (A0 B) (g U (X A\ W) N AT (5)]
= A7 @) N [P () L (XA W) N AT (50)
= A7 @) N [P (@) L (X A\ W)
is non-empty open in X.
Finally, we define ¥ : X — 2%, by

U(z) := e ¥i(x) for each z € X,

i), i iel,
wl(x)_{Ai@), it i,

Since E = ;¢ E; is a regular space, ¥ is a closed multimap on X such that each
U(z) is a non-empty closed subset of E. For g = (g1, -+ ,yn) € X, we now obtain

eV Ng) & ge U(z) = icry(z)
< g € Yi(x), foreach i€l

where

& x € (g;), foreach iel
=T e ﬁie[”(ﬁ'_l(i')
ST € Nigry Ay yz ﬂ Nielo®; :t/z

and hence, by the assumption, ¥~1(%) is a non-empty open subset of X. Therefore,
by applying Corollary 1 to ¥, we know that § € ¥(y), i.e., for each i € I, §; € ¥;(7).
For each i € I,, 5; € ¥i(y) = ¢i(y). U y € W, then

yi € 0i(y) = (AN P)(y) € Pi(y),

which is a contradiction. Therefore for each i € I,, y ¢ Wy, i.e., ; € ¥;i(y) = Ai(7)
and (A;NP;)(y) =0. Next,incasei & I,, then W; = () and ¢; = A;.  Therefore
Ui € ¥i(y) = Ai(y) and P;(y) N A;(y) = 0. This completes the proof. O

Remarks. (i) As we can see in the conclusion, W; must be a proper subset of X,
and the set (;c;(4; N P;)~(7;) is not closed. In fact, if it is closed, then by the
connectedness of X, (\;c;(4; N P)~'(y;) = X, and hence this contradicts the
conclusion. Also, note that § & (;c;(A; N P)~H(w;).

(ii) Theorem 2 is quite different from the previous many equilibrium existence
theorems (e.g. [3, 5, 8, 11-15]). In fact, in Theorem 2, we do not require compact
convex assumption on the choice set X;, but we only use the connectedness of
X;. Also we do not need the convexity of the values A;(x) and P;(x), and strong
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open lower section assumptions; just the weaker open lower section and intersection
property at some special point are necessary.

(iii) In the assumption (5) of Theorem 4 in [7], W; should be open as in the
assumption (4) of Theorem 2, and also the assumption (5) and the non-emptiness
of N;er(4i N P)~(7;) of Theorem 2 should be needed to obtain the conclusion in
[7].

Next, we give a simple example of a connected (non-compact non-convex) 1-
person game where Theorem 2 is applicable but the previous known results are not
available :

Example 3. Let I' = (X, A, P) be an 1-person game where X = {(z,y) € R? | 0 <
z, 0<y < %} be a connected set and the multimaps A, P : X — 2% be defined as
follows:

1
{(s,6) e X |s=y,0<t<— or 0<s<y,t=0},
)

1
if (z,y) € X with y > 3

Az, y) =
{(s,t) e X |s=9y,0<t<2 or 0<s<y,t=0},
if (z,y) € X with y < %;
(0, if (z,y)eC:={(z,y) e X|0<z<1, z <y},
{(s,t)]s:y,OStS; or 0<s<y,t=0},
P(z,y) = if (z,y) € X \ C with yZ%,
{(s,) | s=9y,0<t<2 or 0<s<y,t=0},
if (z,y) € X \ C with y<%.

Then it is easy to show that the multimap A is upper semicontinuous on X such
that each A(z,y) is non-empty closed, and the fixed point set F of A is exactly the
diagonal of X, i.e., F = {(z,7) € R* | 0 < 2 < 1}. Also we have that P is upper
semicontinuous on X \ C' and P(z,y) is non-empty closed at every point in X \ C.
It is clear that W = X \ C is open in X and (z,y) ¢ P(z,y) for each (z,y) € W.
Note that A71(0,0) = X and (AN P)~(0,0) = X \ C are non-empty open in X,
and (X \ W)U P~1(0,0) = X is open in X. Therefore, all assumptions of Theorem
2 are satisfied, so that we can obtain an equilibrium point (0,0) € X such that
(0,0) € A(0,0) and A(0,0) N P(0,0) = (. Note that since X is neither compact
nor convex, previous many equilibrium existence theorems (e.g., [3, 5, 8, 11-15]) are
not available in this game.

In the assumption (5) of Theorem 2, if we replace the condition “X \ W;UP;*(7;)
is open” by “W; C P;1(g;)” (‘or “A;'(g;) € W;”), then we can obtain the same
conclusion under weaker assumptions as follows :

Theorem 3. Let I' = (X;, A, P;)ier be a generalized game where I = {1,--- ,n} is
a finite set of agents such that for each i € I,
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(1) X; is a non-empty connected subset of a regular topological space E;, and
denote X =Il;c; X; and E =1lc1E; ;
(2) the multimap A; : X — 2P is upper semicontinuous such that A;(x) is
non-empty closed subset of X; for each x € X;
(3) for each x € W; :={x € X : (A4; N P)(x) # 0}, = ¢ Pi(x) ;
(4) there exists some §; € X; such that A7 (g;) is open and W; C P ().
If Mier Ai_l(gji) is non-empty, then T' has an equilibrium choice § = (§1,- -+ ,Yn) €
X, i.e., for eachi €1,
gi € Ai(y) and  Ai(y) N P(y) = 0.
Proof. Since each X; is connected, X = Il;c;X; is also connected. Since each A; is
upper semicontinuous with closed values, A; is a closed multimap on X. And note
that the multimap A := I;e;A; : X — 2F defined by A(z) = I;c;A;(z) for each
x € X, is also a closed multimap on X. If we let § = (y1,- -+ ,yn) € X, then by the
assumption, A71(Y) = NierA; L(%) is non-empty open. By applying Corollary 1
to the multimap A, we have a fixed point § = (y1,- - ,yn) € X such that g € A(7),
i.e., foreach i € I, y; € A;(y). First consider the case that W; = () for all ¢ € I.
Then A;(y) N Pi(y) = 0 for each i € I, and hence we have done.

Suppose that I, be the maximal non-empty subset of I such that W; # ) for
all i € I,. In case that y ¢ W; for each i € Iy, then we have done. Suppose that
gy € W; for some ¢ € Iy, then by the assumption (3), y; ¢ P;(y) ; however, by the
assumption (4), we have y € W; C Pi_l(yi), which is a contradiction. Therefore,
y ¢ W; for every i € Iy, which implies that A;(y) N P;(y) =0 for each ¢ € I. This
completes the proof. O O
Remark. The assumption (4) clearly implies the assumption (5) in Theorem 2. In

fact, the set (X \ W;) U P, (7;) is equal to the whole set X, and hence it is open.
Therefore, we can also obtain the equilibrium in Example 1 by applying Theorem 3.

As an application of Lemma 3, we shall prove another equilibrium existence
theorem for a connected n-person game where the decisive agent exists :
Theorem 4. Let I' = (X, Ai, Pi)ier be an n-person game such that for each i €
[:{1’... 7n},

(1) X; is a non-empty connected subset of a regular topological space E;, and
denote X =1l;cr X; and E =1lc1 B;
(2) the multimap A; : X — 2Fi is upper semicontinuous such that for each x €
X, Ai(x) is non-empty closed, and the fized point set F(A) of A = ;1 A;
s connected ;
(3) there exists some y; € X; such that A;l(gi) is mon-empty open in X.
Furthermore, assume that there exists some decisive agent j € I such that
(4) the multimap A; N Pj : X — 2Fi is closed at x where (A; N P;)(z) #0 ;
(5) Pj_l(gjj) N F(A) is non-empty open in F(A), and y; ¢ Pj(y) for y =
(gla"' agn) ;
(6) (A; N Pj)(x) =0 implies (A; N P;)(z) =0 for each i€ 1.
Then T has an equilibrium choice I € X, i.e., for each i € I,
T; € AZ(.@) and AI(JA:‘) N Pz(.ff) = 0.
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Proof. For each i € I, we define multimap (A; N ;) : X — 2F by
(AinNP) (z) =E1x- - xEi_1 x (A4iNP)(x) X Bjy1 X+ x E,, foreach z¢€ X.

Since each X; is connected, X = IT;c; X; is also connected. By the assumption (2),
using the same argument of the proof in Lemma 3, we can see that each A 1(y]i) is
closed. Hence by the assumption (3), 4;'(7;) = X since X is connected. Let the
multimap A := I;crA; : X — 2P be defined by A(x) := ;e;A;(z) for each z € X.
Then, for § = (71, ,9,) € X, A7(y) = ﬁieIAi_l(gi) = X is non-empty open.
Hence we have § € A(y), and so the fixed point set F(A) :={z € X |z € A(z)} =
Nicilr € X | z; € Ai(x)} is a non-empty subset of X. By the assumption (2),
F(A) is a non-empty connected set and y € F(A). Denote F(A) by F for simplicity.
For j € I, we define a multimap ¢; : 7 — 2F by

¢;(z) == (4; N Pj) (), for each € F.

Then, by the assumption (4), we have that ¢; is closed at every = where ¢;(z) # 0.
In fact, for every net (zq)acr C F with (z4) — z, and yo € ¢j(2q) With (ya) — v,
we have v} € (A; N Pj)(z,) with (y4) — y;. Here, v denotes the j-th component
of the element y, € E. Since A; N P; is closed at x, we have y; € (4; N P;)(z). It is
clear that y; € E; for each ¢ # j; and hence y € (A; N P;) (xz) = ¢;(z). Therefore,
¢; is closed at every o where ¢;(z) # 0.

Next we shall show that d)j_l (y) is non-empty open in F. In fact, since Pj_l(gjj)ﬁ}"

is non-empty open in F and Aj_l(gj) = X, we have

¢, () ={z e F:yec¢j(x)} = Fn(4;nP) " (7;)
= Fn A () N PN (g5) = F P (g)

is non-empty open in F. By the assumption (5), it is clear that § ¢ ¢; (7).
Therefore, by Lemma 3, there exists a point & € F such that ¢;(z) = . Since
& € F,wehave &; € A;(Z) for each i € I. Also, since ¢;(z) =0, A;(z)NP;(z) = 0.
By the assumption (6), we have A;(Z) N P;(&) = 0 for each ¢ € I. Therefore, & € F
is the desired equilibrium for the game I'. This completes the proof. O

Remarks. (i) Theorem 4 is also different from the previous many equilibrium exis-
tence theorems (e.g., [3, 5, 8, 11-15]), and note that y € X in the assumption might
be an equilibrium for the game I'.

(ii) As we remarked, the condition (6) means that the j-th agent is decisive in
this game. This is a rather strong assumption, but Theorem 4 is suitable for an
incomplete market having monopolistic agent in a real economy. Also, for 1-person
game, this assumption is automatically satisfied.

We now give an example of a connected n-person game where Theorem 4 is
applicable but the previous known results are not available :

Example 4. Let I' = (X, 4;, P)ic; be an n-person game where for each k € I =
{1,2,--- ,n}, let X; = [0,00) be a connected set and the multimaps Ay, Py :
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ILic; X; — 2% be defined as follows:  for each z € X = II;c1 X},

Ap() = [ ’2l<;3—]1:— 1}
{L} if xGHieI[Q 2i;1)7
[ %C ] if xelIlier(1,2),
Pi(x) := {2} if ©=(2,2,---,2),
{2]{:3_]:1}, if x e Ilier(2,00),
0, otherwise.

Then it is easy to show that the multimap Ay is upper semicontinuous on X such
that each Ay (z) is non-empty closed, and the fixed point set F(A) of A = Ay is
equal to IO, 23k ]. Also it is easy to check that for each k € I, AjN Py, is closed
at every point z where Ay N Py(z) # (. If we let 5 := (1, Z, é, e ,"2‘21) € X, then
P (1) NF(A) = Ties[0, 2641) is non-empty open in .7-"(A), and 1 =1, ¢ Pi(y) =0.
Note that each A,;l(yjk) is equal to X, and hence Ak (9x) is non-empty open. And
we know that the preference multimap Py is decreasing and the first agent is decisive
in this game. In fact, if (4; N Py)(xz) = 0, then (A N Py)(z) = 0 for each k € I.
Hence the assumptions (4)-(6) are satisfied for the first index 1 € I. Therefore, all
assumptions of Theorem 4 are satisfied, so that we can obtain an equilibrium point

=(1,2,%,--, 22y € X such that &4 € Ay(2) and Ay(&) N Py(&) = 0 for each
k: € I. Finally, note that § € A(y) and (Ax N P;)(g) = 0 for each k € I; and hence
7 can be another equilibrium for this game.
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