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ON THE BEST CONSTANT OF HYERS-ULAM STABILITY
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Dedicated to Professor Ryuichi Ito for his 60th birthday (kanreki)

Abstract. We give a necessary and sufficient condition that the best constant of
Hyers-Ulam stability exists. Using the condition, we show that the best constants
exist for the weighted composition operators and the first order linear differential
operators.

1. Introduction

In 1941, D. H. Hyers solved the stability problem on an approximately additive
mapping between two Banach spaces, which had been posed by S. M. Ulam (cf.
[4], [13], [14]). From then, various stability problems have studied by many math-
ematicians (see the references in [5], [6], [7]). In [6], the common property of those
problems is formulated as follows:

Definition. Let A and B be linear spaces with gauges ρA and ρB, respectively.
Here a gauge on a linear space L means a function ρ : L → [0,∞] satisfying
ρ(λf) = |λ|ρ(f) for every f ∈ L and scalar λ. Let T be a mapping from A into B.
We say that T has the Hyers-Ulam stability if the following condition (1) holds for
some constant K:

(1) For any g0 ∈ T (A), ε > 0 and f ∈ A with ρB(Tf − g0) ≤ ε, there
exists an f0 ∈ A such that Tf0 = g0 and ρA(f − f0) ≤ K ε.

We call K a HUS constant for T , and denote the infimum of all HUS constants for
T by KT .

It is natural to ask the question: Is KT a HUS constant for T? In this paper,
we give an answer to this question when T is linear. If the answer is “Yes”, then
KT becomes the best constant of Hyers-Ulam stability, say the HUS constant for
T .

2. Result

Let A and B be linear spaces with gauges ρA and ρB, respectively. Let T be
a linear operator from A into B. By N (T ), we denote the kernel of T , namely,
N (T ) = {h ∈ A : Th = 0 }. For f ∈ A and M ⊂ A, we put distA(f,M) =
inf{ ρA(f − h) : h ∈ M }. Our main result is the following:
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Theorem. Let A, B be linear spaces with gauges ρA, ρB, respectively, and T be a
linear operator from A into B. Suppose that T has the Hyers-Ulam stability. Then
KT is the HUS constant if and only if

(2) for any f ∈ A with distA(f,N (T )) = KT and ρB(Tf) ≤ 1, there
exists an h ∈ N (T ) such that ρA(f − h) = distA(f,N (T )).

Proof. We first observe that K is a HUS constant for T if and only if

(3) for any f ∈ A with ρB(Tf) ≤ 1, there exists an f0 ∈ N (T ) such that
ρA(f − f0) ≤ K.

In fact, the linearity of T shows that (3) is equivalent to (1). Hence, if K is a HUS
constant for T , then distA(f,N (T )) ≤ K for all f ∈ A with ρB(Tf) ≤ 1. If K is
taken over all HUS constants for T , then we obtain

(4) distA(f,N (T )) ≤ KT for all f ∈ A with ρB(Tf) ≤ 1.

Suppose that KT is the HUS constant for T . By the above observation,

(5) for any f ∈ A with ρB(Tf) ≤ 1, there exists an f0 ∈ N (T ) such that
ρA(f − f0) ≤ KT .

Of course, for any f ∈ A with distA(f,N (T )) = KT and ρB(Tf) ≤ 1, we find an
h ∈ N (T ) such that ρA(f − h) ≤ KT . Then we have distA(f,N (T )) ≤ ρA(f − h) ≤
KT = distA(f,N (T )), and so ρA(f − h) = distA(f,N (T )). Thus we obtain (2).

Conversely, suppose that (2) holds. To verify that KT is the HUS constant, it
suffices to show (5), by the first observation. Choose f ∈ A so that ρB(Tf) ≤ 1.
By (4), distA(f,N (T )) ≤ KT . If distA(f,N (T )) < KT , then the definition of distA
shows that there exists an h ∈ N (T ) such that ρA(f − h) < KT . On the other
hand, if distA(f,N (T )) = KT , then (2) says that there exists an h ∈ N (T ) such
that ρA(f − h) = distA(f,N (T )) = KT . Thus we obtain (5), which was to be
proved. ¤

Let us consider the case that A is a normed space, where the gauge ρA is a norm
of A. A subspace M of A is said to be proximinal, if for any f ∈ A, there exists an
h ∈ M such that ‖f − h‖ = distA(f,M) (= inf{‖f − g‖ : g ∈ M}). If A is reflexive
and M is closed, or if M is finite-dimensional, then M is proximinal (see [2, §V.4]).
The next corollary is an immediate consequence of Theorem.

Corollary. Let T be a linear operator from a normed space into a linear space with
gauge. Suppose that T has the Hyers-Ulam stability. If N (T ) is proximinal, then
KT is the HUS constant for T .

We remark that KT is not necessarily a HUS constant for T . Here is such an
example.

Example. It is known that some Banach space A admits a closed subspace M
which is not proximinal. Then there exists an f0 ∈ A such that no h ∈ M satisfies
‖f0−h‖ = distA(f0,M). Without loss of generality, we may assume distA(f0,M) =
1. For example, take A = C[0, 1], the Banach space of all continuous functions on
[0, 1] with the supremum norm, f0(x) = 4x and M = {h ∈ C[0, 1] :

∫ 1/2
0 h(x) dx =∫ 1

1/2 h(x) dx } ([2, Example V.4.8]).
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Let B be the quotient space A/M with the usual norm; ‖f +M‖ = inf{ ‖f +h‖ :
h ∈ M } = distA(f,M). Define an operator T from A into B by Tf = f + M for
all f ∈ A. Then N (T ) = M . If T̃ is the one-to-one operator from A/N (T ) into B
induced by T , then

T̃ (f +N (T )) = Tf = f + M = f +N (T )

for all f ∈ A. In other words, T̃ is the identity operator of A/M . Hence T̃ is
invertible and ‖T̃−1‖ = 1. By [10, Theorem 2], T has the Hyers-Ulam stability and
KT = ‖T̃−1‖ = 1. Thus we have

distA(f0,N (T )) = distA(f0,M) = 1 = KT ,

‖Tf0‖ = ‖f0 + M‖ = distA(f0,M) = 1.

But there is no h ∈ N (T ) = M such that ‖f0 − h‖ = distA(f0,N (T )). Hence
Theorem shows that KT is not a HUS constant for T .

3. Application to weighted composition operators

In this section, we apply Corollary to weighted composition operators. The stud-
ies about weighted composition operators may be found in the book [9].

By C(X), we denote the Banach space of all continuous functions on a compact
Hausdorff space X with the supremum norm. We deal with two spaces C(X) and
C(Y ), where X and Y are compact Hausdorff spaces. For any u ∈ C(Y ), we put
S(u) = { y ∈ Y : u(y) 6= 0 }. Take a function u ∈ C(Y ) and a mapping ϕ form
Y into X which is continuous on S(u). Then u and ϕ induce a bounded linear
operator uCϕ from C(X) into C(Y ) defined by

(6) (uCϕf)(y) = u(y) f(ϕ(y)) (y ∈ Y )

for all f ∈ C(X). We call uCϕ a weighted composition operator from C(X) into
C(Y ). As in [10, Theorem 3], we characterize the Hyers-Ulam stability of uCϕ, as
follows:

Theorem A ([10, Theorem 3]). Let uCϕ be a weighted composition operator from
C(X) into C(Y ). Then uCϕ has the Hyers-Ulam stability if and only if there exists
a positive constant r such that

(7) ϕ({y ∈ Y : |u(y)| ≥ r}) = ϕ(S(u)).

If uCϕ has the Hyers-Ulam stability, then KuCϕ is the reciprocal of the supremum
of all r satisfying (7).

Theorem A does not mention whether KuCϕ is the HUS constant of uCϕ. The
next proposition answers this question.

Proposition 1. Let uCϕ be as in Theorem A. If uCϕ has the Hyers-Ulam stability,
then KuCϕ is the HUS constant for uCϕ.

Proof. Pick f ∈ C(X). As in [10, Lemma], we can show that

‖f +N (uCϕ)‖ = sup{ |f(x)| : x ∈ ϕ(S(u)) },
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where the left side is the norm of f +N (uCϕ) in the quotient space C(X)/N (uCϕ).
Let F be the closure of ϕ(S(u)). We use Tietze’s extension theorem ([8, Theorem
20.4]) for the restriction of f to F , and we find a g ∈ C(X) such that

g(x) = f(x) (x ∈ F ) and ‖g‖ = sup{ |f(x)| : x ∈ F }.
Hence we have

distC(X)(f,N (uCϕ)) = ‖f +N (uCϕ)‖ = sup{ |f(x)| : x ∈ ϕ(S(u)) }
= sup{ |f(x)| : x ∈ F } = ‖g‖ = ‖f − (f − g)‖.

Moreover, (f − g)(x) = 0 for all x ∈ ϕ(S(u)), which implies f − g ∈ N (uCϕ).
Thus we establish the existence of a function h ∈ N (uCϕ) such that ‖f − h‖ =
distC(X)(f,N (uCϕ)). Hence N (uCϕ) is proximinal. By Corollary, KuCϕ is the
HUS constant for uCϕ. ¤

Next, we generalize Proposition 1 by considering uniform algebras instead of
C(X) and C(Y ). A uniform algebra (or a function algebra) on X means a uniformly
closed subalgebra of C(X) which contains the constants and separates the points of
X. Let A and B be uniform algebras on X and Y , respectively. For any subset E

of X, we put kerE = { f ∈ A : f(x) = 0 for all x ∈ E } and E
A= {x ∈ X : f(x) =

0 for all f ∈ kerE }. The set E
A is nothing but the closure of E with respect to

the hull-kernel topology on X. A closed subset F of X is called a peak set for A, if
there exists an f ∈ A such that f(x) = 1 for x ∈ F and |f(x)| < 1 for x ∈ X \ F .
The intersection of some collection of peak sets for A is called a generalized peak
set (or a peak set in the weak sense) for A. For the details on uniform algebras, see
the books [1], [3].

Fix a function u ∈ B and a mapping ϕ from Y into X which is continuous on
the set S(u). Then the equation (6) with f ∈ A defines a bounded linear operator
uCϕ from A into C(Y ). If uCϕ maps A into B, then we call uCϕ a weighted
composition operator from A into B. The Hyers-Ulam stability of this type of
operator is investigated in [11]. Here we show the following fact:

Proposition 2. Let uCϕ be a weighted composition operator from A into B. Sup-

pose that there is a generalized peak set F for A such that ϕ(S(u)) ⊂ F ⊂ ϕ(S(u))
A
.

If uCϕ has the Hyers-Ulam stability, then KuCϕ is the HUS constant for uCϕ.

Proof. Pick f ∈ A. As in [11, Lemma 2], we can show that

‖f +N (uCϕ)‖ = sup{ |f(x)| : x ∈ F }.
Put α = sup{ |f(x)| : x ∈ F } and G = {x ∈ X : |f(x)| ≤ α }. Then G is a Gδ-set
containing F . Since F is a generalized peak set, there is a peak set F ′ such that
F ⊂ F ′ ⊂ G. We use [1, Theorem 2.4.1] to find a g ∈ A such that

g(x) = f(x) (x ∈ F ′) and |g(x)| < ‖g‖ (x ∈ X \ F ′).

Then we have

‖g‖ = sup{ |g(x)| : x ∈ F ′ } = sup{ |f(x)| : x ∈ F ′ }
= sup{ |f(x)| : x ∈ F },
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where the last equality follows from sup{ |f(x)| : x ∈ F } = α = sup{ |f(x)| : x ∈ G }
and F ⊂ F ′ ⊂ G. By repeating the argument in the proof of Proposition 1, we see
that there exists an h ∈ N (uCϕ) such that ‖f − h‖ = distA(f,N (uCϕ)). Hence
N (uCϕ) is proximinal. By Corollary, KuCϕ is the HUS constant for uCϕ. ¤

Let us consider the case that A = B = A(D): the disc algebra. Let D be the
open unit disc in the complex plane and let D and T be its closure and boundary,
respectively. The disc algebra A(D) is the uniform algebra of all continuous complex
functions on D which are analytic on D. Let u, ϕ ∈ A(D) and suppose ϕ(D) ⊂ D.
Then a weighted composition operator uCϕ on A(D) is defined by

(uCϕf)(z) = u(z) f(ϕ(z)) (z ∈ D)

for all f ∈ A(D). In order to exclude the trivial case, we assume that u is nonzero
and that ϕ is nonconstant on D. Under this assumption, uCϕ is said to be nontrivial.

Theorem B ([11, Corollary 2]). Let uCϕ be a nontrivial weighted composition
operator on A(D). Then uCϕ has the Hyers-Ulam stability if and only if there
exists a positive constant r such that

(8) ϕ({z ∈ T : |u(x)| ≥ r}) ⊃ T.

If uCϕ has the Hyers-Ulam stability, then KuCϕ is the reciprocal of the supremum
of all r satisfying (8).

We here show the following:

Proposition 3. Let uCϕ be as in Theorem B. If uCϕ has the Hyers-Ulam stability,
then KuCϕ is the HUS constant for uCϕ.

Proof. For a nontrivial weighted composition operator uCϕ on A(D), we have
N (uCϕ) = {0}, and so N (uCϕ) is proximinal. Hence the result follows from Corol-
lary. ¤

4. Application to differential operator

Let C(R) be the linear space of all continuous functions on the real line R,
and C1(R) the subspace of C(R) consisting of differential functions on R whose
derivatives are continuous on R. For any f ∈ C(R), we put ‖f‖∞ = sup{ |f(x)| :
x ∈ R }, admitting the value ∞. Clearly, ‖ ‖∞ is a gauge on C(R) and C1(R).

For any u ∈ C(R), we define a linear differential operator Tu from C1(R) into
C(R) by

(9) (Tuf)(t) = f ′(t) + u(t)f(t) (t ∈ R)

for all f ∈ C1(R). In [7] and [12], we completely describe the Hyers-Ulam stability
of Tu. The next fact is one of the results.

Proposition 4 ([7], [12]). Let Tu be the linear differential operator defined by (9).
If Tu has the Hyers-Ulam stability, then KTu is the HUS constant for Tu.

We here deduce Proposition 4 from Theorem. To do this, we recall the following
fact (cf. [7], [12]): If we set ũ(t) = 1

/
exp

∫ t
0 u(s) ds for t ∈ R, then

(10) N (Tu) = { c ũ : c is any scalar }.
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Proof. By Theorem, it is enough to show that if f ∈ C1(R) and distC1(R)(f,N (Tu))=
KTu , then there exists an h ∈ N (Tu) such that ‖f −h‖∞ = distC1(R)(f,N (Tu)) (we
need not assume that ‖Tuf‖∞ ≤ 1). Let f be as above. Since KTu is finite by
hypothesis, the definition of distC1(R) gives a sequence {hn} in N (Tu) such that
KTu ≤ ‖f − hn‖∞ < KTu + 1/n. By (10), each hn is written as hn = cnũ for some
scalar cn. Noting ũ(0) = 1, we have

|cn| = |hn(0)| ≤ |f(0)|+ |f(0)− hn(0)|
≤ |f(0)|+ ‖f − hn‖∞ < |f(0)|+ KTu + 1,

for n = 1, 2, . . .. Hence {cn} is a bounded sequence of scalars, and so it has a
subsequence {cn′} converging to some scalar c. Put h = c ũ. By (10), h is in N (Tu).
Let m be an arbitrary positive integer. For each t ∈ R and n′ ≥ m,

|f(t)− cn′ ũ(t)| ≤ ‖f − hn′‖∞ < KTu +
1
n′
≤ KTu +

1
m

.

Letting n′ → ∞, we obtain |f(t) − cũ(t)| ≤ KTu + 1/m for all t ∈ R. Hence
‖f − h‖∞ ≤ KTu + 1/m. Since m was arbitrary, we get ‖f − h‖∞ ≤ KTu , and so
‖f−h‖∞ = distC1(R)(f,N (Tu)). Thus h is the desired function, and the proposition
was proved. ¤
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