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A NOTE ON THE VON NEUMANN ALTERNATING
PROJECTIONS ALGORITHM

EVA KOPECKÁ AND SIMEON REICH

Abstract. We present an elementary geometric proof of von Neumann’s clas-
sical theorem on alternating orthogonal projections as well as several results
regarding this algorithm and its additive counterpart. The nonlinear case is also
discussed.

1. Introduction

Let S1 and S2 be two closed subspaces of a real Hilbert space (H, 〈·, ·〉), and let
P1 : H → S1 and P2 : H → S2 be the corresponding orthogonal projections of H
onto S1 and S2, respectively. Denote by N = {0, 1, 2, . . . } the set of nonnegative
integers. Let x0 be an arbitrary point in H, and define the sequence of alternating
projections by

(1) x2n+1 = P1x2n and x2n+2 = P2x2n+1,

where n ∈ N.

Theorem 1.1. The sequence {xn : n = 0, 1, 2, . . . } defined by (1) converges in norm
to Px0, where P : H → S is the orthogonal projection of H onto the intersection
S = S1 ∩ S2.

This classical result is due to von Neumann; see [Ne], p. 475. It was rediscovered
by several other authors; see, for example, [Ar], [Na] and [Wi]. More information
concerning this theorem and its many applications can be found in [De] and the
references mentioned there. Our main aim in this note is to present an elementary
proof of von Neumann’s theorem. Our proof is geometric in nature and has some
points in common with the proofs presented in [DR], [Sa], [De] and [BMR]. In
addition, we present several results concerning von Neumann’s algorithm (Section
2) and its additive counterpart (Section 3). The nonlinear case is discussed in
Section 4.

2. Products

We begin with a simple lemma on (random) infinite products of projections which
may be of independent interest.
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Let {Sj : j = 1, 2, . . . , m} be m closed subspaces of H, and let Pj : H → Sj

be the corresponding orthogonal projections of H onto Sj , j = 1, 2, . . . , m. Let
r : {1, 2, . . . } → {1, 2, . . . , m} be a surjective mapping which assumes each one of
its values infinitely often. Let x0 be an arbitrary point in H, and define the sequence
{xn : n ∈ N} by

(2) xn+1 = Pr(n+1)xn, n ∈ N.

Furthermore, let S denote the intersection
⋂{Sj : j = 1, 2, . . . , m} and let P : H →

S be the orthogonal projection of H onto S.

Lemma 2.1. Let the sequence {xn : n = 0, 1, 2, . . . } be defined by (2). Then
(a) 〈xn, s〉 = 〈x0, s〉 for all s ∈ S and n ∈ N.
(b) Pxn = Px0 for all n ∈ N.
(c) If {xn : n = 0, 1, 2, . . . } converges weakly to x∞, then x∞ = Px0.

Proof. (a) If 〈xn, s〉 = 〈x0, s〉 for some n ∈ N and s ∈ S, then 〈xn+1, s〉 =
〈Pr(n+1)xn, s〉 = 〈xn, Pr(n+1)s〉 = 〈xn, s〉 = 〈x0, s〉. Therefore this part follows
by induction.
(b) Using part (a), we have, for any s ∈ S and n ∈ N, 〈xn − Px0, s〉 = 〈xn, s〉 −
〈Px0, s〉 = 〈x0, s〉 − 〈x0, Ps〉 = 〈x0, s〉 − 〈x0, s〉 = 0.
(c) Part (b) shows that Px∞ = Px0. Since x∞ ∈ S, Px∞ = x∞ = Px0, as claimed.
Alternatively, we get from part (a) that 〈x0−x∞, s〉 = 0 for all s ∈ S. Since x∞ ∈ S,
it must coincide with Px0. ¤
Remark 2.2. As a matter of fact, it is known [AA] that the sequence {xn : n ∈ N}
defined by (2) does converge weakly.

Returning to the sequence {xn : n = 0, 1, 2, . . . } defined by (1), we first note that

(3) |xn|2 = |xn − xn+1|2 + |xn+1|2, n ∈ N,

by the Pythagorean Theorem. Here |x| =
√
〈x, x〉 denotes the norm of x ∈ H

induced by the inner product.
Now we formulate and prove our key lemma. Given two integers l ≥ k ≥ 1, we

denote by m = m(k, l) = [(k + l + 1)/2] the integer part of (k + l + 1)/2; that is,
m = (k + l)/2 if k + l is even and m = (k + l + 1)/2 if k + l is odd.

Lemma 2.3. Let the sequence {xn : n ∈ N} be defined by (1), let l ≥ k ≥ 1 be
integers, and let m = m(k, l) = [(k + l + 1)/2]. Then

(4) |xk − xl|2 = |xk|2 − 2|xm|2 + |xl|2.
Proof. We use induction on n = l− k. It is clear that (4) is true for n = 0 (that is,
k = l) and n = 1 (by (3)). Now suppose (4) holds for some n ∈ N and assume that
l − k = n + 1.

If n is even, then xk+1 and xl belong to the same subspace and therefore the
inner product 〈xk−xk+1, xk+1−xl〉 = 0. Also, m(k+1, l) = m(k, l) = (k+ l+1)/2.
Hence

|xk − xl|2 = |xk − xk+1 + xk+1 − xl|2
= |xk − xk+1|2 + |xk+1 − xl|2
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= |xk|2 − |xk+1|2 + |xk+1|2 − 2|xm(k+1,l)|2 + |xl|2
= |xk|2 − 2|xm(k,l)|2 + |xl|2,

where we have used (3) and the induction hypothesis.
If n is odd, then the points xk and xl belong to the same subspace, the inner

product 〈xl−1−xl, xk−xl〉 = 0, and m(k, l−1) = m(k, l) = (k + l)/2. Hence, again
by the induction hypothesis and (3),

|xk − xl−1|2 = |xk − xl + xl − xl−1|2
= |xk − xl|2 + |xl − xl−1|2,

and so

|xk − xl|2 = |xk − xl−1|2 − |xl − xl−1|2
= |xk|2 − 2|xm(k,l−1)|2 + |xl−1|2 − (|xl−1|2 − |xl|2)
= |xk|2 − 2|xm(k,l)|2 + |xl|2,

as required. ¤
Proof of Theorem 1.1. Since the numerical sequence {|xn| : n ∈ N} is decreasing
and k ≤ m(k, l) ≤ l, equality (4) immediately implies the inequality

(5) |xk − xl|2 ≤ |xk|2 − |xl|2, l ≥ k ≥ 1.

Thus the sequence {xn : n ∈ N} is Cauchy and converges strongly to Px0 by part
(c) of Lemma 2.1. ¤

The following rather curious proposition is also a consequence of Lemma 2.3.

Proposition 2.4. Let the sequence {xn : n ∈ N} be defined by (1). Then
∞∑

n=1

|xn − xn+2|2 = |x1|2 − |x2|2.

Proof. Using induction, we obtain from Lemma 2.3
N∑

n=1

|xn − xn+2|2 = |x1|2 − |x2|2 − |xN+1|2 + |xN+2|2,

for any N ≥ 2, whence the result follows when N →∞. ¤
In a similar vein we note another such result.

Proposition 2.5. Let the sequence {xn : n ∈ N} be defined by (1). Then
∞∑

n=1

|xn − xn+4|2 = |x1|2 + |x2|2 − |x3|2 − |x4|2.

Proof. Again using induction and Lemma 2.3, we get this time
N∑

n=1

|xn − xn+4|2 = |x1|2 + |x2|2 − |x3|2 − |x4|2

− |xN+1|2 − |xN+2|2 + |xN+3|2 + |xN+4|2
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for any N ≥ 4. ¤
More generally, the following identity can also be established by induction.

Theorem 2.6. Let the sequence {xn : n ∈ N} be defined by (1). Then for each
k ≥ 1,

∞∑

n=1

|xn − xn+2k|2 =
k∑

i=1

|xi|2 −
k∑

i=1

|xk+i|2.

3. Sums

Instead of composing P1 and P2 we can also form their (midpoint) average and,
starting from an arbitrary point y0 ∈ H, consider the sequence {yn : n ∈ N} defined
by

(6) yn+1 = (P1yn + P2yn)/2.

More generally, consider again {Sj : j = 1, 2, . . . , m}, m closed subspaces of H,
with corresponding orthogonal projections Pj : H → Sj , j = 1, 2, . . . , m, and let

{aj : j = 1, 2, . . . , m} be m positive numbers such that
m∑

j=1

aj = 1. Given a point

y0 ∈ H, define the sequence {yn : n = 0, 1, 2, . . . } by

(7) yn+1 =
m∑

j=1

ajPjyn, n ∈ N.

As we shall see shortly, the following theorem (cf. [La] and [Re2]) can be deduced
from Theorem 1.1.

Theorem 3.1. The sequence {yn : n = 0, 1, 2, . . . } defined by (7) converges in norm
to Py0, where P : H → S is the orthogonal projection of H onto the intersection
S =

⋂{Sj : j = 1, 2, . . . , m}.
Proof. We equip the m-th power Hm of H (that is, Hm = H × H × · · · × H, m
times) with the inner product

〈(u1, u2, . . . , um), (v1, v2, . . . , vm)〉 =
m∑

j=1

aj〈uj , vj〉,

and consider the two closed subspaces S1 × S2 × · · · × Sm and D = {(u, u, . . . , u) ∈
Hm : u ∈ H} of Hm with the corresponding orthogonal projections (cf. [Pi])

Q1 : Hm → S1 × S2 × · · · × Sm

and
Q2 : Hm → D.

Since
Q1(u1, u2, . . . , um) = (P1u1, P2u2, . . . , Pmum)

and
Q2(u1, u2, . . . , um) = (v, v, . . . , v),
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where v =
m∑

j=1

ajuj , we have

zn := (yn, yn, . . . , yn) = (Q2Q1)n(y0, y0, . . . , y0) = (Q2Q1)nz0

for all n ∈ N.
Therefore Theorem 1.1 implies that the sequence {zn : n ∈ N} converges in norm
to Qz0, where Q is the orthogonal projection of Hm onto the intersection

(S1 × S2 × · · · × Sm) ∩D = S × S × · · · × S.

In other words, the sequence {yn : n ∈ N} converges in norm to Py0, as asserted. ¤
Applying Proposition 2.4 and Proposition 2.5, we now obtain the following result

for the sequence {yn : n ∈ N} defined by (7).

Proposition 3.2. Let the sequence {yn : n ∈ N} be defined by (7). Then

(a)
∞∑

n=0

{|yn − yn+1|2 +
m∑

j=1

aj |Pjyn − Pjyn+1|2} = |y0|2 −
m∑

j=1

aj |Pjy0|2.

(b)
∞∑

n=0

{|yn − yn+2|2 +
m∑

j=1

aj |Pjyn − Pjyn+2|2}

= |y0|2 +
m∑

j=1

aj |Pjy0|2 − |y1|2 −
m∑

j=1

aj |Pjy1|2.

Applying Theorem 2.6 with k = 2q, q ≥ 1, we also arrive at the following identity
for the iteration (7).

Proposition 3.3. Let the sequence {yn : n ∈ N} be defined by (7). Then for each
k = 2q, q ≥ 1,

∞∑

n=0

{|yn − yn+k|2 +
m∑

j=1

aj |Pjyn − Pjyn+k|2}

=
q−1∑

i=0

{|yi|2 +
m∑

j=1

aj |Pjyi|2 − |yq+i|2 −
m∑

j=1

aj |Pjyq+i|2}.

4. Nonlinear Projections

Returning to the composition of orthogonal projections, we first recall that a
linear contraction T : H → H is said to satisfy condition (S) if {xn − Txn} → 0
whenever the sequence {xn} is bounded and {|xn|− |Txn|} → 0. Since each orthog-
onal projection obviously satisfies condition (S) (|x−Px|2 = |x|2−|Px|2), and since
the class of linear operators satisfying condition (S) is closed under composition,
it follows that the composition T = PmPm−1...P1 of m orthogonal projections also
satisfies condition (S) and hence is asymptotically regular: lim

n→∞(Tnx−Tn+1x) = 0
for each x ∈ H.

The Yosida mean ergodic theorem can now be used to show that the sequence
defined by (2) converges strongly whenever the mapping r : {1, 2, ...} → {1, 2, ..., m}
is periodic ([Ha], [AA]). As a matter of fact, this result is susceptible to a nonlinear
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generalization even in certain Banach spaces; see Theorem 4.5 in [MR] and the
references cited there. We mention, in particular, the following nonlinear analog
of Theorem 1.1, where this time C1 and C2 are two closed convex subsets of the
Hilbert space H with corresponding nearest point projections P1 : H → C1 and
P2 : H → C2. We denote by d(C1, C2) the distance between C1 and C2. In this
connection, see also [BB1] and [BB2].

Theorem 4.1. Let the sequence {xn : n ∈ N} be defined by (1).
(a) If d(C1, C2) is attained, then {x2n} converges weakly to a fixed point z of

P2P1 and {x2n+1} converges weakly to P1z.
(b) If d(C1, C2) is not attained, then {|xn|} → ∞.
(c) If C1 and C2 are symmetric with respect to the origin, then {xn} converges

strongly to a point in the intersection C = C1 ∩ C2.

Proof. (a) In this case we already know by Corollary 4.6 of [MR] that {x2n : n ∈ N}
converges weakly to a fixed point z of P2P1. Since

|x2n+2 − z| = |P2x2n+1 − P2P1z|
≤ |x2n+1 − P1z| = |P1x2n − P1z|
≤ |x2n − z|,

we see that lim
n→∞(|x2n+1−P1z| − |P2x2n+1−P2P1z|) = 0 from which it follows (be-

cause P2 is strongly nonexpansive in the sense of [BR]) that the strong lim
n→∞(x2n+1−

x2n+2) = P1z − z. Thus {x2n+1} converges weakly to P1z, as claimed.
(b) Again we already know that {|x2n|} → ∞ for any x0 ∈ H. But P2P1 has a fixed
point if and only if P1P2 does. Hence {|x2n+1|} → ∞ too.
(c) This time we know that {x2n} converges in norm to a fixed point z of P2P1 and
that C = C1∩C2 is not empty. Therefore z ∈ C and x2n+1 = P1x2n → P1z = z. ¤

Applying a Banach space version of Theorem 4.1 to the m-th power Em of a
Banach space E, we can obtain an alternative proof of Theorem 4.8 in [MR]. Here,
however, we just illustrate this method of proof by presenting a variant of Corollary
4.10 there. This variant is concerned with the iteration

(8) yn+1 = a1P1yn + a2P2yn,

where y0 ∈ H, a1 and a2 are positive, and a1 + a2 = 1.

Theorem 4.2. Let the sequence {yn : n ∈ N} be defined by (8).
(a) If d(C1, C2) is attained, then {yn} converges weakly to a fixed point of a1P1+

a2P2.
(b) If d(C1, C2) is not attained, then {|yn|} → ∞.
(c) If C1 and C2 are symmetric, then {yn} converges strongly to a point in the

intersection C = C1 ∩ C2.

We precede the proof of Theorem 4.2 with a few preparatory considerations.
Endowing the power H2 = H × H with the inner product 〈(u1, u2), (v1, v2)〉 =
a1〈u1, v1〉+a2〈u2, v2〉, we consider this time the closed convex subset C1×C2 and the
closed subspace D = {(u, u) ∈ H2 : u ∈ H} of H2 with the corresponding nearest
point projection Q1 : H2 → C1 × C2 and orthogonal projection Q2 : H2 → D. In
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the setting of Theorem 4.1, the distance d(C1, C2) is attained if and only if the fixed
point sets of P2P1 and P1P2 are not empty. We now observe that this is also true
for the mappings Q1Q2 and Q2Q1.

Lemma 4.3. The mapping Q1Q2 has a fixed point if and only if the distance
d(C1, C2) is attained.

Proof. If Q1Q2(z1, z2) = (z1, z2), then P1(a1z1+a2z2) = z1 and P2(a1z1+a2z2) = z2.
Since both P1 and P2 are sunny retractions, it follows that P1z2 = z1 and P2z1 = z2.
Thus d(C1, C2) = |z1 − z2|. Conversely, if d(C1, C2) = |z1 − z2| for some z1 ∈ C1

and z2 ∈ C2, then necessarily P1z2 = z1 and z2 = P2z1. Hence P1(a1z1 + a2z2) = z1

and P2(a1z1 + a2z2) = z2. In other words, Q1Q2 has a fixed point. ¤
Proof of Theorem 4.2. This theorem is now seen to follow from Theorem 4.1 and
Lemma 4.3 because (yn, yn) = (Q2Q1)n(y0, y0) for all n ∈ N and the mapping Q2Q1

has a fixed point if and only if Q1Q2 does. ¤
Remark 4.4. Denote the limits obtained in parts (a) and (c) of Theorem 4.2 by z.
Then we also see that in part (a), the sequence {P1yn} converges weakly to P1z and
the sequence {P2yn} converges weakly to P2z. In part (c), both {P1yn} and {P2yn}
converge strongly to z. In part (b), max{|P1yn|, |P2yn|} → ∞.

Applying the product space method to the iteration defined in Theorem 5.1 of
[BMR], we observe that the weak convergence asserted in part (a) of Theorem 4.1
cannot, in general, be replaced with convergence in norm, even when C = C1∩C2 6=
∅ and one of these closed convex subsets is, in fact, a closed subspace (cf. [Hu]).
Thus part (c) of Theorem 4.1 seems to be a good nonlinear analog of von Neumann’s
Theorem 1.1. We remark in passing that such results can be used to derive certain
product formulas for nonlinear semigroups in the spirit of [Re1] and [Re3].
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