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FIXED POINTS OF MULTIMAPS IN THE BETTER
ADMISSIBLE CLASS

SEHIE PARK

Abstract. Since the author established fixed point theorems for the admissible
class Aκ

c of multimaps, there have appeared another classes: the ‘better’ admis-
sible class B, the KKM-class, the S-KKM class, and others. In this paper, we
unify fixed point theorems for such classes of compact closed multimaps on con-
vex subsets of topological vector spaces, and obtain a fixed point theorem for a
new class Bp.

1. Introduction

Recently, there have appeared a number of fixed point theorems for new classes
of multimaps defined on convex subsets of topological vector spaces. Apparently
motivated by the author’s previous works, some other authors obtained a number
of new classes of multimaps and seemingly new fixed point theorems. In this paper,
we unify fixed point theorems for such classes of compact closed multimaps defined
on convex subsets of topological vector spaces, and obtain a fixed point theorem for
a new class Bp.

Section 2 deals with the almost fixed point property of a multimap T : X ( X,
where X is a nonempty convex subset of a topological vector space, and the so-called
s-KKM class of multimaps having the almost fixed point property. We obtain a
generalization (Theorem 2.6) of results in [4,5,8].

In Section 3, we are mainly concerned with fixed point theorems for upper semi-
continuous maps in the admissible class Aκ

c and the ‘better’ admissible class B due
to the author for topological vector spaces more general than locally convex ones.
Recently, some authors dealt with fixed point theorems for seemingly new and broad
classes of multimaps. We clarify that some of them are consequences of the author’s
earlier result.

Finally, in Section 4, we obtain a general fixed point theorem for a new ‘better’
admissible class Bp of multimaps, which encompasses almost all of other known
results in this paper.

2. The almost fixed point property

A t.v.s. means a Hausdorff topological vector space and V denotes a fundamental
system of open neighborhoods of the origin 0 of a t.v.s. A multimap (simply, a map)
T : X ( Y is a function from X into 2Y \{∅}. All terminology is standard. The
closure operation is denoted by cl or .
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For topological spaces X and Y , a multimap T : X ( Y is said to be upper
semicontinuous (u.s.c.) if for any open subset A ⊂ Y , the set T+(A) :={x ∈
X | T (x) ⊂ A} is open in X. T is said to be closed if it has the closed graph
Gr(T ) ⊂ X × Y , and compact if its range T (X) is contained in a compact subset
of Y . Recall that a compact closed multimap is u.s.c. and compact-valued; and an
u.s.c. multimap with closed values is closed.

Let X be a convex subset of a t.v.s. E. A multimap T : X ( X is said to
have the (convexly) almost fixed point property if, for every (convex) neighborhood
U of the origin 0 of E, there exists a point xU ∈ X such that xU ∈ T (xU ) + U or
T (xU ) ∩ (xU + U) 6= ∅.

The following is well-known:

Theorem 2.1. Let X be a subset of a t.v.s. E. Then any compact closed multimap
T : X ( X having the almost fixed property has a fixed point.

We have the following fixed point theorem:

Theorem 2.2. Let X be a compact subset of a t.v.s. E and T : X ( E a multimap
such that

(i) T has the almost fixed point property;
(ii) T has closed values; and
(iii) T satisfies the following equality:

⋂

U∈V
{x ∈ X |x ∈ T (x) + U} =

⋂

U∈V
cl{x ∈ X |x ∈ T (x) + U}.

Then T has a fixed point.

Proof. For any U ∈ V, let

FU := {x ∈ X |x ∈ T (x) + U}.
By (i), there is an xU ∈ X such that xU ∈ T (xU )+U . Then FU 6= ∅ for each U ∈ V.
It is clear that {FU |U ∈ V} has the finite intersection property. Since each clFU

is a closed subset of the compact space X, we have
⋂

U∈V cl FU 6= ∅. Therefore, by
(iii), there exists an x̂ ∈ X such that

x̂ ∈
⋂

U∈V
FU =

⋂

U∈V
cl FU 6= ∅,

and hence, we have

x̂ ∈
⋂

U∈V
(T (x̂) + U) = cl T (x̂) = T (x̂)

by (ii). This completes our proof. ¤

Recall that multimaps satisfying a condition similar to (iii) were studied in
[8,9,19].

Let 〈X〉 be the set of all nonempty finite subsets of a set X.
Let X be a convex subset of a vector space and Y a topological space. Motivated

by an earlier work [13] of the author, in 1996, Chang and Yen [5] defined
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T ∈KKM(X, Y ) ⇐⇒ T : X ( Y is a multimap such that the family
{S(x) |x ∈ X} has the finite intersection property whenever S : X ( Y
has closed values and T (co N) ⊂ S(N) for each N ∈ 〈X〉.

Moreover, Chang and Yen [6] introduced the class of S-KKM maps and gave a
characterization of such maps and an s-KKM theorem. This was extended to an
S-KKM theorem by Lin and Chang [10] with additional results. This is followed by
Chang, Huang, Jeng, and Kuo [4], Agarwal and O’Regan [1,2], and Shahzad [21].

Let X be a nonempty set, Y a nonempty convex subset of a vector space and Z a
topological space. If S : X ( Y, T : Y ( Z and F : X ( Z are three multimaps
satisfying

T (co S(A)) ⊂ F (A)
for any A ∈ 〈X〉, then F is called a generalized S-KKM map with respect to T . If
the multimap T : Y ( Z satisfies that for any generalized S-KKM map F with
respect to T the family {F (x) |x ∈ X} has the finite intersection property, then T
is said to have the S-KKM property. The class S-KKM(X, Y, Z) is defined to be
the set {T : Y ( Z |T has the S-KKM property}; see [6,10].

As shown in [4], when X = Y and S is the identity map 1X , then S-KKM(X, Y, Z)
reduces to the class KKM(X, Z) introduced by Chang and Yen in [5], and moreover,
KKM(Y, Z) is contained in S-KKM(X, Y, Z) for any S : X ( Y and generally this
inclusion is proper.

If S is a single-valued function s : X → Y , then we can consider the class s-
KKM(X, Y, Z).

Lemma 2.3. Let I be a nonempty set, X a convex subset of a t.v.s. E (not neces-
sarily Hausdorff ), s : I → X, T ∈ s-KKM (I, X,X) a multimap, and U a convex
open subset of E. If

(1) T (X) ⊂
⋃

z∈A

(s(z) + U) for some A ∈ 〈I〉,

then there exists an xU ∈ X such that T (xU ) ∩ (xU + U) 6= ∅.
Proof. Let F : I ( X be a map defined by

F (z) := T (X)\(s(z) + U) for z ∈ I.

Since T (X) ⊂ ⋃
z∈A(s(z) + U),

⋂

z∈A

F (z) = T (X)\
⋃

z∈A

(s(z) + U) ⊂ T (X)\T (X) = ∅,

and hence {F (z)}z∈I does not have the finite intersection property. Since F has
closed values and T ∈ s-KKM(I, X,X), there exists a B ∈ 〈I〉 such that

T (co s(B)) 6⊂ F (B).

Hence there exists y0 ∈ T (co s(B)) ⊂ T (X) such that

y0 /∈ F (z) = T (X)\(s(z) + U) for all z ∈ B.

Therefore, y0 ∈ s(z) + U or s(z) ∈ y0 − U for all z ∈ B. Since s(B) ⊂ y0 − U and
y0 − U is convex, we have co s(B) ⊂ y0 − U . On the other hand, y0 ∈ T (co s(B))
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implies y0 ∈ T (xU ) for some xU ∈ co s(B) ⊂ y0 − U . Hence, y0 ∈ xU + U and
T (xU ) ∩ (xU + U) 6= ∅. This completes our proof. ¤

Corollary 2.4. Let I, X,E, s, and T be the same as in Lemma 2.3. If T (X) is
totally bounded and T (X) ∩ s(I) is dense in T (X), then T has the convexly almost
fixed point property.

Proof. For any convex open neighborhood U of 0 in E, if T (X) ∩ s(I) is dense in
T (X) and T (X) is totally bounded, then condition (1) holds. ¤

Note that if X = I and T (X) ⊂ s(I), then Corollary 2.4 reduces to Chang et al.
[4, Lemma 3.1].

From Corollary 2.4 and Theorem 2.2, we immediately have the following:

Theorem 2.5. Let X be a compact convex subset of a t.v.s. E, I a nonempty set,
s : I → X, and T ∈ s-KKM(I, X,X) a closed-valued map such that T (X) ∩ s(I) is
dense in T (X). If T satisfies condition

⋂

U∈V
{x ∈ X |x ∈ T (x) + U} =

⋂

U∈V
cl{x ∈ X |x ∈ T (x) + co U},

then T has a fixed point.

Note that if X = I and T (X) ⊂ s(I), then Theorem 2.5 reduces to Huang and
Jeng [8, Theorem 2.2], and if X = I and s = 1X , then Theorem 2.5 originates
from Park [19, Theorem 1]. If T : X ( X is u.s.c. with convex values, then T ∈
KKM(X, X) ⊂ s-KKM(X, X, X); see Huang and Jeng [8]. Therefore, Theorem 2.5
also generalizes Huang and Jeng [8, Corollary 2.6].

From Theorem 2.1 and Corollary 2.4, we immediately have the following:

Theorem 2.6. Let X be a convex subset of a locally convex t.v.s., I a nonempty set,
s : I → X, and T ∈ s-KKM(I, X,X) a compact closed map such that T (X) ∩ s(I)
is dense in T (X). Then T has a fixed point.

If X = I and T (X) ⊂ s(I), then Theorem 2.6 reduces to Chang et al. [4, Theorem
3.2] and further if s = 1X , then to Chang and Yen [5, Theorem 2], and if X itself is
compact, then to Huang and Jeng [8, Corollary 2.4].

3. Fixed points for new classes of maps

Let us recall some history of analytical fixed point theory; for details, see [18].
Since 1992, we introduced and supplied a lot of examples of the class Aκ

c in
[12,13,20]. Up to now, many authors used the class Aκ

c , but no one could find any
new example of maps in that class, and some authors mistook A for U .

In 1996, Chang and Yen [5] introduced the KKM class (see Section 2) and ob-
tained the following:

Theorem 3.1 ([5]). Let X be a convex subset of a locally convex t.v.s. E. Then
every compact closed map T ∈ KKM(X, X) has a fixed point.

It was known that Aκ
c (X, X) ⊂ KKM(X, X) in [13], but, any significant example

of compact closed maps T ∈ KKM(X, X) such that T /∈ Aκ
c (X, X) is not yet found.
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Note that Theorem 3.1 is a consequence of Theorem 2.1. In fact, the map T ∈
KKM(X, X) in Theorem 3.1 has the convexly almost fixed point property by Corol-
lary 2.4, but not conversely.

A polytope P in a subset X of a t.v.s. E is a nonempty compact convex subset
of X contained in a finite dimensional subspace of E.

In 1996, the author introduced the ‘better’ admissible class B of multimaps as
follows:

F ∈ B(X, Y ) ⇐⇒ F : X ( Y is a map such that, for each polytope P
in X and for any continuous function f : F (P ) → P , the composition
f(F |P ) : P ( P has a fixed point,

where Y is a topological space. We noticed that Aκ
c ⊂ B and that, in the class

of compact closed maps, two subclasses B and KKM coincide. Recall that some
variants of Theorem 3.1 were given in [15]. One of the simplest results is the
following restatement of Theorem 3.1:

Theorem 3.2 ([15]). Let X be a convex subset of a locally convex t.v.s. E. Then
every compact closed map F ∈ B(X, X) has a fixed point.

Subclasses of B are classes of continuous functions C, the Kakutani maps K
(u.s.c. with nonempty compact convex values and codomains are convex sets), the
Aronszajn maps M (u.s.c. with Rδ values), the acyclic map V (u.s.c. with compact
acyclic values), Kc (finite compositions of Kakutani maps), the Powers maps Vc

(finite compositions of acyclic maps), the O’Neill maps N (continuous with value of
one or m acyclic components, where m is fixed), the Fan-Browder maps (codomains
are convex sets, nonempty convex values and open fibers), the approachable maps
A, admissible maps of Górniewicz, σ-selectionable maps of Haddad and Lasry, per-
missible maps of Dzedzej, the class K+

c of Lassonde, the class V+
c of Park et al.,

approximable maps of Ben-El-Mechaiekh and Idzik, and others. Those subclasses
are examples of the admissible class Aκ

c due to the author. Some examples of maps
in B not belonging to Aκ

c were known. For details, see [12-18].
Recall that a nonempty subset X of a t.v.s. E is said to be admissible (in the

sense of Klee) provided that, for every nonempty compact subset K of X and every
neighborhood V of the origin 0 of E, there exists a continuous function h : K → X
such that x− h(x) ∈ V for all x ∈ K and h(K) is contained in a finite dimensional
subspace L of E. Examples of admissible subsets can be seen in [17,18].

In 1997, we obtained the following:

Theorem 3.3 ([17,18]). Let E be a t.v.s. and X an admissible (in the sense of
Klee) convex subset of E. Then any compact closed map F ∈ B(X, X) has a fixed
point.

In 1998, this was restated as follows:

Theorem 3.4 ([19]). Let X be an admissible convex subset of a t.v.s. Then any
compact closed map T ∈ K(X, X) has a fixed point, where K denotes KKM.

Moreover, in [18], we listed more than sixty papers in chronological order, from
which we could deduce particular forms of Theorem 3.3. Further examples of maps
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in the class B were given in [16]. In 1999, Lin and Yu [11] published Theorem 3.4
and generalized versions of the present author’s other results.

Since then generalizations of KKM class to S-KKM or s-KKM classes follow.
One of the main targets of such works was to try to generalize Theorems 3.1 and
3.4. However, the main results in [4,5,8] are generalized and unified by Theorem
2.6 in this paper.

For the s-KKM class, we need the following:

Lemma 3.5. Let X be a convex subset of a t.v.s., I a nonempty set, s : I → X
a surjection, and T ∈ s-KKM(I, X,X). If T is closed and compact, then T ∈
B(X, X).

Proof. Let P be a polytope in X, T ′ := T |P , and f : T (P ) → P a continuous
function. Let I ′ := s−1(P ) ⊂ I and s′ := s|I′ : I ′ → P .

Claim 1. T ∈ s′-KKM(I ′, X, X).
Let F ′ : I ′ ( X be closed-valued such that

(2) T (co s′(A)) ⊂ F ′(A) for all A ∈ 〈I ′〉.
Define F : I ( X by F (z) := F ′(z) for z ∈ I ′ and F (z) := X for z ∈ I\I ′. Then F
is closed-valued with respect to the relative topology of X. Now, from (2), we have

T (co s(A)) ⊂ F (A) for all A ∈ 〈I〉.
Since T ∈ s-KKM(I, X,X), {F (z)}z∈I has the finite intersection property, and
hence, so does {F ′(z)}z∈I′ .

Claim 2. f ◦ T ′ ∈ s′-KKM(I ′, P, P ).
Let F ′ : I ′ ( P be closed-valued such that

(f ◦ T ′)(co s′(A)) ⊂ F ′(A) for all A ∈ 〈I ′〉.
Then we have

T (co s′(A)) = T ′(co s′(A)) ⊂ (f−1 ◦ F ′)(A) for all A ∈ 〈I ′〉.
Since f−1 ◦ F ′ is closed-valued and T ∈ s′-KKM(I ′, X, X), {(f−1 ◦ F ′)(z)}z∈I′ has
the finite intersection property, and hence, so does {F ′(z)}z∈I′ .

Claim 3. f ◦ T ′ : P ( P has a fixed point.
Since T is closed and compact, it is u.s.c. with closed values, and hence, so is T ′.

Moreover, f ◦ T ′ is u.s.c. and closed-valued, and hence, it is closed and compact.
Since f ◦T ′ ∈ s′-KKM(I ′, P, P ) by Claim 2 and (f ◦T ′)(P ) ⊂ P = s(I ′), by Theorem
2.6, f ◦ T ′ has a fixed point.

Therefore f ◦ (T |P ) has a fixed point and hence T ∈ B(X, X). This completes
our proof. ¤

Remark. If s : I → X is not a surjection, then Lemma 3.5 may not hold. For
example, let X = [0, 1] and s : X → X be defined by s(x) := x/2 for x ∈ X. Let
T : X ( X be defined by T (x) := {1} if x ∈ [0, 1/2), T (x) := {0, 1} if x = 1/2, and
T (x) := {0} if x ∈ (1/2, 1]. Then T ∈ s-KKM(X, X, X) by noting 1 ∈ T (s(x)) for
any x ∈ X; see [4, p.219]. Note that T is closed and compact, but T /∈ B(X, X).

From Lemma 3.5 and Theorem 3.3, we have the following:
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Theorem 3.6. Let E be a t.v.s. and X an admissible (in the sense of Klee) convex
subset of E, I a nonempty set, s : I → X a surjection, and T ∈ s-KKM(I, X,X).
If T is closed and compact, then T has a fixed point.

Note that if I is a nonempty subset of X, then Theorem 3.6 reduces to Chang,
Huang, and Jeng [3, Theorem 3.1].

It should be noticed that the main fixed point theorems in [3,5,11] and others are
disguised forms of our Theorem 3.3. Most of other results in those papers are also
formally generalized (but not practical) or disguised forms of earlier works of the
author on the classes Aκ

c or B of multimaps.

4. A new general fixed point theorem

In this section, we obtain a generalized version of our previous result [18] by
switching the admissibility of domain of the multimap to the Klee approximability
(defined below) of codomain.

Let X be a subset of a t.v.s. E. A compact subset K of X is said to be Klee
approximable in X if for any V ∈ V, there exists a continuous function h : K → X
such that x− h(x) ∈ V for all x ∈ K and h(K) is contained in a polytope in X.

We give some examples of Klee approximable sets as follows:
(1) A subset X of E is admissible (in the sense of Klee) if and only if every

compact subset K of X is Klee approximable in X.
(2) Any polytope in a subset of a t.v.s.
(3) Any compact subset K of a convex subset X in a locally convex t.v.s.
(4) Any compact subset K whenever co K is an admissible subset of X.
(5) Any compact convex subset of a metrizable t.v.s. is admissible.

Remark. For a compact subset K of E, it is well-known that co K is σ-compact and
paracompact. Therefore, if E is metrizable, then the following is supplementary to
(4) and (5):

Proposition (Dobrowolski [7]). For a σ-compact convex set C in a metrizable t.v.s.
the following conditions are equivalent:

(a) C ∈ AR,
(b) C =

⋃∞
1 An with An = An ∈ AE(compact) for n = 1, 2, . . . ,

(c) C is admissible.

Here AR denotes an absolute retract and AE(compact) the absolute extension
property for compacta.

For a topological space Y , we define a new class of multimaps as follows:

F ∈ Bp(X, Y ) ⇐⇒ F : X ( Y is a multimap such that for any polytope P
of X, there is a map Γ ∈ B(P, Y ) such that Γ(x) ⊂ F (x) for each x ∈ P .

Note that any map F ∈ B(X, Y ) belongs to Bp(X, Y ). Recently it is known that,
for the subclass of B consisting of approximable multimaps, any u.s.c. map with
nonempty compact contractible values or nonempty compact values having trivial
shape belongs to Bp(X, Y ).

Now, [18, Theorem 1] can be generalized as follows:
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Theorem 4.1. Let X be a subset of a t.v.s. E and F ∈ Bp(X, X) a compact closed
multimap. If F (X) is a Klee approximable subset of X, then F has a fixed point.

Proof. Let V ∈ V. Since K := F (X) is compact and Klee approximable in X,
there exist a continuous function h : F (X) → X and a polytope P in X such that
x − h(x) ∈ V for all x ∈ F (X) and h(F (X)) ⊂ P . Note that h : F (X) → P and
F |P : P ( F (X). Since F ∈ Bp(X, X), there is a map Γ ∈ B(P, X) such that
Γ(x) ⊂ F (x) for each x ∈ P . Since Γ(P ) ⊂ F (P ) ⊂ F (X) and h : F (X) → P , the
composition hΓ : P ( P has a fixed point xV ∈ hΓ(xV ). Let xV = h(yV ) for some
yV ∈ Γ(xV ) ⊂ F (xV ) ⊂ F (X). We have yV − h(yV ) = yV − xV ∈ V . Since F (X) is
compact, we may assume that the net yV converges to some x̂ ∈ F (X). Then the
corresponding net xV in X also converges to x̂. Since the graph of F is closed and
(xV , yV ) ∈ Gr(F ), we have x̂ ∈ F (x̂). This completes our proof. ¤
Corollary 4.2. Let X be a subset of a t.v.s. E and F ∈ B(X, X) a compact closed
map. If F (X) is a Klee approximable subset of X, then F has a fixed point.

We note that Corollary 4.2 generalizes and unifies Theorems 2.6, 3.1–3.4, and
3.6.

Corollary 4.3. Let X be a convex subset of a t.v.s. E and F ∈ Bp(X, X) a closed
map. If F (X) is contained in a finite dimensional compact subset of X, then F has
a fixed point.

Proof. Note that F (X) is contained in a polytope in X and hence Klee approx-
imable. ¤

Recall that [18, Theorem 1] was incorrectly stated and it should be replaced by
our new Theorem 4.1.
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