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SUBDIFFERENTIAL STABILITY OF THE DISTANCE
FUNCTION AND ITS APPLICATIONS TO NONCONVEX

ECONOMIES AND EQUILIBRIUM

M. BOUNKHEL AND A. JOFRÉ

Abstract. This paper is devoted to the study of the class of uniform prox-
regular sets and their applications. We prove the stability of this class under
different operations. We also prove the stability of the subdifferential of the
distance function associated with uniform prox-regular sets. These results are
used to give an important stability result of the quasi-equilibrium prices in non-
convex economies. Another important application to the equilibrium theory for
nonconvex sets is given.

1. Introduction

In [17], Clarke et al. introduced and studied the class of uniform prox-regular sets
which they called the class of proximally smooth sets. This class has been succesfully
used in many applications (see for instance [5, 6, 7, 9, 10, 8, 11, 12, 13]. It has been
the subject and the main goal of many other papers (see for instance [13, 22]). Our
present paper continues the study of this class and their applications. In Section
2, we recall some definitions and results needed in all the paper. In Section 3,
we prove the stability of the class of lower C2 functions under some operations
(pointwise maximum, composition, and integral). These results are used to prove
some stability results of the class of uniform prox-regular sets. Section 4 is devoted
to the stability of the subdifferential of the distance function and of the normal
cone associated with uniform prox-regular sets. In Sections 5 and 6 we present two
different applications of our abstract results proved in Section 4.

2. Preliminaries

Throughout the paper, H will be a finite dimensional space. Let S be a closed
subset of H. We denote by dS(.) the usual distance function to the subset S, i.e.,
dS(x) := inf

u∈S
‖x−u‖. We need first to recall some notation and definitions that will

be used in all the paper.
Let f : H −→ IR ∪ {+∞} be a lower semicontinuous (l.s.c.) function and let x

be any point where f is finite. We recall that:

• The Clarke subdifferential of f at x is defined by (see [23])

∂Cf(x) = {ξ ∈ H :
〈
ξ, h

〉 ≤ f↑(x;h), for all h ∈ H},
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where f↑(x;h) is the generalized Rockafellar directional derivative given by

f↑(x;h) := lim sup
x′→f x

t↓0

inf
h′→h

t−1
[
f(x′ + th′)− f(x′)

]
,

where x′ −→f x means x′ −→ x and f(x′) −→ f(x).
• The proximal subdifferential ∂P f(x) is the set of all ξ ∈ H for which there

exist δ, σ > 0 such that for all x′ ∈ x + δIB
〈
ξ, x′ − x

〉 ≤ f(x′)− f(x) + σ‖x′ − x‖2.

Here IB denotes the closed unit ball centered at the origin of H.

Note that one always has ∂P f(x) ⊂ ∂Cf(x) and by convention we set ∂P f(x) =
∂Cf(x) = ∅ if f(x) is not finite. Note also that ∂Cf(x) is always closed convex and
that ∂P f(x) is always convex but may be non closed.

If f is locally Lipschitz around x, then the generalized Rockafellar directional
derivative f↑(x;h) coincides with the Clarke directional derivative f0(x;h) defined
by

f0(x;h) := lim sup
x′→x

t↓0

t−1
[
f(x′ + th)− f(x′)

]
.

Let S be a nonempty closed subset of H and x be a point in S. We recall (see
[23, 19]) that the Clarke normal cone (resp. the proximal normal cone) of S at x is
defined by NC(S;x) := ∂CψS(x)

(
resp.NP (S;x) := ∂P ψS(x)

)
, where ψS denotes

the indicator function of S, i.e., ψS(x′) = 0 if x′ ∈ S and +∞ otherwise. Note that
the proximal normal cone is also given by

NP (S;x) := {ξ ∈ H : ∃α > 0 s.t. x ∈ ProjS(x + αξ)}
where

ProjS(u) := {y ∈ S : dS(u) = ‖u− y‖}.
Recall now that for a given r ∈]0,+∞] a subset S is uniformly r-prox-regular

(see [22]) or r-proximally smooth (see [17]) if and only if every nonzero proximal
normal to S can be realized by an r-ball, this means that for all x̄ ∈ S and all
0 6= ξ ∈ NP (S; x̄) one has

〈 ξ

‖ξ‖ , x− x̄
〉 ≤ 1

2r
‖x− x̄‖2

for all x ∈ S. We make the convention 1
r = 0 for r = +∞. Recall that for

r = +∞ the uniform r-prox-regularity of S is equivalent to the convexity of S. In the
following proposition we recall an important characterization proved in Bounkhel
and Thibault [13] of the uniform prox-regularity that will be used in the proofs of
our main results.

Theorem 2.1 ([13]). Let S be a nonempty closed subset in H and let r > 0. Then
the following are equivalent:

a) S is uniformly r-prox-regular;
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b) for all x ∈ H, with dS(x) < r, and all ξ ∈ ∂P dS(x) one has




〈
ξ, x′ − x

〉 ≤ 8
r − dS(x)

‖x′ − x‖2 + dS(x′)− dS(x),

for all x′ ∈ H with dS(x′) ≤ r.

3. Uniform prox-regularity of level sets and lower-C2 property

In [24], Rockafellar introduced in the finite dimensional setting an important class
of nonsmooth functions which he called “lower-C2”. He showed that such class has
favorable properties in optimization. We recall that a function f : O → IR is said to
be lower-C2 on an open subset O of IRn if on some neighbpurhood V of each x̄ ∈ O
there is a representation f(x) = maxt∈T ft(x) in which the functions ft are of C2

on V and the index set T is a compact space such that ft(x) and ∇ft(x) depend
continously not on just on x but jointly on (t, x) ∈ T × V . A particular example of
lower-C2 functions one has f(x) = max{f1(x), . . . , fm(x), } when fi is of class C2.

Rockafellar [24] proved an important characterization of lower C2 functions. He
showed that a function f is lower-C2 on an open set O ⊂ IRn if and only if , relative
to some neighboorhoud of each point of O, there is an expression f = g− ρ

2‖ · ‖2, in
which g is finite convex function and ρ ≥ 0. In what follows we will take such local
representation as a definition of lower C2 functions in general Hilbert spaces.

Definition 3.1. A function f : O → IR is said to be lower-C2 on an open subset O
of H if relative to some neighbpurhood of each point of O there is a representation
f = g − ρ

2‖ · ‖2, in which g is finite convex function and ρ ≥ 0.

The following characterization of lower-C2 functions over convex compact sets
will be required in all the paper. Its proof is straightforward.

Proposition 3.1. Let K be a convex compact subset of H. Then a function f is
lower-C2 on K if and only if there exists a real positive number ρ ≥ 0 such that
f + ρ

2‖ · ‖2 is a finite convex function on K. In such case we will say that f is
ρ-lower-C2 on K.

Note that it is easy to see that for a function f that is lower-C2 over an open
set O all the classical subdifferentials included in the Clarke one, coincide at each
point x in O. In what follows we will denote ∂f := ∂P f = ∂Cf for such functions.

Now, we prove a characterization of lower-C2 functions in terms of their subd-
ifferentials. It will be our main tool to study the stability of the class of lower-C2

function. Also, it will be used to establish a connection between the lower-C2

property of a function f and the uniform prox-regularity of its associated level set
[f ≤ 0]. Note that this result has been proved in [17]. We give here a simple and
different proof.

Proposition 3.2. Let K be a convex compact subset of H and let f be a Lipschitz
function on K. Let ρ > 0. Then the following assertions are equivalent:

(i) f is ρ-lower-C2 on K;
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(ii) For each x̄ ∈ K and ξ ∈ ∂f(x̄) one has

(3.1)
〈
ξ, x− x̄

〉 ≤ f(x)− f(x̄) +
ρ

2
‖x− x̄‖2 ∀x ∈ K.

Proof. (i) ⇒ (ii): Let x̄ ∈ K and ξ ∈ ∂f(x̄). Then one has ξ+ρx̄ ∈ ∂(f + ρ
2‖·‖2)(x̄).

By Proposition 3.2 the function f + ρ
2‖ · ‖2 is finite and convex on K and so for all

x ∈ K one has
〈
ξ + ρx̄, x− x̄

〉 ≤ (f +
ρ

2
‖ · ‖2)(x)f(x)− (f +

ρ

2
‖ · ‖2)(x̄).

This ensures
〈
ξ, x− x̄

〉 ≤ f(x)− f(x̄) +
ρ

2
[‖x‖2 − ‖x̄‖2 − 2

〈
x̄, x− x̄

〉
]

= f(x)− f(x̄) +
ρ

2
‖x− x̄‖2,

for all x ∈ K and then the proof of (3.1) is complete.
(ii) ⇒ (i): By (3.1) we have for each x ∈ K

f(x) ≥ f(x̄) +
〈
ξ, x− x̄

〉− ρ

2
‖x− x̄‖2 for all x̄ ∈ K and ξ ∈ ∂f(x̄).

So, we have

f(x) = max
(x̄,ξ)∈K×E

{f(x̄) +
〈
ξ, x− x̄

〉− ρ

2
‖x− x̄‖2},

where E :=
⋃

x∈K

∂f(x) which is a compact subset in H by Theoreme II-25 in [15].

It follows then that f = g − ρ
2‖ · ‖2 on K with

g(x) = max
(x̄,ξ)∈K×E

{f(x̄) +
〈
ξ, x− x̄

〉− ρ

2
‖x̄‖2}

which is a finite convex function on K. Thus, Proposition 3.2 completes the proof
of this implication. ¤

The study of the stability under some operations of the class of lower-C2 functions
is very important for applications. Noting that it follows directly from Definition 3.1
that the addition of lower-C2 functions on an open subset Ω of H is lower-C2 on Ω.
In what follows we prove the stability of that class under the following operations:
pointwise maximum, composition, and integral.

Proposition 3.3 (Pointwise maximum of lower-C2 functions.). The pointwise max-
imum of Lipschitz lower-C2 functions over a convex compact set K of H, is Lipschitz
lower-C2 on K.

Proof. Assume that f(x) := max
1≤i≤m

fi(x), for all x ∈ K, where fi, 1 ≤ i ≤ m is

Lipschitz ρi-lower-C2 on K. The Lipschitzness of f is obvious. So we have to show
its lower-C2 property. Taking ρ := max

1≤i≤m
ρi, we get (fi)1≤i≤m are Lipschitz ρ-lower-

C2 on K. Fix now any x ∈ K and any ξ ∈ ∂Cf(x). By subdifferential calculus
there exists ξj ∈ ∂fj(x) and αj ≥ 0, j ∈ I(x) := {i ∈ {1, . . . , m} : fi(x) = f(x)}
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such that ξ =
∑

j∈I(x)

αjξj and
∑

j∈I(x)

αj = 1. By Proposition 3.2 we obtain for all

j ∈ I(x) and all x′ ∈ K

〈
ξj , x

′ − x
〉 ≤ fj(x′)− fj(x) +

ρ

2
‖x′ − x‖2.

This yields, for all x′ ∈ K

〈
ξ, x′ − x

〉
=

∑

j∈I(x)

αj

〈
ξj , x

′ − x
〉 ≤

∑

j∈I(x)

αj [fj(x′)− fj(x) +
ρ

2
‖x′ − x‖2]

≤
∑

j∈I(x)

αj [f(x′)− f(x) +
ρ

2
‖x′ − x‖2] ≤ f(x′)− f(x) +

ρ

2
‖x′ − x‖2

and so by Proposition 3.2, the function f is ρ-lower-C2 on K. ¤

Proposition 3.4 (Composition). Let F : H → H ′ (H ′ is another Hilbert space)
be a C2 mapping and K be a convex compact subset in H and let h be a Lipschitz
ρ-lower-C2 function over F (K). Then the function f = h ◦ F is ρ′-lower-C2 on K
for some ρ′ > 0.

Proof. The fact that f is Lipschitz is straightforward. Let α := sup
x∈K

‖∇F (x)‖ and

β := sup
x∈K

‖∇2F (x)‖, and let λ > 0 be the Lipschitz canstant of h over K. Fix

now any x ∈ K and any ξ ∈ ∂Cf(x). By subdifferential calculus there exists
ζ ∈ ∂h(F (x)) such that ξ = ∇F (x)∗ζ. Using Propsotion 3.2 and the fact that h is
ρ-lower-C2 over F (K), we get for all x′ ∈ K,

〈
ζ, F (x′)− F (x)

〉 ≤ f(x′)− f(x) +
ρ

2
‖F (x′)− F (x)‖2

≤ f(x′)− f(x) +
α2ρ

2
‖x′ − x‖2.

On the other hand, as F is C2 we have

F (x′) = F (x) +∇F (x)(x′ − x) +
1
2
〈∇2F (x + θ(x′ − x))(x′ − x), x′ − x

〉
,

with c = x + θ(x′ − x) ∈ K for some θ ∈ [0, 1]. Therefore, this equality and the
inequality before give

〈
ξ, x′ − x

〉
=

〈
ζ,∇F (x)(x′ − x)

〉

=
〈
ζ, F (x′)− F (x)

〉
+

1
2
〈
ζ,

〈∇2F (c)(x′ − x), x′ − x
〉〉

≤ f(x′)− f(x) +
α2ρ

2
‖x′ − x‖2 +

1
2
‖ζ‖‖∇2F (c)‖‖x′ − x‖2

≤ f(x′)− f(x) +
ρ′

2
‖x′ − x‖2,

where ρ′ := α2ρ + βλ. The proof then is complete by Proposition 3.2. ¤
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Now we are going to study the stability under the integral operation. Let I :=
[0, T ] with T > 0 and let us consider the functional If defined from Lp(I, H), with
p ∈ [2,+∞[, to ]−∞,+∞] by

If (u) :=
∫ T

0
f(t, u(t))dt, for all u ∈ L,

where f is a function from I ×H to ]−∞,+∞].

Before proving our stability result we need the following lemma. Its proof is
standard.

Lemma 3.1. For any p ∈ [2,+∞[ the function h : Lp(I, H) → IR defined by

h(u) :=
1
2

∫ T

0
‖u(t)‖2dt, for all u ∈ Lp(I, H)

is continuously Fréchet differentiable on Lp(I, H) and its Fréchet derivative is given
by

〈∇h(u), v
〉

=
〈
u, v

〉
=

∫ T

0

〈
u(t), v(t)

〉
dt.

Let us consider the following assumptions:
(A1) f : I ×H → IR is measurable with respect to the σ-field of subsets of I ×H

generated by the Lebesgue sets in I and the Borel sets in H.
(A2) there exist a ∈ Lq(I, H), b ∈ L1(I), and c ∈ Lp(I, H) such that

f(t, c) ∈ L1(I) and f(t, x) ≥ 〈
a(t), x

〉
+ b(t),

for all t ∈ I and all x ∈ H. Here q satisfies 1/p + 1/q = 1.

Theorem 3.1. Let K be a convex compact subset of H and ρ > 0. Let f be a
continuous fucntion from I × H to IR. Assume that f satisfies the assumptions
(A1) and (A2) and for all t ∈ I the function f(t, ·) is ρ-lower-C2 on K. Then
the functional If is ρ-lower-C2 on the set K := {u ∈ Lp(I, H) : u(t) ∈ K for all
t ∈ [0, T ]}. Furthermore, for each u ∈ K one has

∂If (u) =
∫ T

0
∂f(t, u)dt := {ξ ∈ Lq(T,H) : ξ(t) ∈ ∂f(t, u(t)) a. e. on [0, T ]}.

Proof. By Proposition 3.2 one has g(t, ·) := f(t, ·)+ ρ
2‖ · ‖2 is finite convex on K for

all t ∈ I. Then for any x ∈ K and any t ∈ I one has

∂f(t, x) = ∂g(t, x)− ρx,

because the norm ‖·‖ of H is smooth. Now, since it is easy to see that g also satisfies
the assumptions (A1) and (A2), then Proposition 2.8 in [3] and the convexity of
g(t, ·) ensure that the functional Ig is finite convex on K and its subdifferential at
any u ∈ K is given by

(3.2) ∂Ig(u) =
∫ T

0
∂g(t, u)dt := {ζ ∈ Lq(T,H) : ζ(t) ∈ ∂g(t, u(t)) a. e. on I}.

Fix now any u ∈ K. Then the calculus rules for subdifferentials and Lemma 3.1
yield

∂If (u) = ∂(Ig − ρh)(u) = ∂Ig(u)− ρ∇h(u) = ∂Ig(u)− ρu.
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Therefore, for any ξ ∈ ∂If (u) one has ξ + ρ∇h(u) ∈ ∂Ig(u) and so by (3.2) we get
ξ(t) ∈ ∂g(t, u(t)) − ρ∇h(u)(t) = ∂f(t, u(t)) a.e. on I, as claimed. Conversely, it is
easy to see that every ξ ∈ Lq(I, H) satisfying the latter belongs to ∂If (u). This
completes the proof. ¤

As a direct application of our subdifferential formula in Theorem 3.1 we give a
necessary optimality condition for the following nonconvex variational problem:

(P) minimize
∫ T

0
f(t, u(t))dt

over K = {u ∈ L2(I, H) : u(t) ∈ K for all t ∈ [0, T ]}, where K is a convex compact
subset of H and f satisfies the hypothesis in Theorem 3.1. We note that K is a
closed convex set in L2(I, H).

Theorem 3.2. If u solves the problem (P) then

f(t, u(t)) = min
v∈K

{f(t, v) +
ρ

2
‖u(t)− v‖2}, for a. e. t ∈ [0, T ].

Proof. Let u be a solution of (P). Then 0 ∈ ∂If (u) + N(K;u) and so there exists
ξ ∈ ∂If (u) with −ξ ∈ N(K;u). Using Theorem 3.1 we get for a.e. t ∈ [0, T ]

ξ(t) ∈ ∂f(t, u(t)) = ∂g(t, u(t))− ρu(t),

where g is as in Theorem 3.1 (a convex finite function on K). Then for every x ∈ K
and for a.e. t ∈ [0, T ] one gets

〈
ξ(t) + ρu(t), x− u(t)

〉 ≤ g(t, x)− g(t, u(t)).

Now as −ξ ∈ N(K;u) it follows easily that
〈− ξ(t), x− u(t)

〉 ≤ 0

for every x ∈ K and for a.e. t ∈ [0, T ]. Therefore from the definition of g and from
both last inequalities we get

f(t, u(t))− f(t, x) = g(t, u(t))− g(t, x)− ρ

2
(‖u(t)‖2 − ‖x‖2)

≤ 〈− ξ(t)− ρu(t), x− u(t)
〉− ρ

2
(‖u(t)‖2 − ‖x‖2)

≤ ρ
〈
u(t), u(t)− x

〉
+

ρ

2
(‖u(t)‖2 − ‖x‖2) =

ρ

2
‖u(t)− x‖2,

for every x ∈ K and for a.e. t ∈ [0, T ]. Thus completing the proof. ¤

In [17] the authors proved that a function f is lower-C2 if and only if its epigraph
epi f is uniformly prox-regular by using the characterization given in Proposition
3.2. In the next theorem, we will establish a sufficient condition of uniform prox-
regularity for level sets.

Theorem 3.3. Let K be any convex compact subset in H and let f be a Lipschitz
ρ-lower-C2 function on K. Let m := inf{‖ξ‖ : ξ ∈ ∂f(x) with x ∈ K}. Then either
m = 0 or the level set S := {x ∈ K : f(x) ≤ 0} is uniformly r-prox-regular for

r :=
1

mρ
.
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Proof. Put E :=
⋃

x∈K

∂f(x). Since x 7→ ∂f(x) is compact-valued and upper hemi-

continuous and as K is compact then E is a compact set in H. Hence m < +∞.
Assume that m 6= 0. Fix any x̄ ∈ S and any 0 6= ξ ∈ N(S; x̄). Without loss of
generality, we may assume that f(x̄) = 0, because in the other case, i.e., f(x̄) < 0
one has N(S; x̄) = {0}. By Theorem 2.4.7 in [16] there exists λξ > 0 such that
ξ

λξ
∈ ∂f(x̄). Further, ‖ ξ

λξ
‖ > m > 0. On the other hand, by Proposition 3.2, we

have

f(x) ≥ −ρ

2
‖x− x̄‖2 +

〈 ξ

λξ
, x− x̄

〉
+ f(x̄) ∀y ∈ K.

Hence 〈
ξ, y − x̄

〉 ≤ λξρ

2
‖x− x̄‖2 ∀x ∈ S,

and hence
〈 ξ

‖ξ‖ , x− x̄
〉 ≤ ρλξ

2‖ξ‖‖x− x̄‖2

≤ ρ

2m
‖x− x̄‖2,

for all x ∈ S. This ensures that S is uniformly r-prox-regular with r :=
m

ρ
. The

proof then is complete. ¤

Using this theorem and our stability resluts of the class of lower-C2 functions
proved above we prove in the following corollary the uniform prox-regularity of
some special level sets.

Corollary 3.1. Let K be a convex compact subset in H.
1– If f1 and f2 are two Lipschitz lower-C2 functions on K satisfying for all

x ∈ K ∂P f1(x)∩{-∂P f1(x)} = ∅, then, the set {x ∈ K : f1(x)+f2(x) ≤ 0}
is uniformly prox-regular.

2– If fi, i = 1, . . . , N are Lipschitz lower-C2 functions on K satisfying for all
x ∈ K and all i = 1, . . . , N 0 /∈ ∂P fi(x), then, the set {x ∈ K : fi(x) ≤ 0
for all i = 1, . . . , N} is uniformly prox-regular.

3– If F : H → H ′ (H ′ is another Hilbert space) is a C2 mapping and h is a
Lipschitz lower-C2 function on F (K) satisfying for all y ∈ F (K) 0 /∈ ∂h(y),
then, the set {x ∈∈ K : h ◦ F (x) ≤ 0} is uniformly prox-regular.

4– If f is a continuous fucntion from I × H to IR satisfying the assumptions
(A1) and (A2). Assume that for all t ∈ I the function f(·, t) is Lipschitz
ρ-lower-C2 on K and for all x ∈ K and all t ∈ I 0 /∈ ∂f(t, x). Then, the
set {u ∈ Lp(I, H) : u(t) ∈ K and If (u) ≤ 0} is uniformly prox-regular.

4. Subdifferential and co-normal stability

Our purpose in this section is to study the stability of normal cones and of the
subdifferential of the distance functions to uniformly prox-regular sets. That prop-
erty is very useful for applications. Our motivations come from some applications
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in economies and equilibrium theory (see the next sections). We start with the
following definitions.

Definition 4.1. Let {Sk}k be any sequence of nonempty closed sets in H. We will
say that a nonempty closed set S is the Painlevé-Kuratowski PK-lower limit (resp.
PK-upper limit) of Sk provided that

S ⊂ lim inf
k

Sk := {x ∈ H : there exists xk → x such that xk ∈ Sk},

(resp. {x ∈ H : there exists xk → x such that xk ∈ Ss(k)} =: lim sup
k

Sk ⊂ S.)

Here Ss(k) is a subsequence of Sk.

We will say that Sk PK-converges to S or S is the PK-limit of Sk provided that
S is both the PK-upper limit and the PK-lower limit of Sk.

Definition 4.2. Let {Sk}k be a sequence of nonempty closed sets in H that con-
verges in some sense to a closed set S in H. We will say that the sequence {Sk}k is
subdifferentially stable if one has

lim sup
xk−→x̄

∂P dSk
(xk) ⊂ ∂P dS(x̄),

that is, for any sequence xk (not necessarily in Sk) and such that xk → x and any
ξ ∈ ∂P dSk

(xk) weakly converging to some ξ ∈ H, one has ξ ∈ ∂P dS(x̄). In the same
way, we will say that {Sk}k is co-normally stable provided that

lim sup
k

NP (Sk, xk) ⊂ NP (S, x),

that is, for any sequence xk such that xk ∈ Sk and xk → x and any ξ ∈ NP (Sk, xk)
weakly converging to some ξ ∈ H, one has ξ ∈ NP (S, x).

We recall the following lemma needed in the proof of Theorem 4.1. It gives a
characterization of the PK-lower limit in terms of the distance function to sets. For
its proof we refer the reader to [25].

Lemma 4.1. Let {Sk}k and S be nonempty closed sets in H. Then S is the PK-
lower limit of the sequence {Sk}k if and only if there exists for each ρ > 0 and ε > 0
an integer k0 ∈ IN such that for all x ∈ ρIB and all k ≥ k0 one has

d(x, Sk) ≤ d(x, S) + ε.

Now we are ready to prove the subdifferential and co-normal stability for gen-
eral uniformly prox-regular sets under an additional hypthesis on their distance
functions.

Theorem 4.1. Let {Sk}k∈IN be a sequence of nonempty closed subsets in H and let
S be a nonempty closed in H. Let r > 0 and x̄ ∈ S. Assume that S is the PK-lower
limit of {Sk}k∈IN and that all the subsets {Sk}k∈IN are uniformly r-prox-regular.
Then

(i) the sequence dSk
is subdifferentially stable, that is,

lim sup
xk

Sk−→ x̄

∂P dSk
(xk) ⊂ ∂P dS(x̄),
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where xk
Sk−→ x̄ means that xk converging to x̄ and xk ∈ Sk for all k ∈ IN .

(ii) If, in addition, H is a finite dimensional space, then the sequence Sk is
co-normally stable.

Proof. (i) Let xk
Sk−→ x̄ and ξk −→ ξ̄ with ξk ∈ ∂P dSk

(xk) for all k ∈ IN . As the
subsets {Sk}k∈IN are uniformly r-prox-regular, Theorem 3.1 ensures that for all
k ∈ IN one has

(2.1)





〈
ξk, x− xk

〉 ≤ 2
r
‖x− xk‖2 + dSk

(x),

for all x ∈ H with dSk
(x) ≤ r.

Fix any y ∈ x̄ +
r

2
IB. Then, by Lemma 4.1 there exists k0 ∈ IN such that

(2.2) dSk
(y) ≤ dS(y) +

1
1 + k

for all k ≥ k0.

One may choose k0 large enough so that
1

1 + k
≤ r

2
for all k ≥ k0. Thus, one gets

dSk
(y) ≤ dS(y) +

r

2
≤ ‖y − x̄‖ +

r

2
≤ r

2
+

r

2
≤ r and so one can apply (2.1) with

x := y to get for all k ≥ k0

〈
ξk, y − xk

〉 ≤ 2
r
‖y − xk‖2 + dSk

(y)

and by (2.2) one obtains for all k ≥ k0

〈
ξk, y − xk

〉 ≤ 2
r
‖y − xk‖2 + dS(y) +

1
1 + k

.

By letting k → +∞ in the last inequality one gets
〈
ξ̄, y − x̄

〉 ≤ 2
r
‖y − x̄‖2 + dS(y)− dS(x̄),

for all y ∈ x̄ +
r

4
IB. This ensures that ξ̄ ∈ ∂P dS(x̄).

Assume that dimH < +∞. Let xk
Sk−→ x̄ and ξk −→ ξ̄ with ξk ∈ NP (Sk, xk) for

all k ∈ IN . Put ζk := ξk
1+‖ξk‖ . Then ζk ∈ NP (Sk, xk)∩ IB and hence by Theorem 4.1

in [14] one gets ζk ∈ ∂P dSk
(xk). Now as dimH < +∞ the sequence ζk converges to

ξ̄
1+‖ξ̄‖ and so we get by (i) that ξ̄

1+‖ξ̄‖ ∈ ∂P dS(x̄) ⊂ NP (S, x̄), which ensures that

ξ̄ ∈ NP (S, x̄). This completes the proof. ¤
Now we proceed to prove a similar result for level sets. First, we recall the

following definition

Definition 4.3. Let {fk}k be any sequence of functions on H and let x ∈ H. We
will say that fk upper-epi-converges to some function f at x provided that

epi− lim supnfn(x) ≤ f(x),

or equivalently there exists xk → x such that

lim sup
k

fk(xk) ≤ f(x).
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Recall now the following lemma needed in the proof. Its proof can be found in
[25].

Lemma 4.2. Let {fk}k be a sequence of functions on H. Assume that {fk}k upper-
epi-converges to some function f over H. Then one has

[f ≤ 0] ⊂ lim inf
k

{[fk ≤ αk]},
for some sequence αk ↓ 0. In other words the level set [f ≤ 0] is the PK-lower limit
of the sequence of the level sets {[fk ≤ αk]}k∈IN .

Now we are able to prove a subdifferential and co-normal stability result for level
sets.

Theorem 4.2. Let K be a convex compact subset of H and let {fk}k be a sequence
of functions on H that upper-epi-converges to some function f over H. Let σ > 0
and x̄ ∈ K with f(x̄) = 0. Assume that {fk}k are σ-lower-C2 on K with 0 /∈ ∂fk(x)
for all x ∈ K. Then there exists αk ↓ 0 such that the distance function dSk

is
subdifferentially stable, that is,

lim sup
xk

Sk−→ x̄

∂P dSk
(xk) ⊂ ∂P dS(x̄),

where Sk := [fk ≤ αk] and S := [f ≤ 0]. If, in addition, H is a finite dimensional
space then the sequence Sk is co-normally stable.

Proof. By Lemma 4.2 there exists αk ↓ 0 such that S := [f ≤ 0] is the PK-lower
limit of the sequence Sk := [fk ≤ αk]. On the other hand as the functions {fk}k

are σ-lower-C2 on K with 0 /∈ ∂fk(x) for all x ∈ K we get by Theorem 3.3 that the
subsets Sk := [fk ≤ αk] are uniformly r-prox-regular for some r > 0. Thus Theorem
4.1 completes the proof. ¤

5. Applications to economies

In this section we consider the following economic model established by Arrow and
Debreu (1959). In this model there are a finite number of goods l, consumers m, and
producers n. Each consumer has a preference set-valued mapping Pi :

∏
k Xk ⇒

Xi, where Xi ⊂ IRl is a set of consumptions for the consumer i. For a given
(x1, . . . , xm) ∈ ∏

k Xk, the set clPi0(x1, . . . , xm) (resp. Pi0(x1, . . . , xm)) represents
all those elements in Xi0 that are preferred (resp. strictly preferred) to (x1, . . . , xm)
for the consumer i0. Each producer j has a production set Yj ⊂ IRl. Thus an
economy E is defined as E = ((Xi), (Pi), (Yj), e), where e ∈ IRl is the total initial
endowment for the economy, that is, e =

∑m
i=1 ei with ei is the initial endowment for

the consumer i. A fundamental result of this theory is the second welfare theorem
which gives a price decentralization of a Pareto optimum allocation. A recent result
proves an extension of this welfare’s theorem to general nonconvex economies was
proved in [21]. Before stating it we need to recall the definitions of feasible allocation,
Pareto optimum, and the Asymptotic Included Condition (A.I.C) for the economy
E .

Definition 5.1. • We will say that ((x∗i ), (y
∗
j )) ∈ IR`m× IR`n is a feasible allocation

for the economy E if the following conditions are satisfied:
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(a) for each i = 1, ..., m and j = 1, ..., n, x∗i ∈ Xi and y∗j ∈ Yj .

(b)
∑

i x
∗
i −

∑
j y∗j = e.

• A feasible allocation ((x∗i ), (y
∗
j )) ∈ IR`m × IR`n is a Pareto optimum for the

economy E if there is no feasible allocation ((x′i), (y
′
j)) ∈

∏
Xi ×

∏
Yj such that

(i) for each i ∈ {1, ..., m}, x′i ∈ clPi(x∗1, ..., x
∗
m)

(ii) for some i0 ∈ {1, ..., m}, x′i0 ∈ Pi0(x
∗
1, ..., x

∗
m).

• We will say that E satisfies the Asymptotic Included Condition at a point
((x∗i ), (y

∗
j )) ∈

∏
Xi ×

∏
Yj if there exists i0 ∈ {1, ..., m}, ε > 0 and a sequence

hk → 0 such that for k sufficiently large we have

−hk +
∑

i

[clP ∗
i ∩B(x∗i , ε)]−

∑

j

[Yj ∩B(y∗j , ε)] ⊆ P ∗
i0 +

∑

i6=i0

[clP ∗
i ]−

∑

j

Yj ,

where P ∗
i := Pi(x∗1, ..., x

∗
m).

Theorem 5.1. [21] Let ((x∗i ), (y
∗
j )) ∈ IR`m × IR`n be a Pareto optimum point for

the economy E = ((Xi), (Pi), (Yj), e) which satisfies the A.I.C. on it. If x∗i ∈ clP ∗
i ,

i ∈ {1, ..., m} and Yj is closed, then there exists a price vector p∗ ∈ IR`, ‖p∗‖ ≥ 1
n+m ,

such that

p∗ ∈
⋂

j

∂dYj (y
∗
j ) −p∗ ∈

⋂

i

∂dclP ∗i (x∗i ).

In [21] the authors studied the stability of the quasi-equilibrium prices, that
is, if we are given a sequence ek converging to some e ∈ IRl and we assume
that each economy Ek := ((Xi), (Pi), (Yj), ek) satisfies A.I.C. at a Pareto opti-
mum point ((x∗i,k), (y

∗
j,k)) and that this Pareto optimum sequence converges to some

((x∗i ), (y
∗
j )), is it possible to get the conclusion of Theorem 5.1 for the limit econ-

omy E := ((Xi), (Pi), (Yj), e) at ((x∗i ), (y
∗
j ))? They gave a positive answer under

some hypothesis on the subdifferential of the distance function to the producers
and preferences sets. Our main result in this section is in this vein. We will use
our abstract results proved in Sections 3 and 4 to prove that stability for general
nonconvex economies.

Let Ek := ((Xi,k), (Pi,k), (Yj,k), ek) be a sequence of nonconvex economies, with
ek → e ∈ IRl, (Xi,k) and (Yj,k) lower-converge to (Xi) and (Yj) respectively in
IRl, and the sequence of set-valued mappings (Pi,k) admits a PK-lower limit set-
valued mappings (Pi) in the following sense: for each i = 1, . . . , m and for any
(x1,k, . . . , xm,k) → (x1, . . . , xm) one has

(A1) lim inf
k

cl Pi,k(x1,k, . . . , xm,k) ⊂ cl Pi(x1, . . . , xm).

Assume that each economy Ek satisfies A.I.C. at some Pareto optimum point
((x∗i,k), (y

∗
j,k)) and that this Pareto optimum sequence converges to some ((x∗i ), (y

∗
j )).

Then we can state the main result.

Theorem 5.2. Asuume that (A1) is satisfied, x∗i,k ∈ clP ∗
i,k, (Yj,k) are closed, and

that both sequences (Yj,k) and (clPi,k) are uniformly prox-regular. Then there exists
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a price vector 0 6= p∗ ∈ IR` such that

p∗ ∈
⋂

j

∂dYj (y
∗
j ) and − p∗ ∈

⋂

i

∂dclP ∗i (x∗i ).

Proof. By Theorem 5.1 there exists a sequence of prices p∗k ∈ IRl with 1 ≥ ‖p∗k‖ ≥
1

n+m > 0, satisfying

p∗k ∈
⋂

j

∂dYj,k
(y∗j,k) and − p∗k ∈

⋂

i

∂dclP ∗i,k(x∗i,k),

where clP ∗
i,k = clPi,k(x∗i,k). By our assumption (A1) the set clP ∗

i := clPi(x∗i ) is
the PK-lower limit of the sequence clP ∗

i,k. Now as all the sets clP ∗
i are uniformly

prox-regular we get by Theorem 4.1 that the limit p∗ 6= 0 of p∗k will belong to
−⋂

i
∂dclP ∗i (x∗i ). Applying Theorem 4.1 once again with the sequences Yj,k and

their PK-lower limits Yj we get p∗ ∈ ⋂
i

∂dYj (y
∗
j ). Thus completing the proof. ¤

Many corollaries can be obtained directly from this theorem. We give only the
two followings. First we begin with the case when the preference (Pi,k) defining the
economie Ek is not perturbed, that is, Ek = ((Xi), (Pi), (Yj,k), ek).

Corollary 5.1. Assume that the set-valued mapping cl Pi is l.s.c. at ((x∗i ), (y
∗
i ))

with uniformly prox-regular values, for each i ∈ {1, . . . , m}, x∗i ∈ clP ∗
i , and that the

sequence (Yj,k) is uniformly prox-regular. Then there exists a price vector 0 6= p∗ ∈
IR` such that

p∗ ∈
⋂

j

∂dYj (y
∗
j ) and − p∗ ∈

⋂

i

∂dclP ∗i (x∗i ).

Now, we assume that the preferences Pi,k are defined by Lipschitz utility functions
fi,k : IRl → IR, that is,

Pi,k(x1, . . . , xm) = {x ∈ X : fi,k(x) > fi,k(xi,k)}.
Corollary 5.2. Assume that the following assumptions are satisfied:

(i) Xi,k are convex compact in IRl and x∗i,k ∈ clP ∗
i,k;

(ii) (Yj,k) are closed uniformly prox-regular sets.
(iii) −fi,k are σ-lower-C2 on Xi,k and upper-epi-converges to some function fi

over IRl with 0 /∈ ∂fi,k(xi,k).

Then there exists a price vector 0 6= p∗ ∈ IR` such that

p∗ ∈
⋂

j

∂dYj (y
∗
j ) and − p∗ ∈

⋂

i

∂dclP ∗i (x∗i ),

where Pi is the limit preference defined by the limit utility function fi.

6. Applications to existence of equilibrium

In this last section we are going to give an application of our co-normal stabil-
ity result to the equilibrium theory for nonconvex sets in the infinite dimensional
setting. We start with the following definition of generalized equilibrium.
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Definition 6.1. For a closed set S ⊂ H and a set-valued mapping F : S ⇒ H, we
will say that x̄ ∈ S is a generalized equilibrium of F over S if one has

0 ∈ F (x̄)−N(S, x̄),

where N(S;x) is a prescribed normal cone.

This concept of equilibrium has been considered in [25] and studied later by [20] in
the finite dimensional setting. We recall now the classical definition of equilibrium.

Definition 6.2. For a closed set S ⊂ H and a set-valued mapping F : S ⇒ H, we
will say that x̄ ∈ S is an equilibrium of F over S if one has 0 ∈ F (x̄).

The existence of equilibrium has been the subject of many works in the finite
(see for example [20, 18] and the refrences therein) and inifinte dimensional setting
(see for example [4, 18] and the refrences therein). The best known equilibrium
result in the Hilbert (infinite dimensional) setting is the following theorem by Ben-
El-Mechaiekh and Kryszewski [4].

Theorem 6.1 ([4]). Let S be a compact L-retract in H with χ(S) 6= 0. If F : S ⇒ H
is an upper hemicontinuous map with closed convex values satisfying for all x ∈
S and all p ∈ ret−1(x):

inf
y∈F (x)

〈
p− x, y

〉 ≤ 0,

then F has an equilibrium over S.

Here χ(S) stands the Euler characteristic of S. Recall that (see [4]) a closed
subset S ⊂ H is said to be L-retract if there exist an open neighbourhood O of S,
a continuous retraction ret : O → S, and a constant L ≥ 0 such that

‖x− ret(x)‖ ≤ LdS(x), for all x ∈ O.

This definition was introduced by [4] for metric spaces. To prove our main theorem
in this section we need to prove some preliminary results.

Lemma 6.1. Every uniformly prox-regular set is L-retract.

Proof. Let r > 0 be the constant of the uniform prox-regularity of S and put
U(r′) := {x ∈ H : 0 < dS(x) < r′} and S(r′) := {x ∈ H : 0 ≤ dS(x) < r′}. It
suffices to take ret := ProjS , O := S(r′), and L := 1. Indeed, by Theorem 4.2 in
[17], the projection ProjS is singl-valued Lipschitz mapping of rank r

r−r′ on U(r′)
for all r′ ∈]0, r[. In particular, it is continuous on the open set S(r′). Finally, as
‖x− ProjS(x)‖ = dS(x) for all x ∈ S(r′), the proof then is complete. ¤
Remark 6.1. Note that in Proposition 5.1 in [20] the authors proved in the finite
dimensional setting that every uniformly prox-regular (more general every proximal
nondegenerate (see [20] for the definition)) and compact set is L-retract. In our
result in Lemma 6.1 we dont need the compactness of S. So, it generalizes Propo-
sition 5.1 in [20] to uniformly prox-regular sets not necessarily compact and to the
Hilbert space setting.

Lemma 6.2. Let S be a uniformly r-prox-regular subset in H and F : S ⇒ H be
any set-valued mapping. Then the following assertions are equivalent:
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1– for all x ∈ S and all p ∈ Proj−1
S (x) one has

inf
ξ∈F (x)−∂dS(x)

〈
p− x, ξ

〉 ≤ 0;

2– for all x ∈ S and all p ∈ Proj−1
S (x) one has

inf
ξ∈F (x)

〈
p− x, ξ

〉 ≤ ‖p− x‖;

3– for all x ∈ S and all p ∈ Proj−1
S (x) with p 6= x one has

inf
ξ∈F (x)

〈 p− x

‖p− x‖ , ξ
〉 ≤ 1;

Proof. Assume that (1) holds. Then for any x ∈ S and p ∈ Proj−1
S (x), there exists

ξ1 ∈ F (x) and ξ2 ∈ ∂dS(x) such that
〈
p − x, ξ1

〉 ≤ 〈
p − x, ξ2

〉
. So

〈
p − x, ξ1

〉 ≤
‖ξ2‖‖p− x‖ ≤ ‖p− x‖, because one always has ∂dS(x) ⊂ IB. Therfore, (2) holds.

As the equivalence between (2) and (3)is obvious, we have to show (3) ⇒ (1).
Assume that (3) holds. Fix any x ∈ S and p ∈ Proj−1

S (x) with p 6= x. Then by (3),
there exists ξ ∈ F (x) such that

(6.1)
〈 p− x

‖p− x‖ , ξ
〉 ≤ 1.

As p ∈ Proj−1
S (x), we have

p− x

‖p− x‖ ∈ ∂dS(x). Put ξ̃ := ξ − p− x

‖p− x‖ ∈ F (x) −
∂dS(x). Then (6.1) yields

〈
p− x, ξ̃

〉
=

〈
p− x, ξ

〉− 〈
p− x,

p− x

‖p− x‖
〉

=
〈
p− x, ξ

〉− ‖p− x‖ ≤ 0.

Thus (1) holds and so the proof is complete. ¤

Now we are in position to prove our main result.

Theorem 6.2. Let Sk be a sequence of compact uniformly r-prox-regular subsets in
H with χ(Sk) 6= 0 and let F : Sk ⇒ H be an upper hemicontinuous map with closed
convex values. Assume that Sk PK-converges to some compact subset S. Assume
also that for all xk ∈ Sk and all pk ∈ Proj−1

Sk
(xk) one has

(6.2) inf
ξk∈F (xk)

〈
pk − xk, ξk

〉 ≤ ‖pk − xk‖.

Then F has a generalized equilibrium over S with respect to the proximal normal
cone, i.e., there exists x̄ ∈ S such that 0 ∈ F (x̄)−NP (S; x̄).

Proof. For every k ≥ 1 we define the set-valued mapping F̃k := F − ∂dSk
. By

Lemma 6.2 our hypothesis (6.2) is equivalent to

inf
ξk∈ eFk(x)

〈
pk − xk, ξk

〉 ≤ 0;

for all xk ∈ Sk and all pk ∈ Proj−1
Sk

(xk). On the other, by Lemma 6.1 the set Sk is
L-retract with ret := ProjSk

. Then as it is easily to see that the set-valued mapping
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F̃k is upper hemicontinuous with closed convex values, we can apply Theorem 6.1.
to get an equilibrium of F̃k over Sk, i.e., there exists x̄k ∈ Sk such that

(6.3) 0 ∈ F̃k(x̄k) = F (x̄k)− ∂dSk
(x̄k).

Now, using the fact that Sk PK-converges to S, we get that dS(x̄k) → 0 as k →∞,
which ensures the relative compactness of the sequence x̄k because S is a compact set
in H. There exists then some subsequence of x̄k that converges to some point x̄ ∈ S.
On the other hand, by the relation (6.3) there exists ξk ∈ ∂dSk

(x̄k) ∩ F (x̄k) ⊂ IB.
Then, a subsequence of ξk may be extracted converging weakly to some ξ̄. Finally,
by our subdifferential stability result in Theorem 4.1, we conclude that ξ̄ ∈ ∂P dS(x̄)
and by the upper hemicontinuity of F we also have ξ̄ ∈ F (x̄). Therefore,

0 ∈ F (x̄)− ∂P dS(x̄) ⊂ F (x̄)−NP (S; x̄).

This ends the proof. ¤

Remark 6.2. 1– In the statement of Theorem 6.2, we specify the normal cone of S
with which we work, because the limit set S is not necesarily uniformly prox-regular
and so the classical subdifferentials a priori do not coincide with the proximal one.
Therefore our result in Theorem 6.2 proves the existence of generalized equilibrium
for nonconvex sets that are not necessarily uniformly prox-regular.

2– From the part (1) of Remark 6.2, our Theorem 6.2 cannot be covered by the
main result in [20] even in the finite dimensional setting, because the limit set S in
Theorem 6.2 is not necessarily proximally nondegenerate in the sense of [20].

3– Another approch, but with less importance relatively to our Theorem 6.2,
that can be used to prove the existence of generalized equilibrium for uniformly
prox-regular sets not necessarily convex, is to approximate a set S with uniformly
prox-regular sets Sk satisfying (6.2) and all the other hypothesis of Theorem 6.2.
Then we use our subdifferential stability result in Theorem 4.1 to get the condition
(6.2) for the set S and then we follow the same argument in the proof of Theorem
6.2 to obtain a generalized equilibrium of the set-valued mapping F over S.
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