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CONSTANT SELECTIONS FOR CONCAVE-CONVEX MAPS AND
MINIMAX THEOREMS

MIRCEA BALAJ

Abstract. In this paper we obtain several intersection theorems for the values
of a concave-convex or only concave set-valued mapping. From each of these
theorems we derive a Sion type minimax theorem.

1. Introduction and preliminaries

Let X and Y be two sets and T : X ( Y be a set-valued mapping (simply, a
map), that is, a function that assigns to each x ∈ X a unique subset T (x) of Y . For
each y ∈ Y the set T−1(y) = {x ∈ X : y ∈ T (x)} is called the fiber of T at the point
y and the complement in X of T−1(y) is called the cofiber of T at y and is denoted
by T ∗(y). To a map T : X ( Y are therefore associated two maps T−1 : Y ( X,
the inverse of T , and T ∗ : Y ( X, the dual of T . We will say that a map T
has finite intersection property if the family of its values has the finite intersection
property.

A map T : X ( Y between two convex sets is said to be convex if its values are
convex, and concave if the cofibers T ∗(y) are convex. One can readily verify that T
is concave if and only if

(1) T (co{x1, x2}) ⊂ T (x1) ∪ T (x2) for any x1, x2 ∈ X,

where co{x1, x2} denotes the convex hull of {x1, x2}.
T is concave-convex if it is both concave and convex. The concept of concave-

convex map has been introduced by Greco [10] and its motivation comes from
minimax theory. Given a function f : X × Y → R = R ∪ {±∞} we would like to
know if

inf
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

inf
y∈Y

f(x, y).

We only need to establish the inequality

inf
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X

inf
y∈Y

f(x, y)

and we can therefore assume that sup
x∈X

inf
y∈Y

f(x, y) < ∞. In this setting, to a real

number λ one can associate a map Tλ : X ( Y defined as follows

(2) Tλ(x) = {y ∈ Y : f(x, y) ≤ λ}.
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Then, one can see that inf
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

inf
y∈Y

f(x, y) if and only if, the map Tλ

has a constant selection (that is
⋂

x∈X Tλ(x) 6= ∅), for each λ > sup
x∈X

inf
y∈Y

f(x, y).

If X and Y are convex sets and the function f above is quasi-concave-convex
(i.e., for each x0 ∈ X, y0 ∈ Y and λ ∈ R the sets {x ∈ X : f(x, y0) ≥ λ} and
{y ∈ Y : f(x0, y) ≤ λ} are convex), then for each real λ, Tλ is a concave-convex map.
Therefore a theorem on the existence of constant selections for concave-convex maps
can be transcribed to yield a minimax theorem for quasi-concave-convex functions.

A most important result, which has achieved the status of a reference point in
minimax theory is that of Sion [16] who proved the following:

Theorem 1. Let X be a convex set in a topological vector space, Y be a compact
convex set in a topological vector space and f : X ×Y → R be an upper-lower-semi-
continuous quasi-concave-convex function. Then min

y∈Y
sup
x∈X

f(x, y) = sup
x∈X

min
y∈Y

f(x, y).

In [8] Fl̊am and Greco introduced what they called the simplex property. Let us
recall this concept. A map T : X → Y between two convex sets has the simplex
property if for any simplex S ⊂ X of dimension at least one and for any vertex
v ∈ S,

if
⋂

x∈S\{v}
T (x) 6= ∅ then

⋂

x∈S

T (x) 6= ∅.

The result which we now state forthwith is due to Fl̊am and Greco [8 Theorem
2.2] and relying on it, the two authors have obtained a generalization of Sion’s
minimax theorem.

Theorem 2. Let X and Y be convex subsets of topological vector spaces and T :
X ( Y be a concave-convex map with nonempty compact values. If T has the
simplex property, then

⋂
x∈X T (x) 6= ∅.

Unfortunately, the simplex property is rather elusive; there is still no convincing
analytic translation of this property.

In this paper we shall see that if either X or Y is paracompact, we can replace
the simplex property with other property but of topological nature. This property,
introduced by Wu and Shen [18], and called the local intersection property is defined
as follows:

Let X and Y be two topological spaces. A map T : X ( Y is said to have the
local intersection property if for each x ∈ X with T (x) 6= ∅ there exists an open
neighborhood V (x) of x such that

⋂
z∈V (x) T (z) 6= ∅.

It is not hard to see that each map with open fibers has the local intersection
property but the example given in [18 p. 63] shows that the converse is not true.

Further on all topological spaces will be assumed separated.
The following lemma is a particular case of Theorem 1 in [18].

Lemma 3. Let X be a paracompact topological space and Y be convex subset of a
topological vector space. If T : X ( Y is a map with nonempty convex values having
the local intersection property, then it admits a continuous selection, i.e. there is a
continuous function p : X → Y such that p(x) ∈ T (x) for each x ∈ X.
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Let X and Y be topological spaces and λ a real number. A function f : X×Y →
R is said to be λ-transfer upper semicontinuous (resp., weakly λ-transfer upper
semicontinuous) on X if for all x ∈ X and y ∈ Y with f(x, y) < λ there exist
some point y′ ∈ Y and a neighborhood V (x) of x such that f(z, y′) < λ (resp.,
f(z, y′) ≤ λ) for all z ∈ V (x).

The concept of λ-transfer upper semicontinuity has been introduced by Tian
[17] but that of weakly λ-transfer upper semicontinuity seems to be new. Obviously
upper semicontinuity⇒ λ-transfer upper semicontinuity⇒ weakly λ-transfer upper
semicontinuity, for any λ ∈ R, and not conversely.

The following example gives a function which is weakly λ-transfer upper semi-
continuous but not λ-transfer upper semicontinuous on X, for some λ ∈ R.

Example. Let X = Y = R and f : R× R→ R defined by

f(x, y) =
{

0 if x + y ∈ Q
1 if x + y ∈ R \Q.

Then f is weakly 1-transfer upper semicontinuous but not 1-transfer upper semi-
continuous in x.

Lemma 4. Let f : X × Y → R be a function and λ a real number such that
λ > sup

x∈X
inf
y∈Y

f(x, y). If f is weakly λ-transfer upper semicontinuous on X, then the

map Tλ defined by (2) has the local intersection property.

Proof. Since λ > sup
x∈X

inf
y∈Y

f(x, y), for x ∈ X arbitrarily fixed there exists y ∈ Y such

that f(x, y) < λ, hence y ∈ Tλ(x). Since f is weakly λ-transfer upper semicontinu-
ous on X, there exist y′ ∈ Y and a neighborhood V (x) of x such that

y′ ∈
⋂

z∈V (x)

{y ∈ Y : f(z, y) < λ} =
⋂

z∈V (x)

Tλ(x). ¤

Another necessary concept is that of map with KKM property, introduced by
Chang and Yen [3] and defined as follows.

Assume that X is a convex subset of a vector topological space and Y is a
topological space. If S, T : X ( Y are two maps such that T (coA) ⊂ S(A) for each
nonempty finite subset A of X, then S is called a generalized KKM map w.r.t. T .
We say that a map T : X ( Y has the KKM property if for any map S : X ( Y
generalized KKM w.r.t. T , the family {S(x) : x ∈ X} has the finite intersection
property (where S(x) denote the closure of S(x)).

Let us observe that if T : X ( Y is a concave-convex map, then by (1) one can
easily prove, by induction, that T is a generalized KKM map w.r.t. itself.

2. Basic results

In this section we establish several existence theorems of constant selections for
concave-convex or only concave maps. From each of these theorems we shall derive
a Sion type minimax theorem.
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Theorem 5. Let X be a paracompact convex set and Y be a convex set, each in
a topological vector space. If T : X ( Y is a concave-convex map with nonempty
closed values having the local intersection property, then T has the finite intersection
property. If T (x) is compact for at least one x ∈ X, then

⋂
x∈X T (x) 6= ∅.

Proof. It suffices to proof the first part of the theorem, the last part resulting by
a standard topological argument. By Lemma 3, it follows that T has a continuous
selection p. Since T (coA) ⊂ T (A), it follows that p(coA) ⊂ T (A) for each nonempty
finite set A ⊂ X, i.e., T is a generalized KKM map w.r.t. p. Since any continuous
function has the KKM property (see [15, Theorem 4]), T has the finite intersection
property. ¤

If X is arbitrary set and Y topological space we say that a function f : X×Y → R
is inf-compact on Y (see [8]) if for any λ ∈ R there exists x0 ∈ X such that
{y ∈ Y : f(x0, y) ≤ λ} is relatively compact.

Corollary 6. Let X be a paracompact convex set and Y be a convex set, each in a
topological vector space. Suppose f : X × Y → R is a function:

(i) quasi-concave-convex;
(ii) lower semicontinuous inf-compact on Y ;
(iii) weakly λ-transfer upper semicontinuous on X, for any λ > sup

x∈X
inf
y∈Y

f(x, y).

Then, inf
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

inf
y∈Y

f(x, y).

Proof. As we have already seen it suffices to show that for any λ > sup
x∈X

inf
y∈Y

f(x, y)

the map Tλ : X ( Y defined by (2) satisfies
⋂

x∈X Tλ(x) 6= ∅. By (i), Tλ is concave-
convex map, by (ii) Tλ has closed values and Tλ(x0) is compact for some x0 ∈ X,
and by (iii), via Lemma 4, Tλ has the local intersection property. The desired
conclusion follows now from Theorem 5. ¤

Theorem 7. Let X be a convex subset of a locally convex space, Y be a convex
subset of a topological vector space and T : X ( Y be a concave-convex map
with nonempty closed values having the local intersection property. Then, for each
compact K ⊂ X, T |coK has the finite intersection property.

Proof. Since K is compact in a locally convex space, coK is paracompact by Lemma
1 in [5]. Apply Theorem 5 to the map T |coK . ¤

Remark. In [10, Proposition 2.3] Greco proves that if X and Y are convex
subsets of topological vector spaces and T : X ( Y is a concave-convex map
with closed values, then

⋂
x∈X T (x) 6= ∅ provided that there exists a finite open

cover {G1, . . . , Gn} of X such that
⋂

x∈Gi
T (x) 6= ∅ for each i ∈ {1, . . . , n}. It is

easy to see that a map T with nonempty values has the local intersection property
if and only if there exists an open cover G of X such that

⋂
x∈G T (x) 6= ∅ for each

G ∈ G. Therefore, when X is paracompact, Greco’s result remains valid if the open
cover is infinite.

It woud be of some interest to compare the next corollary with Theorem 4 in
[12].
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Corollary 8. Let X be a convex subset of a locally convex space, Y a compact subset
of a topological vector space and f : X × Y → R a function lower semicontinuous
on Y that satisfies conditions (i),(iii) in Corollary 6. Then

sup
K⊂X

inf
y∈Y

sup
x∈coK

f(x, y) = sup
x∈X

inf
y∈Y

f(x, y),

where the supremum on the left-hand side is taken over all compact subsets of X.

Proof. We always have

sup
x∈X

inf
y∈Y

f(x, y) ≤ sup
K⊂X

inf
y∈Y

sup
x∈coK

f(x, y).

To prove the reverse inequality choose a real number λ such that λ > sup
x∈X

inf
y∈Y

f(x, y).

By Theorem 7 and taking into account the compactness of Y , it follows that for
each compact K ⊂ X there exists y ∈ ⋂

x∈coK Tλ(x). Therefore for each compact
K ⊂ X we have inf

y∈Y
sup

x∈coK
f(x, y) ≤ λ, whence sup

K⊂X
inf
y∈Y

sup
x∈coK

f(x, y) ≤ λ. Clearly

this implies the desired inequality. ¤

A map T : X ( Y (X, Y topological spaces) is said to be transfer closed-
valued [17], if for any x ∈ X, y ∈ Y with y /∈ T (x) there exists z ∈ X such that
y /∈ T (z). It has be shown in [17] that T is a transfer closed-valued map if and only
if

⋂
x∈X T (x) =

⋂
x∈X T (x).

The next result is a version of Theorem 5 and the proof is similar.

Theorem 9. Let X be a paracompact convex set and Y be a convex set, each in
a topological vector space. Let T : X ( Y be a transfer closed-valued concave-
convex map with nonempty values having the local intersection property. If T (x) is
relatively compact for at least one x ∈ X, then

⋂
x∈X T (x) 6= ∅.

A function f : X×Y → R (X, Y topological spaces) is said to be λ-transfer lower
semicontinuous on Y , for some real λ (see [17]), if for all x ∈ X and y ∈ Y with
f(x, y) > λ there exists some point z ∈ X and a neighborhood V (y) of y such that
f(z, y′) > λ for all y′ ∈ V (y). It can be easily verified that f is λ-transfer lower
semicontinuous on Y if and only if Tλ is transfer closed-valued map.

From Theorem 9 one obtains

Corollary 10. Let X be a paracompact convex set and Y be a convex set, each in
a topological vector space. Suppose that f : X × Y → R is a function

(i) quasi-concave-convex;
(ii) weakly λ-transfer upper semicontinuous on X and λ-transfer lower semicon-

tinuous on Y , for any λ > sup
x∈X

inf
y∈Y

f(x, y);

(iii) inf-compact on Y .

Then inf
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

inf
y∈Y

f(x, y).

Next theorem generalizes under many aspects Proposition 5 (Intersection prop-
erty for multifunctions with marginally closed values) in [11].
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Theorem 11. Let X be a finite dimensional convex set and Y a convex set. Suppose
that either (a) X is compact and Y is a paracompact subset of a topological vector
space, or (b) Y is a compact subset of a locally convex space. Let T : X ( Y be a
concave map satisfying the following conditions:

(i)
⋂

x∈U T (x) is closed for every open subset U of X;
(ii) there exists a map Ω : X ( Y with nonempty convex values and with the

local intersection property such that Ω ⊂ T .
Then

⋂
x∈X T (x) 6= ∅.

Proof. By Lemma 3 there exists a continuous selection of Ω, p : X → Y . Obviously
p(x) ∈ T (x) for each x ∈ X.

Let us suppose that
⋂

x∈X T (x) = ∅. This means that the map T ∗ has nonempty
values. By (i), T ∗ is lower semicontinuous. Since T is a concave map, T ∗ has convex
values. Hence, since the values of T ∗ are finite dimensional , by Michael’s selection
theorem [14, Theorem 3.1”’], there is a continuous selection p∗ : Y → X of T ∗.

In case (a), by Brouwer’s fixed point theorem, the continuous function p∗ ◦ p :
X → X has a fixed point, while in case (b), by Tychonoff’s fixed point theorem,
p ◦ p∗ : Y → Y has a fixed point. Thus, in both cases, there exist x0 ∈ X and
y0 ∈ Y such that y0 = p(x0) and x0 = p∗(y0). On the one hand we have y0 =
p(x0) ∈ T (x0). On the other hand we have x0 = p∗(y0) ∈ T ∗(y0), hence y0 /∈ T (x0).
This contradiction completes the proof. ¤

A function f : X × Y → R is said to be marginally lower semicontinuous on
Y (see [11]) if for every open subset U of X the function y → sup

x∈U
f(x, y) is lower

semicontinuous on Y . It is clear that any function lower semicontinuous on Y is
marginally lower semicontinuous on Y but the example given in [1, p.249] shows
that the converse is not true.

Corollary 12. Let X and Y be as in Theorem 11. Let f, g : X × Y → R be two
functions such that:

(i) f ≤ g;
(ii) f is quasiconcave on X;
(iii) f is marginally lower semicontinuous on Y ;
(iv) g is quasiconvex on Y ;
(v) g is weakly λ-transfer upper semicontinuous on X, for any λ> sup

x∈X
inf
y∈Y

g(x, y).

Then inf
y∈Y

sup
x∈X

f(x, y) ≤ sup
x∈X

inf
y∈Y

g(x, y).

Proof. Let λ > sup
x∈X

inf
y∈Y

g(x, y) be arbitrary fixed. Define Tλ,Ωλ : X ( Y by

Tλ(x) = {y ∈ Y : f(x, y) ≤ λ}, Ωλ(x) = {y ∈ Y : g(x, y) ≤ λ}.
From (ii), Tλ is concave map. Since f is marginally lower semicontinuous on Y , for
each open U ⊂ X the set

⋂

x∈U

Tλ(x) = {y ∈ Y : sup
x∈U

f(x, y) ≤ λ}
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is closed, hence Tλ satisfies condition (i) in Theorem 11. By (i), Ωλ ⊂ Tλ, by (iv),
Ωλ has nonempty convex values, and by (v), Ωλ has the local intersection property.
Applying Theorem 11 we get

⋂
x∈X Tλ(x) 6= ∅, i.e., inf

y∈Y
sup
x∈X

≤ λ, and the proof is

complete. ¤

The previous corollary could be compared with earlier two function minimax
inequalities due to Fan [7] and Liu [13].

Theorem 13. Let X be a compact convex set in a locally convex space, Y a convex
set in a topological vector space and T : X ( Y a concave map satisfying the
following conditions:

(i) T−1(y) is open in X for each y ∈ Y ;
(ii)

⋂
x∈F T (x) is open for every closed subset F of X;

(iii) there exists a map Ω : X ( Y with nonempty convex values and with the
local intersection property such that Ω ⊂ T .

Then
⋂

x∈X T (x) 6= ∅.
Proof. By Lemma 3, there exists a continuous selection of Ω, p : X → Y . We have
p(x) ∈ T (x) for each x ∈ X.

By way of contradiction suppose that
⋂

x∈X T (x) = ∅. Then T ∗ has nonempty
values. By (ii), T ∗ is upper semicontinuous. Moreover the values of T ∗ are closed
(by (i)) and convex (since T is concave map). Thus the map T ∗ ◦ p is upper
semicontinuous with nonempty closed convex values. From Fan-Glicksberg fixed
point theorem (see [6],[9]), there exists x0 ∈ X such that x0 ∈ T ∗(p(x0)). Put
y0 = p(x0) and obtain the following contradiction

y0 = p(x0) ∈ T (x0),

x0 ∈ T ∗(y0) ⇒ y0 /∈ T (x0). ¤

Corollary 14. Let X be a compact convex set in a locally convex space and Y be
a convex set in a topological vector space. Let f, g : X × Y → R be two functions
such that:

(i) f ≤ g;
(ii) f is quasiconcave on X;
(iii) f is upper semicontinuous on X × Y ;
(iv) g is quasiconvex on Y ;
(v) g is weakly λ-transfer upper semicontinuous on X, for any λ> sup

x∈X
inf
y∈Y

g(x, y).

Then inf
y∈Y

max
x∈X

f(x, y) ≤ sup
x∈X

inf
y∈Y

g(x, y).

Proof. First, let us observe that if f is upper semicontinuous, then for each y ∈
Y , f(·, y) is also an upper semicontinuous function of x on X and therefore its
maximum, max

x∈X
f(x, y) on the compact set X exists.

Let λ > sup
x∈X

inf
y∈Y

g(x, y) be arbitrarily fixed. Define Tλ,Ωλ : X ( Y by

Tλ(x) = {y ∈ Y : f(x, y) < λ}, Ωλ(x) = {y ∈ Y : g(x, y) < λ}.
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From the hypotheses it readily follows that Tλ is concave map with open fibers,
and Ωλ is a map with nonempty convex values having the local intersection property.

We show that Tλ satisfies condition (ii) in Theorem 13, or equaivalently that T ∗λ
is upper semicontinuous. Since f is upper semicontinuous on X×Y the graph of T ∗λ ,
that is the set {(y, x) ∈ Y ×X : f(x, y) ≥ λ} is closed in Y ×X. Hence T ∗λ : Y → X
is a map with closed values and with closed graph. Since X is compact, it follows
that T ∗λ is upper semicontinuous (see [2, p.112]).

Applying Theorem 13 we get
⋂

x∈X Tλ(x) 6= ∅, i.e., inf
y∈Y

max
x∈X

f(x, y) ≤ λ, and the

proof is complete. ¤
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[7] K. Fan, Sur un théorème minimax, C. R. Acad. Sci. Paris Ser. I. Math. 259 (1964), 3925-3928.
[8] S. D. Fl̊am and G. H. Greco, Minimax and intersection theorems, in: Fixed Point Theory and
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