Journal of Nonlinear and Convex Analysis Volume 5, Number 3, 2004, 321–329

CONSTANT SELECTIONS FOR CONCAVE-CONVEX MAPS AND MINIMAX THEOREMS

MIRCEA BALAJ

ABSTRACT. In this paper we obtain several intersection theorems for the values of a concave-convex or only concave set-valued mapping. From each of these theorems we derive a Sion type minimax theorem.

1. INTRODUCTION AND PRELIMINARIES

Let X and Y be two sets and $T: X \multimap Y$ be a set-valued mapping (simply, a map), that is, a function that assigns to each $x \in X$ a unique subset T(x) of Y. For each $y \in Y$ the set $T^{-1}(y) = \{x \in X : y \in T(x)\}$ is called the *fiber* of T at the point y and the complement in X of $T^{-1}(y)$ is called the *cofiber* of T at y and is denoted by $T^*(y)$. To a map $T: X \multimap Y$ are therefore associated two maps $T^{-1}: Y \multimap X$, the *inverse* of T, and $T^*: Y \multimap X$, the *dual* of T. We will say that a map T has *finite intersection property* if the family of its values has the finite intersection property.

A map $T: X \multimap Y$ between two convex sets is said to be *convex* if its values are convex, and *concave* if the cofibers $T^*(y)$ are convex. One can readily verify that T is concave if and only if

(1)
$$T(co\{x_1, x_2\}) \subset T(x_1) \cup T(x_2)$$
 for any $x_1, x_2 \in X$,

where $co\{x_1, x_2\}$ denotes the convex hull of $\{x_1, x_2\}$.

T is concave-convex if it is both concave and convex. The concept of concaveconvex map has been introduced by Greco [10] and its motivation comes from minimax theory. Given a function $f: X \times Y \to \overline{\mathbb{R}} = \mathbb{R} \cup \{\pm \infty\}$ we would like to know if

$$\inf_{y \in Y} \sup_{x \in X} f(x, y) = \sup_{x \in X} \inf_{y \in Y} f(x, y).$$

We only need to establish the inequality

$$\inf_{y \in Y} \sup_{x \in X} f(x, y) \le \sup_{x \in X} \inf_{y \in Y} f(x, y)$$

and we can therefore assume that $\sup_{x \in X} \inf_{y \in Y} f(x, y) < \infty$. In this setting, to a real number λ one can associate a map $T_{\lambda} : X \multimap Y$ defined as follows

(2)
$$T_{\lambda}(x) = \{ y \in Y : f(x, y) \le \lambda \}.$$

Copyright (C) Yokohama Publishers

²⁰⁰⁰ Mathematics Subject Classification. 54C60, 49J35, 54H25.

Key words and phrases. concave-convex map, local intersection property, KKM property, fixed point, minimax.

Then, one can see that $\inf_{y \in Y} \sup_{x \in X} f(x, y) = \sup_{x \in X} \inf_{y \in Y} f(x, y)$ if and only if, the map T_{λ} has a constant selection (that is $\bigcap_{x \in X} T_{\lambda}(x) \neq \emptyset$), for each $\lambda > \sup_{x \in X} \inf_{y \in Y} f(x, y)$.

If X and Y are convex sets and the function f above is quasi-concave-convex (i.e., for each $x_0 \in X$, $y_0 \in Y$ and $\lambda \in \mathbb{R}$ the sets $\{x \in X : f(x, y_0) \geq \lambda\}$ and $\{y \in Y : f(x_0, y) \leq \lambda\}$ are convex), then for each real λ , T_{λ} is a concave-convex map. Therefore a theorem on the existence of constant selections for concave-convex maps can be transcribed to yield a minimax theorem for quasi-concave-convex functions.

A most important result, which has achieved the status of a reference point in minimax theory is that of Sion [16] who proved the following:

Theorem 1. Let X be a convex set in a topological vector space, Y be a compact convex set in a topological vector space and $f: X \times Y \to \overline{\mathbb{R}}$ be an upper-lower-semicontinuous quasi-concave-convex function. Then $\min_{y \in Y} \sup_{x \in X} f(x, y) = \sup_{x \in X} \min_{y \in Y} f(x, y)$.

In [8] Flåm and Greco introduced what they called the *simplex property*. Let us recall this concept. A map $T: X \to Y$ between two convex sets has the simplex property if for any simplex $S \subset X$ of dimension at least one and for any vertex $v \in S$,

if
$$\bigcap_{x \in S \setminus \{v\}} T(x) \neq \emptyset$$
 then $\bigcap_{x \in S} T(x) \neq \emptyset$.

The result which we now state forthwith is due to Flåm and Greco [8 Theorem 2.2] and relying on it, the two authors have obtained a generalization of Sion's minimax theorem.

Theorem 2. Let X and Y be convex subsets of topological vector spaces and T : $X \multimap Y$ be a concave-convex map with nonempty compact values. If T has the simplex property, then $\bigcap_{x \in X} T(x) \neq \emptyset$.

Unfortunately, the simplex property is rather elusive; there is still no convincing analytic translation of this property.

In this paper we shall see that if either X or Y is paracompact, we can replace the simplex property with other property but of topological nature. This property, introduced by Wu and Shen [18], and called the local intersection property is defined as follows:

Let X and Y be two topological spaces. A map $T: X \multimap Y$ is said to have the *local intersection property* if for each $x \in X$ with $T(x) \neq \emptyset$ there exists an open neighborhood V(x) of x such that $\bigcap_{z \in V(x)} T(z) \neq \emptyset$.

It is not hard to see that each map with open fibers has the local intersection property but the example given in [18 p. 63] shows that the converse is not true.

Further on all topological spaces will be assumed separated.

The following lemma is a particular case of Theorem 1 in [18].

Lemma 3. Let X be a paracompact topological space and Y be convex subset of a topological vector space. If $T : X \multimap Y$ is a map with nonempty convex values having the local intersection property, then it admits a continuous selection, i.e. there is a continuous function $p : X \to Y$ such that $p(x) \in T(x)$ for each $x \in X$.

Let X and Y be topological spaces and λ a real number. A function $f: X \times Y \to \mathbb{R}$ is said to be λ -transfer upper semicontinuous (resp., weakly λ -transfer upper semicontinuous) on X if for all $x \in X$ and $y \in Y$ with $f(x, y) < \lambda$ there exist some point $y' \in Y$ and a neighborhood V(x) of x such that $f(z, y') < \lambda$ (resp., $f(z, y') \leq \lambda$) for all $z \in V(x)$.

The concept of λ -transfer upper semicontinuity has been introduced by Tian [17] but that of weakly λ -transfer upper semicontinuity seems to be new. Obviously upper semicontinuity $\Rightarrow \lambda$ -transfer upper semicontinuity \Rightarrow weakly λ -transfer upper semicontinuity, for any $\lambda \in \mathbb{R}$, and not conversely.

The following example gives a function which is weakly λ -transfer upper semicontinuous but not λ -transfer upper semicontinuous on X, for some $\lambda \in \mathbb{R}$.

Example. Let $X = Y = \mathbb{R}$ and $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} 0 & \text{if } x + y \in \mathbb{Q} \\ 1 & \text{if } x + y \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Then f is weakly 1-transfer upper semicontinuous but not 1-transfer upper semicontinuous in x.

Lemma 4. Let $f : X \times Y \to \overline{\mathbb{R}}$ be a function and λ a real number such that $\lambda > \sup_{x \in X} \inf_{y \in Y} f(x, y)$. If f is weakly λ -transfer upper semicontinuous on X, then the map T_{λ} defined by (2) has the local intersection property.

Proof. Since $\lambda > \sup_{x \in X} \inf_{y \in Y} f(x, y)$, for $x \in X$ arbitrarily fixed there exists $y \in Y$ such that $f(x, y) < \lambda$, hence $y \in T_{\lambda}(x)$. Since f is weakly λ -transfer upper semicontinuous on X, there exist $y' \in Y$ and a neighborhood V(x) of x such that

$$y' \in \bigcap_{z \in V(x)} \{ y \in Y : f(z, y) < \lambda \} = \bigcap_{z \in V(x)} T_{\lambda}(x).$$

Another necessary concept is that of map with KKM property, introduced by Chang and Yen [3] and defined as follows.

Assume that X is a convex subset of a vector topological space and Y is a topological space. If $S, T : X \multimap Y$ are two maps such that $T(coA) \subset S(A)$ for each nonempty finite subset A of X, then S is called a *generalized KKM map* w.r.t. T. We say that a map $T : X \multimap Y$ has the *KKM property* if for any map $S : X \multimap Y$ generalized KKM w.r.t. T, the family $\{\overline{S}(x) : x \in X\}$ has the finite intersection property (where $\overline{S}(x)$ denote the closure of S(x)).

Let us observe that if $T: X \multimap Y$ is a concave-convex map, then by (1) one can easily prove, by induction, that T is a generalized KKM map w.r.t. itself.

2. Basic results

In this section we establish several existence theorems of constant selections for concave-convex or only concave maps. From each of these theorems we shall derive a Sion type minimax theorem.

Theorem 5. Let X be a paracompact convex set and Y be a convex set, each in a topological vector space. If $T: X \multimap Y$ is a concave-convex map with nonempty closed values having the local intersection property, then T has the finite intersection property. If T(x) is compact for at least one $x \in X$, then $\bigcap_{x \in X} T(x) \neq \emptyset$.

Proof. It suffices to proof the first part of the theorem, the last part resulting by a standard topological argument. By Lemma 3, it follows that T has a continuous selection p. Since $T(coA) \subset T(A)$, it follows that $p(coA) \subset T(A)$ for each nonempty finite set $A \subset X$, i.e., T is a generalized KKM map w.r.t. p. Since any continuous function has the KKM property (see [15, Theorem 4]), T has the finite intersection property.

If X is arbitrary set and Y topological space we say that a function $f: X \times Y \to \overline{\mathbb{R}}$ is *inf-compact* on Y (see [8]) if for any $\lambda \in \mathbb{R}$ there exists $x_0 \in X$ such that $\{y \in Y : f(x_0, y) \leq \lambda\}$ is relatively compact.

Corollary 6. Let X be a paracompact convex set and Y be a convex set, each in a topological vector space. Suppose $f: X \times Y \to \overline{\mathbb{R}}$ is a function:

- (i) quasi-concave-convex;
- (ii) lower semicontinuous inf-compact on Y;
- (iii) weakly λ -transfer upper semicontinuous on X, for any $\lambda > \sup_{x \in X} \inf_{y \in Y} f(x, y)$.

 $Then, \ \inf_{y\in Y} \sup_{x\in X} f(x,y) = \sup_{x\in X} \inf_{y\in Y} f(x,y).$

Proof. As we have already seen it suffices to show that for any $\lambda > \sup_{x \in X} \inf_{y \in Y} f(x, y)$ the map $T_{\lambda} : X \multimap Y$ defined by (2) satisfies $\bigcap_{x \in X} T_{\lambda}(x) \neq \emptyset$. By (i), T_{λ} is concaveconvex map, by (ii) T_{λ} has closed values and $T_{\lambda}(x_0)$ is compact for some $x_0 \in X$, and by (iii), via Lemma 4, T_{λ} has the local intersection property. The desired conclusion follows now from Theorem 5.

Theorem 7. Let X be a convex subset of a locally convex space, Y be a convex subset of a topological vector space and $T : X \multimap Y$ be a concave-convex map with nonempty closed values having the local intersection property. Then, for each compact $K \subset X$, $T|_{COK}$ has the finite intersection property.

Proof. Since K is compact in a locally convex space, coK is paracompact by Lemma 1 in [5]. Apply Theorem 5 to the map $T|_{coK}$.

Remark. In [10, Proposition 2.3] Greco proves that if X and Y are convex subsets of topological vector spaces and $T : X \multimap Y$ is a concave-convex map with closed values, then $\bigcap_{x \in X} T(x) \neq \emptyset$ provided that there exists a finite open cover $\{G_1, \ldots, G_n\}$ of X such that $\bigcap_{x \in G_i} T(x) \neq \emptyset$ for each $i \in \{1, \ldots, n\}$. It is easy to see that a map T with nonempty values has the local intersection property if and only if there exists an open cover \mathcal{G} of X such that $\bigcap_{x \in G} T(x) \neq \emptyset$ for each $G \in \mathcal{G}$. Therefore, when X is paracompact, Greco's result remains valid if the open cover is infinite.

It would be of some interest to compare the next corollary with Theorem 4 in [12].

324

Corollary 8. Let X be a convex subset of a locally convex space, Y a compact subset of a topological vector space and $f: X \times Y \to \overline{\mathbb{R}}$ a function lower semicontinuous on Y that satisfies conditions (i),(iii) in Corollary 6. Then

$$\sup_{K \subset X} \inf_{y \in Y} \sup_{x \in coK} f(x, y) = \sup_{x \in X} \inf_{y \in Y} f(x, y),$$

where the supremum on the left-hand side is taken over all compact subsets of X.

Proof. We always have

$$\sup_{x \in X} \inf_{y \in Y} f(x, y) \le \sup_{K \subset X} \inf_{y \in Y} \sup_{x \in coK} f(x, y).$$

To prove the reverse inequality choose a real number λ such that $\lambda > \sup_{x \in X} \inf_{y \in Y} f(x, y)$. By Theorem 7 and taking into account the compactness of Y, it follows that for each compact $K \subset X$ there exists $y \in \bigcap_{x \in coK} T_{\lambda}(x)$. Therefore for each compact $K \subset X$ we have $\inf_{y \in Y} \sup_{x \in coK} f(x, y) \leq \lambda$, whence $\sup_{K \subset X} \inf_{y \in Y} \sup_{x \in coK} f(x, y) \leq \lambda$. Clearly this implies the desired inequality.

A map $T : X \multimap Y$ (X, Y topological spaces) is said to be transfer closedvalued [17], if for any $x \in X$, $y \in Y$ with $y \notin T(x)$ there exists $z \in X$ such that $y \notin \overline{T(z)}$. It has be shown in [17] that T is a transfer closed-valued map if and only if $\bigcap_{x \in X} T(x) = \bigcap_{x \in X} \overline{T(x)}$.

The next result is a version of Theorem 5 and the proof is similar.

Theorem 9. Let X be a paracompact convex set and Y be a convex set, each in a topological vector space. Let $T : X \multimap Y$ be a transfer closed-valued concaveconvex map with nonempty values having the local intersection property. If T(x) is relatively compact for at least one $x \in X$, then $\bigcap_{x \in X} T(x) \neq \emptyset$.

A function $f: X \times Y \to \mathbb{R}$ (X, Y topological spaces) is said to be λ -transfer lower semicontinuous on Y, for some real λ (see [17]), if for all $x \in X$ and $y \in Y$ with $f(x, y) > \lambda$ there exists some point $z \in X$ and a neighborhood V(y) of y such that $f(z, y') > \lambda$ for all $y' \in V(y)$. It can be easily verified that f is λ -transfer lower semicontinuous on Y if and only if T_{λ} is transfer closed-valued map.

From Theorem 9 one obtains

Corollary 10. Let X be a paracompact convex set and Y be a convex set, each in a topological vector space. Suppose that $f: X \times Y \to \overline{\mathbb{R}}$ is a function

- (i) quasi-concave-convex;
- (ii) weakly λ-transfer upper semicontinuous on X and λ-transfer lower semicontinuous on Y, for any λ > sup inf f(x, y);
- (iii) inf-compact on Y.

Then $\inf_{y \in Y} \sup_{x \in X} f(x, y) = \sup_{x \in X} \inf_{y \in Y} f(x, y).$

Next theorem generalizes under many aspects Proposition 5 (Intersection property for multifunctions with marginally closed values) in [11].

Theorem 11. Let X be a finite dimensional convex set and Y a convex set. Suppose that either (a) X is compact and Y is a paracompact subset of a topological vector space, or (b) Y is a compact subset of a locally convex space. Let $T: X \multimap Y$ be a concave map satisfying the following conditions:

- (i) $\bigcap_{x \in U} T(x)$ is closed for every open subset U of X;
- (ii) there exists a map $\Omega : X \multimap Y$ with nonempty convex values and with the local intersection property such that $\Omega \subset T$.

Then $\bigcap_{x \in X} T(x) \neq \emptyset$.

Proof. By Lemma 3 there exists a continuous selection of $\Omega, p : X \to Y$. Obviously $p(x) \in T(x)$ for each $x \in X$.

Let us suppose that $\bigcap_{x \in X} T(x) = \emptyset$. This means that the map T^* has nonempty values. By (i), T^* is lower semicontinuous. Since T is a concave map, T^* has convex values. Hence, since the values of T^* are finite dimensional, by Michael's selection theorem [14, Theorem 3.1"], there is a continuous selection $p^*: Y \to X$ of T^* .

In case (a), by Brouwer's fixed point theorem, the continuous function $p^* \circ p$: $X \to X$ has a fixed point, while in case (b), by Tychonoff's fixed point theorem, $p \circ p^* : Y \to Y$ has a fixed point. Thus, in both cases, there exist $x_0 \in X$ and $y_0 \in Y$ such that $y_0 = p(x_0)$ and $x_0 = p^*(y_0)$. On the one hand we have $y_0 = p(x_0) \in T(x_0)$. On the other hand we have $x_0 = p^*(y_0) \in T^*(y_0)$, hence $y_0 \notin T(x_0)$. This contradiction completes the proof.

A function $f: X \times Y \to \overline{\mathbb{R}}$ is said to be marginally lower semicontinuous on Y (see [11]) if for every open subset U of X the function $y \to \sup_{x \in U} f(x, y)$ is lower semicontinuous on Y. It is clear that any function lower semicontinuous on Y is marginally lower semicontinuous on Y but the example given in [1, p.249] shows that the converse is not true.

Corollary 12. Let X and Y be as in Theorem 11. Let $f, g : X \times Y \to \overline{\mathbb{R}}$ be two functions such that:

- (i) $f \leq g;$
- (ii) f is quasiconcave on X;
- (iii) f is marginally lower semicontinuous on Y;
- (iv) g is quasiconvex on Y;
- (v) g is weakly λ -transfer upper semicontinuous on X, for any $\lambda > \sup_{x \in X} \inf_{y \in Y} g(x, y)$.

Then $\inf_{y \in Y} \sup_{x \in X} f(x, y) \le \sup_{x \in X} \inf_{y \in Y} g(x, y).$

Proof. Let $\lambda > \sup_{x \in X} \inf_{y \in Y} g(x, y)$ be arbitrary fixed. Define $T_{\lambda}, \Omega_{\lambda} : X \multimap Y$ by

$$T_{\lambda}(x) = \{ y \in Y : f(x, y) \le \lambda \}, \ \Omega_{\lambda}(x) = \{ y \in Y : g(x, y) \le \lambda \}.$$

From (ii), T_{λ} is concave map. Since f is marginally lower semicontinuous on Y, for each open $U \subset X$ the set

$$\bigcap_{x \in U} T_{\lambda}(x) = \{ y \in Y : \sup_{x \in U} f(x, y) \le \lambda \}$$

326

is closed, hence T_{λ} satisfies condition (i) in Theorem 11. By (i), $\Omega_{\lambda} \subset T_{\lambda}$, by (iv), Ω_{λ} has nonempty convex values, and by (v), Ω_{λ} has the local intersection property. Applying Theorem 11 we get $\bigcap_{x \in X} T_{\lambda}(x) \neq \emptyset$, i.e., $\inf_{y \in Y} \sup_{x \in X} \leq \lambda$, and the proof is complete.

The previous corollary could be compared with earlier two function minimax inequalities due to Fan [7] and Liu [13].

Theorem 13. Let X be a compact convex set in a locally convex space, Y a convex set in a topological vector space and $T : X \multimap Y$ a concave map satisfying the following conditions:

- (i) $T^{-1}(y)$ is open in X for each $y \in Y$;
- (ii) $\bigcap_{x \in F} T(x)$ is open for every closed subset F of X;
- (iii) there exists a map Ω : X → Y with nonempty convex values and with the local intersection property such that Ω ⊂ T.

Then $\bigcap_{x \in X} T(x) \neq \emptyset$.

Proof. By Lemma 3, there exists a continuous selection of Ω , $p: X \to Y$. We have $p(x) \in T(x)$ for each $x \in X$.

By way of contradiction suppose that $\bigcap_{x \in X} T(x) = \emptyset$. Then T^* has nonempty values. By (ii), T^* is upper semicontinuous. Moreover the values of T^* are closed (by (i)) and convex (since T is concave map). Thus the map $T^* \circ p$ is upper semicontinuous with nonempty closed convex values. From Fan-Glicksberg fixed point theorem (see [6],[9]), there exists $x_0 \in X$ such that $x_0 \in T^*(p(x_0))$. Put $y_0 = p(x_0)$ and obtain the following contradiction

$$y_0 = p(x_0) \in T(x_0),$$

$$x_0 \in T^*(y_0) \Rightarrow y_0 \notin T(x_0).$$

Corollary 14. Let X be a compact convex set in a locally convex space and Y be a convex set in a topological vector space. Let $f, g : X \times Y \to \overline{\mathbb{R}}$ be two functions such that:

- (i) $f \leq g$;
- (ii) f is quasiconcave on X;
- (iii) f is upper semicontinuous on $X \times Y$;
- (iv) g is quasiconvex on Y;
- (v) g is weakly λ -transfer upper semicontinuous on X, for any $\lambda > \sup_{x \in X} \inf_{y \in Y} g(x, y)$.

Then $\inf_{y \in Y} \max_{x \in X} f(x, y) \le \sup_{x \in X} \inf_{y \in Y} g(x, y).$

Proof. First, let us observe that if f is upper semicontinuous, then for each $y \in Y$, $f(\cdot, y)$ is also an upper semicontinuous function of x on X and therefore its maximum, $\max_{x \in X} f(x, y)$ on the compact set X exists.

Let
$$\lambda > \sup_{x \in X} \inf_{y \in Y} g(x, y)$$
 be arbitrarily fixed. Define $T_{\lambda}, \Omega_{\lambda} : X \multimap Y$ by
 $T_{\lambda}(x) = \{x \in Y : f(x, y) \in \lambda\} = \Omega_{\lambda}(x) = \{y \in Y : f(x, y) \in \lambda\}$

$$T_{\lambda}(x) = \{y \in Y : f(x,y) < \lambda\}, \ \Omega_{\lambda}(x) = \{y \in Y : g(x,y) < \lambda\}.$$

From the hypotheses it readily follows that T_{λ} is concave map with open fibers, and Ω_{λ} is a map with nonempty convex values having the local intersection property.

We show that T_{λ} satisfies condition (ii) in Theorem 13, or equaivalently that T_{λ}^* is upper semicontinuous. Since f is upper semicontinuous on $X \times Y$ the graph of T_{λ}^* , that is the set $\{(y, x) \in Y \times X : f(x, y) \geq \lambda\}$ is closed in $Y \times X$. Hence $T_{\lambda}^* : Y \to X$ is a map with closed values and with closed graph. Since X is compact, it follows that T_{λ}^* is upper semicontinuous (see [2, p.112]).

Applying Theorem 13 we get $\bigcap_{x \in X} T_{\lambda}(x) \neq \emptyset$, i.e., $\inf_{y \in Y} \max_{x \in X} f(x, y) \leq \lambda$, and the proof is complete.

References

- R. C. Bassanezi and G. H. Greco, A minimax theorem for marginally upper/lower semicontinuous functions, Topol. Methods Nonlinear Anal. 5 (1995), 249–253.
- [2] C. Berge, Topological Spaces, Edinburgh, London, Oliver and Boyel, 1963.
- [3] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203 (1996), 224–235.
- [4] X. P. Ding, New H-KKM theorems and their applications to geometric property, coincidence theorems, minimax inequalities and maximal elements, Indian J. Pure Appl. Math. 26 (1995), 1–19.
- [5] X. P. Ding, W. K. Kim and K. K. Tan, A selection theorem and its applications, Bull. Austral. Math. Soc. 46 (1992), 205–212.
- K. Fan, Fixed points and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 131–136.
- [7] K. Fan, Sur un théorème minimax, C. R. Acad. Sci. Paris Ser. I. Math. 259 (1964), 3925-3928.
- [8] S. D. Flåm and G. H. Greco, *Minimax and intersection theorems*, in: Fixed Point Theory and Applications (M. A. Théra, J. B. Baillon, eds.), Longman Scientific and Technical, 1990, pp. 123–140.
- I. L. Glicksberg, A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170–174.
- [10] G. H. Greco, Minimax theorems and saddling transformations, J. Math. Anal. Appl. 147 (1990), 180–197.
- [11] G. H. Greco and M. P. Moschen, A minimax inequality for marginally semicontinuous functions, in Minimax Theory and Applications (B. Ricceri, S. Simons eds.), Kluwer Academic Publishers, Dordrecht, 1998, pp. 41-50.
- [12] C. W. Ha, Minimax and fixed point theorems, Math. Ann. 248 (1980), 73-77.
- [13] F. C. Liu, A note on the von Neumann-Sion minimax principle, Bull. Inst. Math. Acad. Sinica 6 (1978), 517–524.
- [14] E. Michael, Continuous selections I, Ann. Math. 63 (1956), 361–382.
- [15] S. Park, Generalizations of Ky Fan's matching theorems and their applications, J. Math. Anal. Appl. 141 (1989), 164–176.
- [16] M. Sion, On general minimax theorems, Pacific J. Math. 8 (1958), 171-176.
- [17] G. Q. Tian, Generalization of the FKKM theorem and the Ky Fan minimax inequality, with applications to maximal elements, price equilibrium, and complementarity, J. Math. Anal. Appl. 170 (1992), 457–471.
- [18] X. Wu and S. Shen, A further generalization of Yannelis-Prabhakar's continuous selection and its applications, J. Math. Anal. Appl. 197 (1996), 61–74.

CONSTANT SELECTIONS FOR CONCAVE-CONVEX MAPS AND MINIMAX THEOREMS 329

Mircea Balaj

Department of Mathematics, University of Oradea, 3700, Oradea, ROMANIA *E-mail address:* mbalaj@uoradea.ro