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CONSTANT SELECTIONS FOR CONCAVE-CONVEX MAPS AND
MINIMAX THEOREMS

MIRCEA BALAJ

ABSTRACT. In this paper we obtain several intersection theorems for the values
of a concave-convex or only concave set-valued mapping. From each of these
theorems we derive a Sion type minimax theorem.

1. INTRODUCTION AND PRELIMINARIES

Let X and Y be two sets and T : X — Y be a set-valued mapping (simply, a
map), that is, a function that assigns to each € X a unique subset T'(z) of Y. For
each y € Y theset T~(y) = {z € X : y € T(x)} is called the fiber of T at the point
y and the complement in X of T~!(y) is called the cofiber of T at y and is denoted
by T*(y). Toamap T : X —o Y are therefore associated two maps T~ ! : Y —o X,
the inverse of T, and T* : Y — X, the dual of T. We will say that a map T
has finite intersection property if the family of its values has the finite intersection
property.

A map T : X — Y between two convex sets is said to be convex if its values are
convex, and concave if the cofibers T*(y) are convex. One can readily verify that T
is concave if and only if

(1) T(co{x1,z2}) C T(x1) UT (z2) for any z1,x2 € X,

where co{x1,z2} denotes the convex hull of {z1, z2}.

T is concave-convez if it is both concave and convex. The concept of concave-
convex map has been introduced by Greco [10] and its motivation comes from
minimax theory. Given a function f : X x Y — R = RU {400} we would like to
know if

inf sup f(z,y) = sup inf f(z,y).
YeY gex zeX YEY

We only need to establish the inequality

inf sup f(z,y) < sup 1nf fz,y)
yeY zeXx zeXY

and we can therefore assume that sup mf f(z,y) < oco. In this setting, to a real

rEX YE
number A one can associate a map T} : X —o Y defined as follows
(2) Ty(z) ={y €Y : f(z,y) < AL
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Then, one can see that inf sup f(x,y) = sup 1nf f(x,y) if and only if, the map T
YEY peX

has a constant selection (that is (1, x T)\( ) ;é (Z)) for each A > sup inf f(x,y).
zeX YEY
If X and Y are convex sets and the function f above is quasi-concave-convex

(i.e., for each zp € X, yo € Y and A € R the sets {zx € X : f(z,y0) > A} and
{y €Y : f(zo,y) < A} are convex), then for each real A, T) is a concave-convex map.
Therefore a theorem on the existence of constant selections for concave-convex maps
can be transcribed to yield a minimax theorem for quasi-concave-convex functions.

A most important result, which has achieved the status of a reference point in
minimax theory is that of Sion [16] who proved the following:

Theorem 1. Let X be a convex set in a topological vector space, Y be a compact
convez set in a topological vector space and f : X xY — R be an upper-lower-semi-
continuous quasi-concave-convex function. Then min sup f(x,y) = sup min f(z,y).
yeY zeX zeX yeY

In [8] Flam and Greco introduced what they called the simplex property. Let us
recall this concept. A map T : X — Y between two convex sets has the simplex
property if for any simplex S C X of dimension at least one and for any vertex
vES,

if ﬂ T(x) # 0 then ﬂ T(xz)#0

zeS\{v} z€S

The result which we now state forthwith is due to Flam and Greco [8 Theorem
2.2] and relying on it, the two authors have obtained a generalization of Sion’s
minimax theorem.

Theorem 2. Let X and Y be convex subsets of topological vector spaces and T :
X — Y be a concave-conver map with nonempty compact values. If T has the

simplex property, then (\,cx T(x) # 0.

Unfortunately, the simplex property is rather elusive; there is still no convincing
analytic translation of this property.

In this paper we shall see that if either X or Y is paracompact, we can replace
the simplex property with other property but of topological nature. This property,
introduced by Wu and Shen [18], and called the local intersection property is defined
as follows:

Let X and Y be two topological spaces. A map T : X — Y is said to have the
local intersection property if for each x € X with T'(z) # () there exists an open
neighborhood V'(z) of @ such that ¢y (,) T(2) # 0.

It is not hard to see that each map with open fibers has the local intersection
property but the example given in [18 p. 63] shows that the converse is not true.

Further on all topological spaces will be assumed separated.

The following lemma is a particular case of Theorem 1 in [18].

Lemma 3. Let X be a paracompact topological space and Y be convexr subset of a
topological vector space. If T : X —o Y is a map with nonempty conver values having
the local intersection property, then it admits a continuous selection, i.e. there is a
continuous function p: X —'Y such that p(x) € T(x) for each x € X.
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Let X and Y be topological spaces and A a real number. A function f: X xY —
R is said to be \-transfer upper semicontinuous (resp., weakly \-transfer upper
semicontinuous) on X if for all z € X and y € Y with f(z,y) < A there exist
some point ¢y’ € Y and a neighborhood V(x) of = such that f(z,¢y') < A (resp.,
f(z,y') <) for all z € V(z).

The concept of A-transfer upper semicontinuity has been introduced by Tian
[17] but that of weakly A-transfer upper semicontinuity seems to be new. Obviously
upper semicontinuity = A-transfer upper semicontinuity = weakly A-transfer upper
semicontinuity, for any A € R, and not conversely.

The following example gives a function which is weakly A-transfer upper semi-
continuous but not A-transfer upper semicontinuous on X, for some A € R.

Example. Let X =Y =R and f : R x R — R defined by

_J O ifz4+yeQ
f(w’y)_{ 1 ifz+yeR\Q.

Then f is weakly 1-transfer upper semicontinuous but not 1-transfer upper semi-
continuous in z.

Lemma 4. Let f : X x Y — R be a function and X\ a real number such that

A > sup in£ f(x,y). If f is weakly A-transfer upper semicontinuous on X, then the
reX YE

map Ty defined by (2) has the local intersection property.

Proof. Since \ > sup in}f/ f(z,y), for x € X arbitrarily fixed there exists y € Y such
r€EX YE

that f(z,y) < A, hence y € T)(z). Since f is weakly A-transfer upper semicontinu-
ous on X, there exist ¥’ € Y and a neighborhood V (z) of z such that

y € ﬂ {yeY: f(z,y) <A} = m Ty (z). O

z€V(x) zeV(x)

Another necessary concept is that of map with KKM property, introduced by
Chang and Yen [3] and defined as follows.

Assume that X is a convex subset of a vector topological space and Y is a
topological space. If S,T": X —o Y are two maps such that T(coA) C S(A) for each
nonempty finite subset A of X, then S is called a generalized KKM map w.r.t. T.
We say that a map T : X — Y has the KKM property if for any map S : X — Y
generalized KKM w.r.t. T, the family {S(z) : z € X} has the finite intersection
property (where S(x) denote the closure of S(x)).

Let us observe that if T : X —o Y is a concave-convex map, then by (1) one can
easily prove, by induction, that T is a generalized KKM map w.r.t. itself.

2. BASIC RESULTS

In this section we establish several existence theorems of constant selections for
concave-convex or only concave maps. From each of these theorems we shall derive
a Sion type minimax theorem.
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Theorem 5. Let X be a paracompact convex set and Y be a convex set, each in
a topological vector space. If T : X —o Y 1is a concave-convex map with nonempty
closed values having the local intersection property, then T has the finite intersection
property. If T(x) is compact for at least one x € X, then (|, cx T(x) # 0.

Proof. It suffices to proof the first part of the theorem, the last part resulting by
a standard topological argument. By Lemma 3, it follows that 7" has a continuous
selection p. Since T'(coA) C T(A), it follows that p(coA) C T'(A) for each nonempty
finite set A C X, i.e., T' is a generalized KKM map w.r.t. p. Since any continuous
function has the KKM property (see [15, Theorem 4]), T has the finite intersection
property. [

If X is arbitrary set and Y topological space we say that a function f : X xY — R
is inf-compact on Y (see [8]) if for any A € R there exists 9 € X such that
{y €Y : f(zo,y) < A} is relatively compact.

Corollary 6. Let X be a paracompact conver set and Y be a convex set, each in a
topological vector space. Suppose f: X XY — R is a function:

(i) quasi-concave-convex;
(ii) lower semicontinuous inf-compact on Y;

(i) weakly A-transfer upper semicontinuous on X, for any A > sup 1nf fx,y).
x€EX Y€

Then, inf sup f(x,y) = sup inf f(x,y).
YEY geX zeX YEY

Proof. As we have already seen it suffices to show that for any A > sup 1nf flz,y)
r€X YE
the map T : X —o Y defined by (2) satisfies (,cx Ta(x) # 0. By (i), T) is concave-

convex map, by (ii) 7 has closed values and T)(xo) is compact for some z¢ € X,
and by (iii), via Lemma 4, T has the local intersection property. The desired
conclusion follows now from Theorem 5. O

Theorem 7. Let X be a convexr subset of a locally convexr space, Y be a convex
subset of a topological vector space and T : X — Y be a concave-conver map
with nonempty closed values having the local intersection property. Then, for each
compact K C X, T|cox has the finite intersection property.

Proof. Since K is compact in a locally convex space, coK is paracompact by Lemma
1 in [5]. Apply Theorem 5 to the map T'|cox- O

Remark. In [10, Proposition 2.3] Greco proves that if X and Y are convex
subsets of topological vector spaces and T' : X — Y is a concave-convex map
with closed values, then (), T(2) # 0 provided that there exists a finite open
cover {G1,...,Gp} of X such that (,cq, T(z) # 0 for each i € {1,...,n}. It is
easy to see that a map T with nonempty values has the local intersection property
if and only if there exists an open cover G of X such that (., T(z) # 0 for each
G € G. Therefore, when X is paracompact, Greco’s result remains valid if the open
cover is infinite.

It woud be of some interest to compare the next corollary with Theorem 4 in
[12].
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Corollary 8. Let X be a convez subset of a locally convez space, Y a compact subset
of a topological vector space and f : X XY — R a function lower semicontinuous
on'Y that satisfies conditions (i), (iii) in Corollary 6. Then

sup inf sup f(z,y) = sup mf flx,y),
KcXxY€Y zecok z€XY

where the supremum on the left-hand side is taken over all compact subsets of X.
Proof. We always have

sup inf f(z,y) < sup inf sup f(z,y).
zeX YEY KC XY€Y gecoK

To prove the reverse inequality choose a real number A such that A > sup 1nf f(z,y).
rEX Y€
By Theorem 7 and taking into account the compactness of Y, it follows that for

each compact K C X there exists y € (), c.ox Ta(x). Therefore for each compact

K C X we have inf sup f(z,y) < A\, whence sup inf sup f(z,y) < \. Clearly
YEY zecoK KCcX Y€Y zecoK
this implies the desired inequality. O

Amap T : X — Y (X,Y topological spaces) is said to be transfer closed-
valued [17], if for any = € X, y € Y with y ¢ T'(z) there exists z € X such that
y ¢ T(z). It has be shown in [17] that T is a transfer closed-valued map if and only

if Npex T'(@) = MNaex T(x).

The next result is a version of Theorem 5 and the proof is similar.

Theorem 9. Let X be a paracompact convex set and Y be a convex set, each in
a topological vector space. Let T : X —o Y be a transfer closed-valued concave-
convex map with nonempty values having the local intersection property. If T'(z) is
relatively compact for at least one x € X, then (\,cx T(x) # 0.

A function f : X xY — R (X, Y topological spaces) is said to be A-transfer lower
semicontinuous on Y, for some real A (see [17]), if for all z € X and y € YV with
f(x,y) > A there exists some point z € X and a neighborhood V' (y) of y such that
f(z,y) > X for all ¥ € V(y). It can be easily verified that f is A-transfer lower
semicontinuous on Y if and only if T is transfer closed-valued map.

From Theorem 9 one obtains

Corollary 10. Let X be a paracompact convez set and Y be a convex set, each in
a topological vector space. Suppose that f: X xY — R is a function

(i) quasi-concave-convex;
(ii) weakly \-transfer upper semicontinuous on X and A-transfer lower semicon-

tinuous on'Y, for any \ > sup 1nf flx,y);
rEX YE

(iii) inf-compact on Y.
Then inf su r,y) = sup inf f(x,y).
erxGEf( y) mGEerf( )

Next theorem generalizes under many aspects Proposition 5 (Intersection prop-
erty for multifunctions with marginally closed values) in [11].
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Theorem 11. Let X be a finite dimensional convex set andY a convex set. Suppose
that either (a) X is compact and Y is a paracompact subset of a topological vector
space, or (b)Y is a compact subset of a locally convex space. Let T : X — Y be a
concave map satisfying the following conditions:

(i) Nyep T(x) is closed for every open subset U of X;
(i) there exists a map Q : X — Y with nonempty convex values and with the
local intersection property such that Q C T.

Then (Nyex T(x) # 0.

Proof. By Lemma 3 there exists a continuous selection of ,p : X — Y. Obviously
p(z) € T(z) for each x € X.

Let us suppose that (),cy 7'(z) = (). This means that the map 7™ has nonempty
values. By (i), T* is lower semicontinuous. Since 7" is a concave map, 7™ has convex
values. Hence, since the values of T™ are finite dimensional , by Michael’s selection
theorem [14, Theorem 3.17’], there is a continuous selection p* : Y — X of T*.

In case (a), by Brouwer’s fixed point theorem, the continuous function p* o p :
X — X has a fixed point, while in case (b), by Tychonoff’s fixed point theorem,
pop*:Y — Y has a fixed point. Thus, in both cases, there exist xo € X and
yo € Y such that yo = p(xp) and xg = p*(yo). On the one hand we have yy =
p(zo) € T(xp). On the other hand we have xy = p*(yo) € T*(yo), hence yo ¢ T'(xo).
This contradiction completes the proof. O

A function f : X x Y — R is said to be marginally lower semicontinuous on

Y (see [11]) if for every open subset U of X the function y — sup f(z,y) is lower
zeU
semicontinuous on Y. It is clear that any function lower semicontinuous on Y is

marginally lower semicontinuous on Y but the example given in [1, p.249] shows
that the converse is not true.

Corollary 12. Let X and Y be as in Theorem 11. Let f,g: X x Y — R be two
functions such that:
(i) f<g;
(ii) f is quasiconcave on X;
(i) f is marginally lower semicontinuous on Y';
(iv) g is quasiconvex on Y ;
(v)

v) gis weakly A-transfer upper semicontinuous on X, for any A> sup inlf/ g(z,y).
TEX YE

Then inf su z,y) < sup inf g(x,y).
erxGEf( y) mGEerg( y)

Proof. Let A > sup inf g(x,y) be arbitrary fixed. Define T\, : X — Y by
reX YEY

Ta(z)={yeY: f(z,y) <A}, U(z)={yeY g(z,y) <A}L

From (ii), T} is concave map. Since f is marginally lower semicontinuous on Y, for
each open U C X the set

() Ta(z) = {y € Y :sup f(z,y) < A}
sl zeU
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is closed, hence T) satisfies condition (i) in Theorem 11. By (i), Q) C T4, by (iv),
Q) has nonempty convex values, and by (v), ) has the local intersection property.

Applying Theorem 11 we get ﬂxe < Ih(z) #0, ie., mf sup < A, and the proof is
YeY zeX
complete. O

The previous corollary could be compared with earlier two function minimax
inequalities due to Fan [7] and Liu [13].

Theorem 13. Let X be a compact convex set in a locally convex space, Y a convex
set in a topological vector space and T : X — Y a concave map satisfying the
following conditions:
(i) T(y) is open in X for each y € Y;
(i) Nyer T'(x) is open for every closed subset F' of X;
(iii) there exists a map  : X —o Y with nonempty convex values and with the
local intersection property such that Q C T.

Then (Nyex T(z) # 0.

Proof. By Lemma 3, there exists a continuous selection of 2, p: X — Y. We have
p(z) € T(z) for each x € X.

By way of contradiction suppose that (), 7'(x) = 0. Then T has nonempty
values. By (ii), 7™ is upper semicontinuous. Moreover the values of 7™ are closed
(by (i)) and convex (since T is concave map). Thus the map 7™ o p is upper
semicontinuous with nonempty closed convex values. From Fan-Glicksberg fixed
point theorem (see [6],[9]), there exists 9 € X such that zy € T™(p(xo)). Put
yo = p(zp) and obtain the following contradiction

Yo = p(xo) € T(zo),
zo € T"(y0) = yo ¢ T'(z0). O

Corollary 14. Let X be a compact convex set in a locally convex space and Y be
a convex set in a topological vector space. Let f,g: X xY — R be two functions
such that:
(i) f<g;
(ii) f is quasiconcave on X;
(iii) f is upper semicontinuous on X X Y;
(iv) g is quasiconvex on Y ;
(v)

V) gis weakly A-transfer upper semicontinuous on X, for any \> sup inf g(z,y).
zeX YEY

Then inf max f(z,y) < sup inf g(z,y).
yeY zeX reX YEY
Proof. First, let us observe that if f is upper semicontinuous, then for each y €
Y, f(-,y) is also an upper semicontinuous function of x on X and therefore its
maximum, max f(x,y) on the compact set X exists.
z€X

Let A > sup inf g(z,y) be arbitrarily fixed. Define Ty, : X — Y by
zeX YEY

Thz)={yeY: flz,y) <A}, Q(z)={y €Y :g(x,y) <A}
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From the hypotheses it readily follows that T is concave map with open fibers,
and €2y is a map with nonempty convex values having the local intersection property.

We show that T satisfies condition (ii) in Theorem 13, or equaivalently that 7’5
is upper semicontinuous. Since f is upper semicontinuous on X x Y the graph of 7%,
that is the set {(y,2) € Y x X : f(x,y) > A} isclosed in Y x X. Hence T} : Y — X
is a map with closed values and with closed graph. Since X is compact, it follows
that T3 is upper semicontinuous (see [2, p.112]).

Applying Theorem 13 we get (),cx Ta(z) # 0, i.e., ;161{'/ max f(z,y) < A, and the

proof is complete. O

REFERENCES

[1] R. C. Bassanezi and G. H. Greco, A minimaz theorem for marginally upper/lower semicontin-
uous functions, Topol. Methods Nonlinear Anal. 5 (1995), 249-253.

[2] C. Berge, Topological Spaces, Edinburgh, London, Oliver and Boyel, 1963.

[3] T. H. Chang and C. L. Yen, KKM property and fized point theorems, J. Math. Anal. Appl.
203 (1996), 224-235.

[4] X. P. Ding, New H-KKM theorems and their applications to geometric property, coincidence
theorems, minimaz inequalities and mazimal elements, Indian J. Pure Appl. Math. 26 (1995),
1-19.

[5] X.P. Ding, W. K. Kim and K. K. Tan, A selection theorem and its applications, Bull. Austral.
Math. Soc. 46 (1992), 205-212.

[6] K. Fan, Fized points and minimaz theorems in locally convex topological linear spaces, Proc.
Nat. Acad. Sci. U.S.A. 38 (1952), 131-136.

[7] K. Fan, Sur un théoréme minimaz, C. R. Acad. Sci. Paris Ser. I. Math. 259 (1964), 3925-3928.

[8] S. D. Flam and G. H. Greco, Minimaz and intersection theorems, in: Fixed Point Theory and
Applications (M. A. Théra, J. B. Baillon, eds.), Longman Scientific and Technical, 1990, pp.
123-140.

[9] 1. L. Glicksberg, A further generalization of the Kakutani fized point theorem with applications
to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170-174.

[10] G.H. Greco, Minimaz theorems and saddling transformations, J. Math. Anal. Appl. 147 (1990),
180-197.

[11] G. H. Greco and M. P. Moschen, A minimaz inequality for marginally semicontinuous func-
tions, in Minimax Theory and Applications (B. Ricceri, S. Simons eds.), Kluwer Academic
Publishers, Dordrecht, 1998, pp. 41-50.

[12] C. W. Ha, Minimaz and fized point theorems, Math. Ann. 248 (1980), 73-77.

[13] F. C. Liu, A note on the von Neumann-Sion minimaz principle, Bull. Inst. Math. Acad. Sinica
6 (1978), 517-524.

[14] E. Michael, Continuous selections I, Ann. Math. 63 (1956), 361-382.

[15] S. Park, Generalizations of Ky Fan’s matching theorems and their applications, J. Math. Anal.
Appl. 141 (1989), 164-176.

[16] M. Sion, On general minimaz theorems, Pacific J. Math. 8 (1958), 171-176.

[17] G. Q. Tian, Generalization of the FKKM theorem and the Ky Fan minimaz inequality, with
applications to mazimal elements, price equilibrium, and complementarity, J. Math. Anal.
Appl. 170 (1992), 457-471.

[18] X. Wu and S. Shen, A further generalization of Yannelis-Prabhakar’s continuous selection and
its applications, J. Math. Anal. Appl. 197 (1996), 61-74.

Manuscript received December 11, 2003
revised April 14, 2004



CONSTANT SELECTIONS FOR CONCAVE-CONVEX MAPS AND MINIMAX THEOREMS 329

MIRCEA BALAJ
Department of Mathematics, University of Oradea, 3700, Oradea, ROMANIA
E-mail address: mbalaj@uoradea.ro



